Application of Different Bioanalytical Workflows for Proteomics of Prostate Cancer Li Chen University of Tennessee Health Science Center

Total Page:16

File Type:pdf, Size:1020Kb

Application of Different Bioanalytical Workflows for Proteomics of Prostate Cancer Li Chen University of Tennessee Health Science Center University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2009 Application of Different Bioanalytical Workflows for Proteomics of Prostate Cancer Li Chen University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Chen, Li , "Application of Different Bioanalytical Workflows for Proteomics of Prostate Cancer" (2009). Theses and Dissertations (ETD). Paper 43. http://dx.doi.org/10.21007/etd.cghs.2009.0050. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Application of Different Bioanalytical Workflows for Proteomics of Prostate Cancer Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Pharmaceutical Sciences Research Advisor Sarka Beranova-Giorgianni, Ph.D. Committee Dominic M. Desiderio, Ph.D. Ivan C. Gerling, Ph.D. Wei Li, Ph.D. Duane D. Miller, Ph.D. DOI 10.21007/etd.cghs.2009.0050 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/43 APPLICATION OF DIFFERENT BIOANALYTICAL WORKFLOWS FOR PROTEOMICS OF PROSTATE CANCER A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Li Chen December 2009 Chapter 2 © 2009 by American Chemical Society. All other material © 2009 by Li Chen All rights reserved ii DEDICATION To my husband and son, who remind me daily of the joys of life; and to my parents and my brother for their everlasting love and support. iii ACKNOWLEDGEMENTS First and foremost, I would like to express my deepest and most sincere appreciation to my advisor and mentor, Dr. Sarka Beranova-Giorgianni, for the training I received in her lab. Thanks for her supervision, advice and encouragement for the research projects. I also thank her for the time she spent guiding me writing, editing and revising the manuscripts. I would also like to thank the other members of my committee, Dr. Duane D. Miller, Dr. Ivan C. Gerling, Dr. Dominic Desiderio, and Dr. Wei Li for their invaluable suggestions, guidance, and assistance. I would like to especially acknowledge Dr. Jeffrey R. Gingrich and Ms. Tina Barrett for generously providing me with the human prostate cancer samples and LNCaP cell lines without which a major portion of this research would not have been possible. I must also thank Dr. Ram I. Mahato and Mr. Michael Danquah for establishing the cooperation research work and providing the mouse prostate tumor samples for comparative proteomic study. I am especially grateful to Dr. Nataliya I. Lenchik in Dr. Gerling’s group for her training and assistance in the gel image analysis package and Ingenuity software. I would also like to thank Ms. Margaret M. Jefferson for her help with gel imaging equipment. I especially thank all former and current members in Dr. Beranova-Giorgianni’s Lab, Dr. Francesco Giorgianni, Dr. Amira Wohabrebbi, Dr. Yingxin Zhao, Dr. Bin Fang and Ms. Dina Mohamed Fallog, for technical help, discussions and suggestions. My thanks are extended to the staff in the Departments of Pharmaceutical Sciences, including Brenda Thornton for her administrative help in committee meeting; and Faith B. Barcroft for her help in reagent purchasing and administrative work. Tremendous thanks to my husband, my parents, my brother and my son. Without their incredible love and support, I would not accomplish my graduate training. iv ABSTRACT In the current dissertation, we focused on the development and application of multiple mass spectrometry-based bioanalytical platforms for phosphoproteomic characterization in cell culture and clinical specimens of prostate cancer; and on the application of optimized methods to analysis of differential protein expression to reveal molecular mechanism of drug action in animal model of prostate cancer. Characterization of the phosphoproteome in prostate cancer Our study in phosphoprotein signatures on a large scale in prostate cancer focused on the LNCaP human prostate cancer cell line, and on human prostate cancer tissue. For the LNCaP prostate cancer cell line, we applied a combination of analytical platforms: (1) a novel in-gel isoelectric focusing (IEF) LC-MS/MS analytical platform; (2) a 2-DE based platform combined with phospho-specific staining. The in-gel IEF LC-MS/MS analytical methodology used in the study included separation of the LNCaP proteins by in-gel isoelectric focusing; digestion of the proteins with trypsin; enrichment of the digests for phosphopeptides with immobilized metal ion affinity chromatography (IMAC); analysis of the enriched digests by LC-MS/MS; and identification of the phosphorylated peptides/proteins through searches of the Swiss-Prot protein sequence database. With in-gel IEF based analytical platform, we have characterized over 600 different phosphorylation sites in 296 phosphoproteins in the LNCaP prostate cancer cell line. This panel of the LNCaP phosphoproteins was 3-fold larger than the panel obtained in our previous work, and is the largest phosphoprotein panel in prostate cancer reported to date. The phosphoproteins identified in this study belonged to various locations within the cell and were involved in various processes including cell differentiation, transcription regulation, and intercellular signal transduction. We also developed a 2-DE based platform, in combination with multiplexed staining and LC-MS/MS, for the identification of LNCaP phosphoproteins. In this study, we applied 2-DE as separation technique, Pro-QTM Diamond stain as phosphoprotein detection method, LC-MS/MS and database searches for protein identification to investigate the phosphoproteins in the LNCaP prostate cancer cell line. Proteins identified from spots of interest were shown to be highly relevant to prostate cancer. We demonstrated the feasibility of using 2-DE with phospho-specific stain and mass spectrometry to investigate the phosphoproteins in the LNCaP cell line. This methodology complements the in-gel IEF LC-MS/MS platform that we used for phosphoproteomics study; it will be of particular value for future comparative studies of phosphoproteins in various physiological states. For prostate cancer tissue, a gel-free approach was performed to analyze five prostate cancer tissue specimens to obtain phosphoproteomic signature of prostate cancer v for biomarker discovery. Proteins were extracted with Trizol reagent, and then in-solution digested with trypsin. Phosphopeptides were enriched with IMAC, and analyzed the phosphorylated peptides/proteins by LC-MS/MS with identification through searches of the Swiss-Prot protein sequence database. The panels obtained for prostate cancer tissue contain 15-24 phosphoproteins. Some of the characterized phosphoproteins were present in all five specimens; in addition, each specimen also produced a unique set of phosphoproteins. The findings provided a direct glimpse into the phosphoprotein machinery operating within the human prostate cancer tissue. This pilot study focused on a small set of specimens. The phosphoprotein panels that were obtained contained a number of proteins that were unique to a particular specimen. Comparative proteomics study of drug effects in prostate cancer We carried out the first comparative proteomics study for the examination of the effects of bicalutamide/embelin combination treatment on prostate tumors by characterizing the alterations in protein expression that was induced upon treatment of mice bearing prostate tumors with anticancer combination therapy. A comparative proteomic strategy based on 2-DE coupled with LC-MS/MS was performed on mouse prostate tumor tissue. Proteins from the mouse prostate tumors were extracted with Trizol, and the protein mixtures were separated by 2-DE. Differences in the protein profiles for the different treatment groups were evaluated by computer- assisted analysis of SYPRO Ruby stained 2-DE gels. LC-MS/MS and database searches were used to identify differentially expressed proteins. Pathway analysis was carried out on the dataset of identified proteins with the Ingenuity bioinformatics tool. Out of the 33 differentially expressed protein spots, 30 protein spots were identified and grouped into various functional classes. The major protein categories were metabolism (52%), stress response (12%), protein biosynthesis (13%) and apoptosis (11%), suggesting that alterations in these processes may be involved in the mechanism of drug action. Proteins associated with oxidative stress were up-regulated, which indicated that treatment with bicalutamide/embelin may affect the redox balance within the prostate tumor, and this effect may contribute to tumor suppression. vi TABLE OF CONTENTS CHAPTER 1. INTRODUCTION................................................................................. 1 1.1 Prostate Cancer............................................................................................... 1 1.2 Why Apply Proteomic Technologies for Biomarker Discovery in Prostate Cancer? ..........................................................................................................
Recommended publications
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Identification and Diagnostic Performance of a Small RNA Within the PCA3 and BMCC1 Gene Locus That Potentially Targets Mrna
    Published OnlineFirst November 12, 2014; DOI: 10.1158/1055-9965.EPI-14-0377 Research Article Cancer Epidemiology, Biomarkers Identification and Diagnostic Performance of a & Prevention Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA Ross M. Drayton1, Ishtiaq Rehman1, Raymond Clarke2, Zhongming Zhao3,4, Karl Pang1, Saiful Miah1, Robert Stoehr5, Arndt Hartmann5, Sheila Blizard1, Martin Lavin2, Helen E. Bryant1, Elena S. Martens-Uzunova6, Guido Jenster6, Freddie C. Hamdy7, Robert A. Gardiner2, and James W.F. Catto1 Abstract Background: PCA3 is a long noncoding RNA (lncRNA) with malignant prostatic tissues, exfoliated urinary cells from men unknown function, upregulated in prostate cancer. LncRNAs may with prostate cancer (13–273 fold change; t test P < 0.003), and be processed into smaller active species. We hypothesized this for closely correlated to PCA3 expression (r ¼ 0.84–0.93; P < 0.001). PCA3. Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, Methods: We computed feasible RNA hairpins within the 0.78) could predict the presence of cancer in most men. PCA3- BMCC1 gene (encompassing PCA3) and searched a prostate shRNA2 knockup altered the expression of predicted target transcriptome for these. We measured expression using qRT- mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCR in three cohorts of prostate cancer tissues (n ¼ 60), PCA3-shRNA2 expression was negatively correlated with COPS2 exfoliated urinary cells (n ¼ 484 with cancer and n ¼ 166 in patient samples (r ¼0.32; P < 0.001). controls), and in cell lines (n ¼ 22). We used in silico predictions Conclusion: We identified a short RNA within PCA3, whose and RNA knockup to identify potential mRNA targets of short expression is correlated to PCA3, which may target mRNAs transcribed RNAs.
    [Show full text]
  • Supplementary Material for “Characterization of the Opossum Immune Genome Provides Insights Into the Evolution of the Mammalian Immune System”
    Supplementary material for “Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system” Katherine Belov1*, Claire E. Sanderson1, Janine E. Deakin2, Emily S.W. Wong1, Daniel Assange3, Kaighin A. McColl3, Alex Gout3,4, Bernard de Bono5, Terence P. Speed3, John Trowsdale5, Anthony T. Papenfuss3 1. Faculty of Veterinary Science, University of Sydney, Sydney, Australia 2. ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia 3. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 4. Department of Medical Biology, The University of Melbourne, Parkville, Australia 5. Immunology Division, University of Cambridge, Cambridge, UK *Corresponding author: K. Belov, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia ph 61 2 9351 3454, fx 61 2 9351 3957, email [email protected] MHC paralogous regions Only 36 of the 114 genes in the opossum MHC have paralogs in one of the three paralogous regions (Supplementary Table 1). Genes represented in at least three of the four paralogous regions (13 genes) were used to compare gene order, revealing rearrangements between the four regions in opossum. Table 1: MHC genes with paralogs on opossum chromosomes 1, 2 and 3, corresponding to MHC paralogous regions on human chromosomes 9, 1 and 19 respectively. MHC Chromosome 1 Chromosome 2 Chromosome 3 (Human Chr 9) (Human Chr 1) (Human Chr 19) AGPAT1 AGPAT2 AIF1 C9orf58 ATP6V1G2 ATP6V1G1 ATP6V1G3 B3GALT4 B3GALT2 BAT1 DDX39 BAT2 KIAA0515 BAT2D1 BRD2 BRD3 BRDT BRD4 C4 C5 C3 SLC44A4 SLC44A5 SLC44A2 CLIC1 CLIC3 CLIC4 COL11A2 COL5A1 COL11A1 COL5A3 CREBL1 ATF6 DDAH2 DDAH1 DDR1 DDR2 EGFL8 EGFL7 EHMT2 EHMT1 GPX5 GPX4 MHC Class I CD1 HSPA1A HSPA5 MDC1 PRG4 NOTCH4 NOTCH1 NOTCH2 NOTCH3 PBX2 PBX3 PBX1 PBX4 PHF1 MTF2 PRSS16 DPP7 PSMB9 PSMB7 RGL2 RALGDS RGL1 RGL3 RING1 RNF2 RXRB RXRA RXRG SYNGAP1 RASAL2 TAP ABCA2 TNF/LTA/LTB TNFSF8/TNFSF15 TNFSF4 CD70/TNFSF9/ TNFSF14/ TNXB TNC TNR Table 2.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Examination of the Role of the Hu Proteins, Hur and Hud, in Prostate Cancer Cells
    Examination of the Role of the Hu Proteins, HuR and HuD, in Prostate Cancer Cells. Christin Florence Down This thesis is presented for the degree of Doctor of Philosophy to the School of Medicine and Pharmacology, University of Western Australia. January 2007 i Declaration. This thesis contains published work and/or work prepared for publication, some of which has been co-authored . The bibliographic details of the works and where they appear in the thesis are set out below. (The candidate must attach to this declaration a statement detailing the percentage contribution of each author to the work. This must been signed by all authors. Where this is not possible, the statement detailing the percentage contribution of authors should be signed by the candidate’s Coordinating Supervisor). This thesis contains experimental data from the following co-authored work: Hu Proteins are Expressed and Regulate Androgen Receptor Expression and Cell Proliferation in Prostate Cancer. Christin F Down , Dianne J Beveridge, Michael R Epis, Ricky Lareu, Lisa M Stuart, Britt Granath, Dominic C Voon, Henry Furneaux, Cecily Metcalf, Jacqueline Bentel and Peter J Leedman. Submitted to Cancer Research . The relative contribution of authors is as follows: Christin Down (the Candidate): 55% Dianne J Beveridge 6 % Michael R Epis 6 % Ricky Lareu 3 % Lisa M Stuart 3 % Britt Granath 3 % Dominic Voon 3 % Henry Furneaux 3 % Cecily Metcalf 3 % Jacqueline Bentel 5 % Peter J Leedman 10 % Data from the manuscript described above are presented in this thesis in the following figures, and were performed by the investigator indicated: Figure 3.1A : Dr Cecily Metcalfe, Department of Pathology, Royal Perth Hospital.
    [Show full text]
  • Biocuration 2016 - Posters
    Biocuration 2016 - Posters Source: http://www.sib.swiss/events/biocuration2016/posters 1 RAM: A standards-based database for extracting and analyzing disease-specified concepts from the multitude of biomedical resources Jinmeng Jia and Tieliu Shi Each year, millions of people around world suffer from the consequence of the misdiagnosis and ineffective treatment of various disease, especially those intractable diseases and rare diseases. Integration of various data related to human diseases help us not only for identifying drug targets, connecting genetic variations of phenotypes and understanding molecular pathways relevant to novel treatment, but also for coupling clinical care and biomedical researches. To this end, we built the Rare disease Annotation & Medicine (RAM) standards-based database which can provide reference to map and extract disease-specified information from multitude of biomedical resources such as free text articles in MEDLINE and Electronic Medical Records (EMRs). RAM integrates disease-specified concepts from ICD-9, ICD-10, SNOMED-CT and MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the Unified Medical Language System (UMLS) based on the UMLS Concept Unique Identifiers for each Disease Term. We also integrated phenotypes from OMIM for each disease term, which link underlying mechanisms and clinical observation. Moreover, we used disease-manifestation (D-M) pairs from existing biomedical ontologies as prior knowledge to automatically recognize D-M-specific syntactic patterns from full text articles in MEDLINE. Considering that most of the record-based disease information in public databases are textual format, we extracted disease terms and their related biomedical descriptive phrases from Online Mendelian Inheritance in Man (OMIM), National Organization for Rare Disorders (NORD) and Orphanet using UMLS Thesaurus.
    [Show full text]
  • Supplemental Figure S1 Differentially Methylated Regions (Dmrs
    Supplemental Figure S1 '$$#0#,2'**7+#2&7*2#"0#%'-,11 #25##,"'1#1#122#1 '!2-0'*"#.'!2'-,-$122&#20,1'2'-,$0-+2- !"Q !"2-$%," $ 31',% 25-$-*" !&,%# ," ' 0RTRW 1 !32V-$$ !0'2#0'T - #.0#1#,22'-, -$ "'$$#0#,2'**7+#2&7*2#"%#,#11',.0#,2&#1#1,"2&#'0 #&4'-022&#20,1'2'-, #25##,"'$$#0#,2"'1#1#122#1T-*!)00-51',"'!2#&7.#0+#2&7*2#"%#,#1Q%0700-51 &7.-+#2&7*2#"%#,#1Q31',%25-$-*"!&,%#,"'0RTRW1!32V-$$!0'2#0'T-%#,#1 +#22&# -4#!0'2#0'22&#20,1'2'-,$0-+$%2-$Q5#2&#0#$-0#*1-',!*3"#" %#,#15'2&V4*3#0RTRWT$$#!2#"%#,10#&'%&*'%&2#" 712#0'1)1#T Supplemental Figure S2 Validation of results from the HELP assay using Epityper MassarrayT #13*21 $0-+ 2&# 1$ 117 5#0# !-00#*2#" 5'2& /3,2'22'4# +#2&7*2'-, ,*78#" 7 '13*$'2#11007$-04V-,"6U-%#,#.0-+-2#00#%'-,1T11007 51.#0$-0+#"31',%**4'* *#1+.*#1T S Supplemental Fig. S1 A unique hypermethylated genes (methylation sites) 454 (481) 5693 (6747) 120 (122) NLMGUS NEWMM REL 2963 (3207) 1338 (1560) 5 (5) unique hypomethylated genes (methylation sites) B NEWMM 0 (0) MGUS 454 (481) 0 (0) NEWMM REL NL 3* (2) 2472 (3066) NEWMM 2963 REL (3207) 2* (2) MGUS 0 (0) REL 2 (2) NEWMM 0 (0) REL Supplemental Fig. S2 A B ARID4B DNMT3A Methylation by MassArray Methylation by MassArray 0 0.2 0.4 0.6 0.8 1 1.2 0.5 0.6 0.7 0.8 0.9 1 2 0 NL PC MGUS 1.5 -0.5 NEW MM 1 REL MM -1 0.5 -1.5 0 -2 -0.5 -1 -2.5 -1.5 -3 Methylation by HELP Assay Methylation by HELP Methylation by HELP Assay Methylation by HELP -2 -3.5 -2.5 -4 Supplemental tables "3..*#+#,2*6 *#"SS 9*','!*!&0!2#0'12'!1-$.2'#,21+.*#1 DZ_STAGE Age Gender Ethnicity MM isotype PCLI Cytogenetics
    [Show full text]
  • Improving the Yeast Two-Hybrid System with Permutated Fusion Proteins: the Varicella Zoster Virus Protein Interaction Network
    Improving the Yeast two-hybrid system with permutated fusion proteins: The Varicella zoster virus protein interaction network Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich vorgelegte DISSERTATION von Diplom-Biologe Thorsten Stellberger aus Rauenberg Dekan: Prof. Dr. Stefan Bräse Referent: Prof. Dr. Jonathan Sleeman Korreferent: Prof. Dr. Jörg Kämper Tag der mündlichen Prüfung: 20.10.2010 Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis September 2010 in der Arbeitsgruppe von PD Dr. Peter Uetz im Institut für Toxikologie und Genetik des Karlsruher Instituts für Technologie (KIT), Campus Nord, angefertigt. Zusammenfassung Die vorliegende Studie beschreibt den ersten Versuch zur Erstellung eines vergleichenden Protein-Protein Interaktionsnetzwerks mit dem Yeast two-hybrid (Y2H) System. Viele Studien bestätigen, dass Interaktionsnetzwerke aus proteomweiten Screens unvollständig sind. Dies stützt sich auf die Beobachtung, dass Interaktionsdaten, die mit unterschiedlichen Methoden erhoben wurden, nur geringe Überlappungen zeigen. Dies betrifft auch unterschiedliche Systeme innerhalb einer Methode, wie verschiedene Y2H-Systeme. Dadurch wurde die Frage aufgeworfen, welche Rolle strukturelle Unterschiede, insbesondere sterische Bedingungen im Testsystem spielen, verursacht durch die Orientierung der verwendeten Fusionsdomänen. In dieser Arbeit untersuche ich deren Einfluss auf die Detektierbarkeit
    [Show full text]
  • Supplemental Table 1 List of Genes Differentially Expressed In
    Supplemental Table 1 List of genes differentially expressed in normal nasopharyngeal epithelium (N), metaplastic and displastic lesions (R), and carcinoma (T). Parametric Permutation Geom Geom Geom Unique Description Clone UG Gene symbol Map p-value p-value mean mean mean id cluster of of of ratios ratios ratios in in in class class class 1 : N 2 : R 3 : T 1 p < 1e-07 0 0.061 0.123 2.708 169329 secretory leukocyte protease IncytePD:2510171 Hs.251754 SLPI 20q12 inhibitor (antileukoproteinase) 2 p < 1e-07 0 0.125 0.394 1.863 163628 sodium channel, nonvoltage-gated IncytePD:1453049 Hs.446415 SCNN1A 12p13 1 alpha 3 p < 1e-07 0 0.122 0.046 1.497 160401 carcinoembryonic antigen-related IncytePD:2060355 Hs.73848 CEACAM6 19q13.2 cell adhesion molecule 6 (non- specific cross reacting antigen) 4 p < 1e-07 0 0.675 1.64 5.594 165101 monoglyceride lipase IncytePD:2174920 Hs.6721 MGLL 3q21.3 5 p < 1e-07 0 0.182 0.487 0.998 166827 nei endonuclease VIII-like 1 (E. IncytePD:1926409 Hs.28355 NEIL1 15q22.33 coli) 6 p < 1e-07 0 0.194 0.339 0.915 162931 hypothetical protein FLJ22418 IncytePD:2816379 Hs.36563 FLJ22418 1p11.1 7 p < 1e-07 0 1.313 0.645 13.593 162399 S100 calcium binding protein P IncytePD:2060823 Hs.2962 S100P 4p16 8 p < 1e-07 0 0.157 1.445 2.563 169315 selenium binding protein 1 IncytePD:2591494 Hs.334841 SELENBP1 1q21-q22 9 p < 1e-07 0 0.046 0.738 1.213 160115 prominin-like 1 (mouse) IncytePD:2070568 Hs.112360 PROML1 4p15.33 10 p < 1e-07 0 0.787 2.264 3.013 167294 HRAS-like suppressor 3 IncytePD:1969263 Hs.37189 HRASLS3 11q12.3 11 p < 1e-07 0 0.292 0.539 1.493 168221 Homo sapiens cDNA FLJ13510 IncytePD:64451 Hs.37896 2 fis, clone PLACE1005146.
    [Show full text]
  • UCLA Previously Published Works
    UCLA UCLA Previously Published Works Title Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer¿s disease Permalink https://escholarship.org/uc/item/458756f5 Journal BMC Medical Genomics, 6(1) ISSN 1755-8794 Authors Levine, Andrew J Miller, Jeremy A Shapshak, Paul et al. Publication Date 2013-02-13 DOI http://dx.doi.org/10.1186/1755-8794-6-4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Levine et al. BMC Medical Genomics 2013, 6:4 http://www.biomedcentral.com/1755-8794/6/4 RESEARCH ARTICLE Open Access Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease Andrew J Levine1*†, Jeremy A Miller2†, Paul Shapshak3, Benjamin Gelman4, Elyse J Singer1, Charles H Hinkin5,6, Deborah Commins7, Susan Morgello8, Igor Grant9 and Steve Horvath2,10 Abstract Background: Human Immunodeficiency Virus-1 (HIV) infection frequently results in neurocognitive impairment. While the cause remains unclear, recent gene expression studies have identified genes whose transcription is dysregulated in individuals with HIV-association neurocognitive disorder (HAND). However, the methods for interpretation of such data have lagged behind the technical advances allowing the decoding genetic material. Here, we employ systems biology methods novel to the field of NeuroAIDS to further interrogate extant transcriptome data derived from brains of HIV + patients in order to further elucidate the neuropathogenesis of HAND. Additionally, we compare these data to those derived from brains of individuals with Alzheimer’s disease (AD) in order to identify common pathways of neuropathogenesis.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Anti-Human ZMYM3, Monoclonal Alternate Names: Zinc Finger MYM-Type Protein 3
    1 of 5 Anti-Human ZMYM3, monoclonal Alternate Names: Zinc finger MYM-type protein 3 Cat. No. 15-026 FOR RESEARCH USE ONLY NOT FOR USE IN HUMANS PRODUCT DESCRIPTION UniProt Summary Physical Characteristics UniProt Quantity: 1 ml (culture supernatant) or Specificity: monospecific for human Primary Accession: Q14202 100ug at 1mg/ml (purified) ZMYM3 ; see “Microarray Analysis” below Plays a role in the regulation of cell morphology and Format: culture supernatant or purified cytoskeletal organization. May be a component of a material Reactivity: human; not tested for BHC histone deacetylase complex that contains cross reactivity in other species HDAC1, HDAC2, HMG20B/BRAF35, KDM1A, Host/Isotype: mouse IgG2a RCOR1/CoREST, PHF21A/BHC80, ZMYM2, Stability/Storage: 12 months long ZNF217, ZMYM3, GSE1 and GTF2I. Nucleus (By Clonality: monoclonal; ID term: -20°C; short term: 4°C; avoid similarity). Event=Alternative splicing; Named freeze-thaw cycles; aliquot as required isoforms=3; Name=1; IsoId=Q14202-1; JH39.2.2F10 Sequence=Displayed; Name=2; IsoId=Q14202-2; Sequence=VSP_004492; Note=No experimental Formulation: culture supernatant Handling Notes: small volumes of confirmation available; Name=3; IsoId=Q14202-3; contains 0.02% NaN3. Purified material antibody may occasionally become Sequence=VSP_043262, VSP_043263; Most contains 30% glycerol, PBS and 0.02% entrapped in the seal of the product vial abundant in brain, moderate in muscle and heart, NaN3 during shipment and storage; briefly low in other tissues except placenta. Note=A centrifuge the vial on a tabletop chromosomal aberration involving ZMYM3 may be a centrifuge to dislodge any liquid in the cause of X-linked mental retardation..
    [Show full text]