Diagnosis of the of the Extremities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schwann Cell Supplementation in Neurosurgical Procedures After Neurotrauma Santiago R
ll Scienc Ce e f & o T l h a e Unda, J Cell Sci Ther 2018, 9:2 n r a r a p p u u DOI: 10.4172/2157-7013.1000281 y y o o J J Journal of Cell Science & Therapy ISSN: 2157-7013 Review Open Access Schwann Cell Supplementation in Neurosurgical Procedures after Neurotrauma Santiago R. Unda* Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina *Corresponding author: Santiago R. Unda, Instituto de Biotecnología, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja, Argentina, Tel: 3804277348; E-mail: [email protected] Rec Date: January 12, 2018, Acc Date: March 13, 2018, Pub Date: March 16, 2018 Copyright: © 2018 Santiago R. Unda. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Nerve trauma is a common cause of quality of life decline, especially in young people. Causing a high impact in personal, psychological and economic issues. The Peripheral Nerve Injury (PNI) with a several grade of axonotmesis and neurotmesis represents a real challenge for neurosurgeons. However, the basic science has greatly contribute to axonal degeneration and regeneration knowledge, making possible to implement in new protocols with molecular and cellular techniques for improve nerve re-growth and to restore motor and sensitive function. The Schwann cell transplantation from different stem cells origins is one of the potential tools for new therapies. In this briefly review is included the recent results of animal and human neurosurgery protocols of Schwann cells transplantation for nerve recovery after a PNI. -
Types and Classification of Nerve Injury: a Review
Indian Journal of Clinical Practice, Vol. 31, No. 5, October 2020 REVIEW ARTICLE Types and Classification of Nerve Injury: A Review R JAYASRI KRUPAA*, KMK MASTHAN†, ARAVINTHA BABU N‡, SONA B# ABSTRACT Nerve injuries are the most common conditions with varying symptoms, depending on the severity, intensity and nerves involved. Though much information is available on the mechanisms of injury and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve injuries and their classification. Keywords: Axonotmesis, neurotmesis, neurapraxia, Wallerian degeneration erve injuries are the most common conditions bundles of fibers called fascicles, which are covered with varying symptoms depending on the by perineurium. severity, intensity and nerves involved. N Â Epineurium: Finally, groups of fascicles are bundled Recovery after any nerve injury is variable. Though together to form the peripheral nerve (such as the much information exists on the mechanisms of injury median nerve), which is covered by epineurium. and regeneration, reliable treatments that ensure full functional recovery are limited. The type of nerve CLASSIFICATION injury alters the treatment and prognosis. This review article aims to summarize the various types of nerve Classification by Type of Nerve Injury injuries and classification of nerve injuries, which is There are three types of nerve injuries: useful in understanding their pathological basis, and to evaluate the prognosis for recovery. Nerve section Understanding the basic nerve anatomy is important Nerve section can be partial or complete, sharp or for the classification and also essential to evaluate blunt. -
Enhanced Repair Effect of Toll-Like Receptor 4 Activation on Neurotmesis: Assessment Using MR Neurography
ORIGINAL RESEARCH PERIPHERAL NERVOUS SYSTEM Enhanced Repair Effect of Toll-Like Receptor 4 Activation on Neurotmesis: Assessment Using MR Neurography H.J. Li, X. Zhang, F. Zhang, X.H. Wen, L.J. Lu, and J. Shen ABSTRACT BACKGROUND AND PURPOSE: Alternative use of molecular approaches is promising for improving nerve regeneration in surgical repair of neurotmesis. The purpose of this study was to determine the role of MR imaging in assessment of the enhanced nerve regeneration with toll-like receptor 4 signaling activation in surgical repair of neurotmesis. MATERIALS AND METHODS: Forty-eight healthy rats in which the sciatic nerve was surgically transected followed by immediate surgical coaptation received intraperitoneal injection of toll-like receptor 4 agonist lipopolysaccharide (n ϭ 24, study group) or phosphate buffered saline (n ϭ 24, control group) until postoperative day 7. Sequential T2 measurements and gadofluorine M-enhanced MR imaging and sciatic functional index were obtained over an 8-week follow-up period, with histologic assessments performed at regular intervals. T2 relaxation times and gadofluorine enhancement of the distal nerve stumps were measured and compared between nerves treated with lipopolysaccharide and those treated with phosphate buffered saline. RESULTS: Nerves treated with lipopolysaccharide injection achieved better functional recovery and showed more prominent gadofluo- rine enhancement and prolonged T2 values during the degenerative phase compared with nerves treated with phosphate buffered saline. T2 values in nerves treated with lipopolysaccharide showed a more rapid return to baseline level than did gadofluorine enhancement. Histology exhibited more macrophage recruitment, faster myelin debris clearance, and more pronounced nerve regeneration in nerves treated with toll-like receptor 4 activation. -
NIH Public Access Author Manuscript J Neuropathol Exp Neurol
NIH Public Access Author Manuscript J Neuropathol Exp Neurol. Author manuscript; available in PMC 2010 September 24. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Neuropathol Exp Neurol. 2009 July ; 68(7): 709±735. doi:10.1097/NEN.0b013e3181a9d503. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy following Repetitive Head Injury Ann C. McKee, MD1,2,3,4, Robert C. Cantu, MD3,5,6,7, Christopher J. Nowinski, AB3,5, E. Tessa Hedley-Whyte, MD8, Brandon E. Gavett, PhD1, Andrew E. Budson, MD1,4, Veronica E. Santini, MD1, Hyo-Soon Lee, MD1, Caroline A. Kubilus1,3, and Robert A. Stern, PhD1,3 1 Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 2 Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 3 Center for the Study of Traumatic Encephalopathy, Boston University School of Medicine, Boston, Massachusetts 4 Geriatric Research Education Clinical Center, Bedford Veterans Administration Medical Center, Bedford, Massachusetts 5 Sports Legacy Institute, Waltham, MA 6 Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts 7 Department of Neurosurgery, Emerson Hospital, Concord, MA 8 CS Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Abstract Since the 1920s, it has been known that the repetitive brain trauma associated with boxing may produce a progressive neurological deterioration, originally termed “dementia pugilistica” and more recently, chronic traumatic encephalopathy (CTE). We review the 47 cases of neuropathologically verified CTE recorded in the literature and document the detailed findings of CTE in 3 professional athletes: one football player and 2 boxers. -
Post-Concussion Syndrome
Post-Concussion Syndrome BY DAVID COPPEL Over the last decade, sport-related concussions have fatigue, irritability, sleep disturbance and sensitivity to become an important focus within the general sports inju- light and noise may continue over the next few days. Oth- WHAT CAN COACHES DO? ry and sports medicine field. Clinical and research studies SIGNS AND SYMPTOMS • Make sure student-athletes who sustain a concus- er symptoms seen on post-concussion symptom checklists According to the Diagnostic and Statistical Manual regarding this form/context of mild traumatic brain injury sion are immediately removed from play and that include attention and concentration difficulties, slowed of Mental Disorders – 4th edition (DSM-4) – an individu- have increased geometrically as its position as a public they do not feel pressure from the coaching staff to processing, distractibility, memory problems, slowed visu- al with post-concussion disorder experiences objective health concern elevated and the Centers for Disease Con- return to play before fully recovered. Communicating al tracking or vision problems, balance disturbance, and declines in attention, concentration, learning or memo- with team members before the season about con- trol and Prevention (CDC) became involved. ry. The individual also reports three or more subjective anxiety or depressed mood. Typically, depressed mood or cussion safety, and verbally reinforcing the impor- The CDC has compiled guidelines and resources for symptoms, present for at least three months: tance of concussion safety throughout the season health care providers, coaches, parents and athletes re- • Becoming fatigued easily are important ways to encourage student-athletes garding concussions. Great progress has been made in • Disordered sleep to feel comfortable reporting concussion symptoms WHAT CAN ATHLETIC • Headache understanding and managing sport-related concussions, to medical personnel. -
An Unusual Cause of Pseudomedian Nerve Palsy
Hindawi Publishing Corporation Case Reports in Neurological Medicine Volume 2011, Article ID 474271, 3 pages doi:10.1155/2011/474271 Case Report An Unusual Cause of Pseudomedian Nerve Palsy Zina-Mary Manjaly, Andreas R. Luft, and Hakan Sarikaya Department of Neurology, University Hospital Zurich, Frauenklinikstraße 26, 8091 Zurich,¨ Switzerland Correspondence should be addressed to Zina-Mary Manjaly, [email protected] Received 20 July 2011; Accepted 9 August 2011 Academic Editors: J. L. Gonzalez-Guti´ errez,´ V. Rajajee, and Y. Wakabayashi Copyright © 2011 Zina-Mary Manjaly et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We describe a patient who presented with an acute paresis of her distal right hand suggesting a peripheral median nerve lesion. However, on clinical examination a peripheral origin could not be verified, prompting further investigation. Diffusion-weighted magnetic resonance imaging revealed an acute ischaemic lesion in the hand knob area of the motor cortex. Isolated hand palsy in association with cerebral infarction has been reported occasionally. However, previously reported cases presented predominantly as ulnar or radial palsy. In this case report, we present a rather rare finding of an acute cerebral infarction mimicking median never palsy. 1. Case median nerve, which was normal (Figure 1(c)). Magnetic resonance imaging (MRI) on the same day revealed a small A 60-year-old woman presented to the emergency depart- diffusion restriction in a part of the left precentral gyrus that ffi ment with di culty in moving the thumb, index, and middle is known as “the hand knob” area (Figure 1(d))[2]. -
Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know
Anaesthesia & Critical Care Medicine Journal ISSN: 2577-4301 Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know Kamel I* and Huck E Review Article Lewis Katz School of Medicine at Temple University, USA Volume 4 Issue 3 Received Date: June 20, 2019 *Corresponding author: Ihab Kamel, Lewis Katz School of Medicine at Temple Published Date: August 01, 2019 University, MEHP 3401 N. Broad street, 3rd floor outpatient building ( Zone-B), DOI: 10.23880/accmj-16000155 Philadelphia, United States, Tel: 2158066599; Email: [email protected] Abstract Peripheral nerve injury is a rare but significant perioperative complication. Despite a variety of investigations that include observational, experimental, human cadaveric and animal studies, we have an incomplete understanding of the etiology of PPNI and the means to prevent it. In this article we reviewed current knowledge pertinent to perioperative upper extremity peripheral nerve injury and optimal intraoperative patient positioning. Keywords: Nerve Fibers; Proprioception; Perineurium; Epineurium; Endoneurium; Neurapraxia; Ulnar Neuropathy Abbreviations: PPNI: Perioperative Peripheral Nerve 2018.The most common perioperative peripheral nerve Injury; MAP: Mean Arterial Pressure; ASA CCP: American injuries involve the upper extremity with ulnar Society of Anesthesiology Closed Claims Project; SSEP: neuropathy and brachial plexus injury being the most Somato Sensory Evoked Potentials frequent [3,4]. In this article we review upper extremity PPNI with regards to anatomy and physiology, Introduction mechanisms of injury, risk factors, and prevention of upper extremity PPNI. Perioperative peripheral nerve injury (PPNI) is a rare complication with a reported incidence of 0.03-0.1% [1,2]. Anatomy and Physiology of Peripheral PPNI is a significant source of patient disability and is the Nerves second most common cause of anesthesia malpractice claims [3,4]. -
Concussion Guide for Coaches
Concussion Guide for Youth and High School Coaches SIGNS OBSERVED BY COACHING STAFF THE FACTS • Appears dazed or stunned (such as glassy eyes) • All concussions are serious. • Is confused about assignment or position • Most concussions occur without loss of • Forgets an instruction or play consciousness. • Is unsure of score or opponent • Recognition and proper response to concussions • Moves clumsily or poor balance when they first occur can help aid recovery and • Answers questions slowly prevent further injury, or even death. • Loses consciousness (even briefly) • Shows mood, behavior, or personality changes • Can’t recall events prior to hit or fall A bump, blow, or jolt to the head can cause a concussion, • Can’t recall events after hit or fall a type of traumatic brain injury (TBI). Concussions can also occur from a blow to the body that causes the head and brain to move rapidly back and forth. Even a “ding,” SYMPTOMS REPORTED BY ATHLETE “getting your bell rung,” or what seems to be mild bump • Headache or “pressure” in head or blow to the head can be serious. • Nausea or vomiting • Balance problems or dizziness • Double or blurry vision RECOGNIZING A POSSIBLE CONCUSSION • Sensitivity to light or noise To help recognize a concussion, watch for or ask others to • Feeling sluggish, hazy, foggy, or groggy report the following two things among your athletes: • Concentration or memory problems 1. A forceful bump, blow, or jolt to the head or body • Confusion that results in rapid movement of the head. • Feeling more emotional, nervous, or anxious – and – • Does not “feel right” or is “feeling down” 2. -
The Relationships Between Rugby Union, and Health and Well-Being
Review Br J Sports Med: first published as 10.1136/bjsports-2020-102085 on 28 October 2020. Downloaded from The relationships between rugby union, and health and well- being: a scoping review Steffan A Griffin ,1,2 Nirmala Kanthi Panagodage Perera ,3,4 Andrew Murray ,1,5 Catherine Hartley ,6 Samantha G Fawkner,7 Simon P T Kemp ,2,8 Keith A Stokes ,2,9 Paul Kelly 10 1Centre for Sport and Exercise, ABSTRACT Indeed, there are widely published health benefits The University of Edinburgh, Objective To scope the relationships between rugby associated with participating in various individual Edinburgh, UK 7 8 2 and team sports, including improved aerobic Medical Services, Rugby union, and health and well- being. Football Union, London, UK Design Scoping review. fitness, cardiovascular function, metabolic fitness 3Centre for Sport, Exercise and Data sources Published and unpublished reports of and in some cases reduced mortality.9 Sport is also Osteoarthritis Research Versus any age, identified by searching electronic databases, considered an ‘underused yet important’ contrib- Arthritis, Botnar Research platforms and reference lists. utor to physical activity (PA) and health10 in the Centre, University of Oxford, Oxford, UK Methods A three- step search strategy identified World Health Organisation’s (WHO) 2019 Global 4Sports Medicine, Australian relevant published primary, secondary studies and grey Action Plan for Physical Activity. Institute of Sport, Bruce, literature, which were screened using a priori inclusion Despite global participation in rugby union, there Australian Capital Territory, criteria. Data were extracted using a standardised tool, has not been an overarching review of the evidence Australia 5 on the specific relationships between rugby union, Scottish Rugby Union, to form (1) a numerical analysis and (2) a thematic Edinburgh, UK summary. -
Is the Diagnosis Written in the Palm?
CLINICAL Is the diagnosis written in the palm? Compression neuropathy from a walking frame Anupam Datta Gupta ANSWER 1 cause significant functional limitations. The diagnosis is compression neuropathy In late cases where the hand muscles of the right ulnar nerve and bilateral have already undergone atrophy, the CASE carpal tunnel syndrome at the wrist. motor recovery of those muscles, even A man aged 72 years requires a walking Pigmentation, callosity and atrophy on the after surgical decompression, may frame for mobility because of weakness ulnar side (hypothenar) of the right hand be incomplete. For early diagnosis of of both legs secondary to poliomyelitis. are indicative of ulnar nerve compression compression neuropathies, it is important He presents to the rehabilitation around the Guyon’s tunnel. This is either to routinely look at the hands of patients medicine outpatient clinic with soreness caused or exacerbated by the excessive who are taking increased weight through and weakness of both hands, which he pressure around the wrist during walking their hands because of a lower extremity developed following the use of the walking with the frame. Wasting of the first web problem and using mobility aids. If not frame. He also complains of loss of grip space caused by denervation of the picked up early, compression neuropathies strength and tingling of his hands. He is first dorsal interosseous and adductor can compound the disability. using the heel of the hand to manipulate pollicis muscles is a telltale sign of ulnar objects. Examination reveals skin neuropathy. On the left hand, the pressure ANSWER 3 pigmentation and callosities on the ulnar areas are around the carpal tunnel, causing To establish a diagnosis, the patient side of both palms, distal to the wrist crease median nerve compression. -
Respiratory Management in the Patient with Spinal Cord Injury
Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 168757, 12 pages http://dx.doi.org/10.1155/2013/168757 Review Article Respiratory Management in the Patient with Spinal Cord Injury Rita Galeiras Vázquez,1 Pedro Rascado Sedes,2 Mónica Mourelo Fariña,1 Antonio Montoto Marqués,3,4 and M. Elena Ferreiro Velasco3 1 Critical Care Unit, Complexo Hospitalario Universitario A Coruna,˜ CP. 15006, A Coruna,˜ Spain 2 Critical Care Unit, Complexo Hospitalario Universitario de Santiago de Compostela, CP. 15702, Santiago de Compostela, Spain 3 Spinal Cord Injury Unit, Complexo Hospitalario Universitario A Coruna,˜ CP. 15006, A Coruna,˜ Spain 4 Department of Medicine, University of A Coruna,˜ CP. 15006, A Coruna,˜ Spain Correspondence should be addressed to Rita Galeiras Vazquez;´ [email protected] Received 30 April 2013; Revised 11 July 2013; Accepted 30 July 2013 Academic Editor: Boris Jung Copyright © 2013 Rita Galeiras Vazquez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Spinal cord injuries (SCIs) often lead to impairment of the respiratory system and, consequently, restrictive respiratory changes. Paresis or paralysis of the respiratory muscles can lead to respiratory insufficiency, which is dependent on the level and completeness of the injury. Respiratory complications include hypoventilation, a reduction in surfactant production, mucus plugging, atelectasis, and pneumonia. Vital capacity (VC) is an indicator of overall pulmonary function; patients with severely impaired VC may require assisted ventilation. It is best to proceed with intubation under controlled circumstances rather than waiting until the condition becomes an emergency. -
Tendon Transfer for Triple Nerve Paralysis of the Hand in Leprosy
Lepr Rev (2002) 73, 319±325 Tendon transfer for triple nerve paralysis of the hand in leprosy ELAINE MCEVITT & RICHARD SCHWARZ Green Pastures Hospital, Box 5, Pokhara, Nepal Accepted for publication 27June 2002 Summary Paralysis of ulnar, median and radial nerves is seen in less than 1% of those affected with leprosy. This condition is a particular challenge for the surgeon, physiotherapist, and patient. A retrospective chart review was conducted at the Green Pastures Hospital and Rehabilitation Centre (GPHRC) and Anandaban Leprosy Hospital (ALH) in Nepal, and results were graded by the system outlined by Sundararaj in 1984. Thirty-one patients were identi®ed, and 21 charts were available for review. Excellent or good results were obtained in 93% of patients for wrist extension, 85% of patients for ®nger extension, 90% of patients for thumb extension, 71% of patients for intrinsic reconstruction, and 63% of patients for thumb opposition reconstruction. These results are reasonable but inferior to those obtained by Sundararaj in his study. Surgical intervention offers a very signi®cant improvement in function in these very dif®cult hands. Intensive physiotherapy is required both pre- and postoperatively. Introduction Hansen's disease results from infection with Mycobacterium leprae with subsequent involvement of skin, nerve, and mucosal tissue. Nerve damage occurs in 20±25% of patients.1 In the upper limb the nerve paralysis most frequently affects the ulnar nerve. Median nerve dysfunction may occur later or develop simultaneously, most frequently affecting the distal innervation (simian hand).2 High radial nerve involvement is least common (wrist drop), with 1% of patients having combined ulnar, median, and radial paralysis (triple nerve palsy).1,2 The typical pattern is that of high radial nerve palsy combined with high ulnar nerve and low median nerve loss.