Supplemental Figure S1 Differentially Methylated Regions (Dmrs

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Figure S1 Differentially Methylated Regions (Dmrs Supplemental Figure S1 '$$#0#,2'**7+#2&7*2#"0#%'-,11 #25##,"'1#1#122#1 '!2-0'*"#.'!2'-,-$122&#20,1'2'-,$0-+2- !"Q !"2-$%," $ 31',% 25-$-*" !&,%# ," ' 0RTRW 1 !32V-$$ !0'2#0'T - #.0#1#,22'-, -$ "'$$#0#,2'**7+#2&7*2#"%#,#11',.0#,2&#1#1,"2&#'0 #&4'-022&#20,1'2'-, #25##,"'$$#0#,2"'1#1#122#1T-*!)00-51',"'!2#&7.#0+#2&7*2#"%#,#1Q%0700-51 &7.-+#2&7*2#"%#,#1Q31',%25-$-*"!&,%#,"'0RTRW1!32V-$$!0'2#0'T-%#,#1 +#22&# -4#!0'2#0'22&#20,1'2'-,$0-+$%2-$Q5#2&#0#$-0#*1-',!*3"#" %#,#15'2&V4*3#0RTRWT$$#!2#"%#,10#&'%&*'%&2#" 712#0'1)1#T Supplemental Figure S2 Validation of results from the HELP assay using Epityper MassarrayT #13*21 $0-+ 2&# 1$ 117 5#0# !-00#*2#" 5'2& /3,2'22'4# +#2&7*2'-, ,*78#" 7 '13*$'2#11007$-04V-,"6U-%#,#.0-+-2#00#%'-,1T11007 51.#0$-0+#"31',%**4'* *#1+.*#1T S Supplemental Fig. S1 A unique hypermethylated genes (methylation sites) 454 (481) 5693 (6747) 120 (122) NLMGUS NEWMM REL 2963 (3207) 1338 (1560) 5 (5) unique hypomethylated genes (methylation sites) B NEWMM 0 (0) MGUS 454 (481) 0 (0) NEWMM REL NL 3* (2) 2472 (3066) NEWMM 2963 REL (3207) 2* (2) MGUS 0 (0) REL 2 (2) NEWMM 0 (0) REL Supplemental Fig. S2 A B ARID4B DNMT3A Methylation by MassArray Methylation by MassArray 0 0.2 0.4 0.6 0.8 1 1.2 0.5 0.6 0.7 0.8 0.9 1 2 0 NL PC MGUS 1.5 -0.5 NEW MM 1 REL MM -1 0.5 -1.5 0 -2 -0.5 -1 -2.5 -1.5 -3 Methylation by HELP Assay Methylation by HELP Methylation by HELP Assay Methylation by HELP -2 -3.5 -2.5 -4 Supplemental tables "3..*#+#,2*6 *#"SS 9*','!*!&0!2#0'12'!1-$.2'#,21+.*#1 DZ_STAGE Age Gender Ethnicity MM isotype PCLI Cytogenetics t[4:14] t[11:14] Hyper- del13 del17p t[14:16] # prior Plt Hb Prot ALb CRP B2M Cr IgG IgA IgM SFK SFL FLCratio diploid treatments LC LC MGUS6 57 M caucasian IgG kappa ND 46,XY[20] ND ND ND ND ND ND 0 200 13.9 8.3 4.2 156 ND 3.1 1.1 1410 96 218 1.85 1.81 1.02 MGUS5 69 M caucasian IgG kappa 0 46,XY[20] 0 0 0 0 0 ND 0 134 12.4 7.9 4.5 150 ND 3.2 1.8 1310 262 62 25.2 28.9 0.87 MGUS4 64 M caucasian IgG lambda 0 46,XY[20] ND ND ND ND ND ND 0 253 12 6.3 3.2 145 0.7 4.49 2 876 145 139 19.2 24.6 0.78 MGUS11 48 M caucasian IgG kappa 0 46,XY[30] ND ND ND ND ND ND 0 186 14.3 9.4 4.3 156 0.6 1.94 1.1 3260 41 68 1.75 0.65 2.69 MGUS7 71 F caucasian IgG Kappa ND - No 46,XX[20] ND ND ND ND ND ND 0 274 13.1 8.4 3.7 434 ND 1.9 0.6 2040 54 527 3.83 1.16 3.3 monotypic PC MGUS1 59 F african IgG lambda 0 46 xy[20] ND ND ND ND ND ND 0 190 14.3 7.5 4.38 182 ND 2.53 1.3 1350 219 70 23.7 48.6 0.49 american MGUS3 56 f caucasian IgG lambda 0 46,XX[20] ND ND ND ND ND ND 0 192 10.2 6.9 3.4 213 ND 9.41 2.1 1320 180 74 36 52.9 0.68 MGUS2 72 M caucasian IgG kappa 0 46,XY[20] ND ND 0 1 0 ND 0 74 13.2 7.9 4.15 160 ND 3.51 1.1 2010 227 120 24.9 24.9 1 MGUS10 32 M hispanic IgG lambda ND - No 46,XY[20] ND 0 0 0 ND ND 0 188 13.4 9.4 3.7 154 0.5 5.9 1.2 2980 169 780 7.88 6.64 1.19 monotypic PC MGUS9 58 F caucasian IgM kappa ND - No 46,XX[20] ND ND ND ND ND ND 0 306 14.5 8 4.2 178 0.6 ND 0.8 834 127 384 1.05 1.39 0.76 monotypic PC MGUS8 63 F caucasian IgG kappa ND - No 46,XX,del(20)(q ND 0 1 0 0 1 0 111 7.9 7 3 223 0.5 5.91 1.2 1830 138 32 5.76 2.03 2.84 monotypic PC 11.2q13.3)[4]/46 ,XX[16] NEWMM13 61 F caucasian IgG lambda 0.7 46,XX[20] 1 0 1 1 0 0 0 194 10.6 10.1 4.17 167 0.6 2.97 0.62 5380 16 10 0.82 3.81 0.22 NEWMM11 69 F hispanic Lambda 0 46,XX[20] 0 0 1 0 0 0 0 198 10.2 8.3 4.3 178 ND 7.86 1.2 1760 28 7 ND ND ND Light chain NEWMM8 72 M caucasian Lambda 0 46,XY[20] ND 1 1 0 0 ND 0 227 10.1 7.9 3.4 ND ND 24 2.7 582 43 8 1.04 256 0 Light chain 0 NEWMM7 63 M caucasian IgA lambda 0.3 45,der(X)add(X) 1 0 0 0 0 ND 0 211 8.4 10.4 3 99 0.9 6.31 1.3 300 396 6NDND ND (p22.1)add(X)(q 0 22),Y,- 7,add(8)(q24.1), psu dic(?;12)(?;p11. 2),add(17)(q25), add(18)(q23),ad d(22)(q11.2)[3]/ 46,XY[27] NEWMM6 57 F caucasian IgG lambda 0.4 54,XX,+5,+5,+7, 0 0 1 1 0 ND 0 357 12.6 7.2 3.2 148 0 3.46 3.46 1490 85 70 ND ND ND +9,+9,13,+15,+ 15,+19,+21[1]/4 6,XX[29] NEWMM5 56 F african Kappa Light ND 46,XX[20] ND ND ND ND ND ND 0 264 8.3 7.6 4.82 ND ND 2.36 0.9 881 24 17 ND ND ND american chain NEWMM9 63 M caucasian Kappa Light 1 46,XY[20] 0 0 1 0 0 ND 0 304 12.5 6.8 3.9 159 ND 3.02 1.17 279 11 15 862 0.06 14366.67 chain NEWMM12 84 M caucasian IgA kappa 1.6 46,XY[20] 0 0 1 0 0 ND 0 237 10.4 9.3 3.9 123 ND 4.83 1.3 405 279 11 7.16 0.93 7.7 0 NEWMM10 46 M hispanic Lambda 0.4 46,XY[20] ND 1 0 0 0 ND 0 357 13.4 5.4 3.2 210 3.73 3.73 0.79 431 38 17 0.91 63.2 0.01 Light chain NEWMM3 68 M caucasian IgA kappa 0 46,XY[7]/45X,- ND 1 1 0 0 ND 1 250 12.3 7.7 2.8 130 0.6 2.61 1.2 261 261 4150.04340.91 Y[4] 0 NEWMM1 61 F caucasian free kappa ND - No 46xx[20] ND ND ND ND ND ND 0 285 8.5 6.8 3 119 1.7 41.4 11.3 574 15 14 280 23.6 1186 LC monotypic PC 00 NEWMM2 74 F caucasian IgG kappa ND - No 46,XX[20] ND ND ND ND ND ND 0 259 12.2 8.1 3.9 152 0.6 2.18 0.6 1800 66 16 8.46 21.8 0.39 monotypic PC NEWMM4 57 F caucasian IgG kappa 0.5 46,XX[30] 1 ND 0 1 0 ND 0 304 11 10 3.85 150 0.9 2.25 0.9 5090 62 43 9.25 36.9 0.25 REL9 68 M hispanic IgG kappa, 1 46,XY[20] 0 0 1 1 1 ND 5 158 11.3 7.2 3.1 155 0.8 2.38 0.9 2020 12 5 ND ND ND Kappa light chain REL10 60 F caucasian Lambda 0.6 46,XX,del(20)(q ND 1 1 0 0 ND 11 55 8.7 6.4 3.38 195 3 8.94 1.34 222 9 9 0.14 665 0 Light chain 11.2q13.1)[5]/46 ,XX,- 5,+r[5]/53,XX, t(1;12)(p13;q15) ,+6,t(8;14)(q24. 1;q32),+9, der(9)t(9;11)(q3 4;q13)x2,+add(1 1)(q13),del(13)( q12q22), der(14)t(11;14)( q13;q32),+15,+ 18,+20,+22[4]/4 6,XX[6]. REL4 53 M caucasian IgG lambda 0 46,XY[20] 1 0 0 1 0 ND 6 191 12.7 8.8 2.2 205 ND 2.5 0.8 5040 21 15 ND ND ND REL11 44 M african IgG kappa, ND - No 46,XY,t(1;8)(p1 ND 1 0 0 0 ND 2 39 10.4 6.6 3.2 170 6.7 12.3 1.65 474 35 11 0.12 303 0 american IgG lambda, monotypic PC 3;q24.1),t(11;14 free kappa )(q13;q32)[16]/4 6,XY[4] REL12 65 M caucasian IgG lambda 2.6 46,XY[20] 0 0 1 0 0 ND 3 226 9.7 9.5 2.7 145 ND 4.63 1.4 3890 20 39 0.81 3.33 0.24 REL13 73 M caucasian IgG kappa, 5.2 ND 1 0 0 1 0 ND 4 40 8 5.3 1.3 156 8.7 8.78 3.62 1030 27 24 0.63 95.8 0.01 Kappa light chain REL15 69 M hispanic IgG kappa, 2.2 46,XY[20] 0 0 1 1 1 ND 8 193 7.9 7.9 2.8 218 1.4 7.44 0.9 3240 0 <4 28 0.22 127.27 Kappa light chain REL16 60 M caucasian IgG lambda 0 46,XY[20] 1 0 0 1 0 0 2 141 13.7 10 3.64 123 0 2.6 1.1 5570 26 26 0.78 2.57 0.3 REL17 49 M caucasian IgG kappa 0.8 46,XY[20] ND 1 0 0 0 ND 6 187 11.8 9.7 3.98 145 ND 3.67 1.1 4160 23 24 9.69 0.86 11.27 REL18 62 M caucasian IgG lambda 0 46,XY[20] 1 ND 0 1 0 ND 4 163 9.6 9.4 3 137 8.7 4.18 1.3 4090 26 31 0.89 293 0 REL5 52 F caucasian IgG lambda ND 46,XX[30] ND ND ND ND ND ND 2 179 11.6 6.9 3.9 238 0 2.41 0.72 612 10 53 0.2 5.64 0.04 REL6 62 M caucasian IgG lambda 0 46,XY[20] 1 ND 0 1 0 ND 3 199 11.4 8 3.7 142 1 2.74 1.3 2220 26 33 0.68 75.4 0.01 REL14 67 M asian IgG kappa 6.3 41- 0 0 1 1 1 ND 4 61 8.2 10.2 3.23 219 0 4.66 1.1 6470 110 46 16 0.99 16.16 51,XY,+1[3],dic( 1;19)(p13;q13.3 )[3],t(1;20)(p13; q13.3), +del(2)(q31)[2], +7[8],+add(7)(p 13)[5],- 8[14],iso(8)(q10 )[3], +9[16],- 11[3],+del(11)(p 11.1)[14],- 13[12], der(16)t(11;16)( q13;p13.3)[2],ad d(17)(p11.2)[14] ,+18[14], +19[3],+add(19) (q13.1)[4],- 22,+1- 3mar[cp17]/46, XY[3] REL2 74 M caucasian faint IgG 0 46,XY[20] 0 0 1 0 1 ND 2 328 11.1 7.5 3.4 167 ND 5.11 1.7 1150 186 83 13.6 20.5 0.66 lambda REL8 50 M caucasian Kappa Light 0 46,XY[20] ND 1 0 1 0 ND 5 365 14.2 6.5 3.7 167 ND 2.62 1 207 11 31 38.6 23.4 1.65 chain REL7 48 M caucasian IgG kappa 0 46,XY[20] ND ND ND ND ND ND 3 444 4 7.7 3.9 173 nd 2.77 1 1250 181 10 750 27.7 27.08 REL3 48 M caucasian IgG kappa 0.2 46,XY[20] 0 0 1 ND ND ND 3 251 12.6 7.4 4.1 161 ND 1.77 1.1 1060 55 69 33.1 14.4 2.3 REL1 51 F caucasian free kappa 0 46,XX[20] ND 1 0 0 0 ND 4 228 12.5 6.5 3.7 165 ND 2.4 0.8 382 0 44 303 3.04 996.71 LC 0 REM2 66 M caucasian IgG kappa ND - No 46,XY[20] ND ND ND ND ND ND 6 152 12.6 6.7 3.97 169 0 2.44 0.94 408 10 11 0.23 0.89 0.23 monotypic PC REM1 50 M caucasian IgG kappa ND - No 46,XY[20] ND ND ND ND ND ND 2 275 11.6 6.9 3.7 213 0 2.39 0.83 889 0 12 1.55 0.33 4.7 monotypic PC SMM2 66 F african IgG kappa ND 46,XX[20] ND ND ND ND ND ND 0 190 13.6 8 3.6 128 2.1 3.64 0.7 1670 177 396 ND ND ND american SMM6 70 M caucasian IgG lambda ND - No 45,X,-Y[11], ND 1 0 0 0 ND 0 223 13.6 8.3 3.4 180 ND 2.65 0.93 2260 68 51 1.33 18.8 0.07 monotypic PC 46,XY[9] SMM1 76 M caucasian IgA lambda 0 46,XY[20] 0 0 1 0 0 ND 0 219 12.1 7 3.7 135 ND 5.21 1.7 706 900 27 ND ND ND SMM8 64 F asian IgG kappa ND 46,XX[20] 1 0 1 1 0 0 0 349 12.6 9.2 3.4 211 0.5 2.12 0.8 2970 45 23 17 0.83 20.48 "3..*#+#,2*6 *#"T A) NL vs.
Recommended publications
  • The G Protein-Coupled Receptor Subset of the Dog Genome Is More Similar
    BMC Genomics BioMed Central Research article Open Access The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents Tatjana Haitina1, Robert Fredriksson1, Steven M Foord2, Helgi B Schiöth*1 and David E Gloriam*2 Address: 1Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden and 2GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, 3rd Avenue, Harlow CM19 5AW, UK Email: Tatjana Haitina - [email protected]; Robert Fredriksson - [email protected]; Steven M Foord - [email protected]; Helgi B Schiöth* - [email protected]; David E Gloriam* - [email protected] * Corresponding authors Published: 15 January 2009 Received: 20 August 2008 Accepted: 15 January 2009 BMC Genomics 2009, 10:24 doi:10.1186/1471-2164-10-24 This article is available from: http://www.biomedcentral.com/1471-2164/10/24 © 2009 Haitina et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The dog is an important model organism and it is considered to be closer to humans than rodents regarding metabolism and responses to drugs. The close relationship between humans and dogs over many centuries has lead to the diversity of the canine species, important genetic discoveries and an appreciation of the effects of old age in another species. The superfamily of G protein-coupled receptors (GPCRs) is one of the largest gene families in most mammals and the most exploited in terms of drug discovery.
    [Show full text]
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Database Tool the Systematic Annotation of the Three Main GPCR
    Database, Vol. 2010, Article ID baq018, doi:10.1093/database/baq018 ............................................................................................................................................................................................................................................................................................. Database tool The systematic annotation of the three main Downloaded from https://academic.oup.com/database/article-abstract/doi/10.1093/database/baq018/406672 by guest on 15 January 2019 GPCR families in Reactome Bijay Jassal1, Steven Jupe1, Michael Caudy2, Ewan Birney1, Lincoln Stein2, Henning Hermjakob1 and Peter D’Eustachio3,* 1European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK, 2Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada and 3New York University School of Medicine, New York, NY 10016, USA *Corresponding author: Tel: +212 263 5779; Fax: +212 263 8166; Email: [email protected] Submitted 14 April 2010; Revised 14 June 2010; Accepted 13 July 2010 ............................................................................................................................................................................................................................................................................................. Reactome is an open-source, freely available database of human biological pathways and processes. A major goal of our work is to provide an integrated view of cellular signalling processes that spans from ligand–receptor
    [Show full text]
  • Efficacy and Mechanistic Evaluation of Tic10, a Novel Antitumor Agent
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Joshua Edward Allen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Oncology Commons Recommended Citation Allen, Joshua Edward, "Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent" (2012). Publicly Accessible Penn Dissertations. 488. https://repository.upenn.edu/edissertations/488 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/488 For more information, please contact [email protected]. Efficacy and Mechanisticv E aluation of Tic10, A Novel Antitumor Agent Abstract TNF-related apoptosis-inducing ligand (TRAIL; Apo2L) is an endogenous protein that selectively induces apoptosis in cancer cells and is a critical effector in the immune surveillance of cancer. Recombinant TRAIL and TRAIL-agonist antibodies are in clinical trials for the treatment of solid malignancies due to the cancer-specific cytotoxicity of TRAIL. Recombinant TRAIL has a short serum half-life and both recombinant TRAIL and TRAIL receptor agonist antibodies have a limited capacity to perfuse to tissue compartments such as the brain, limiting their efficacy in certain malignancies. To overcome such limitations, we searched for small molecules capable of inducing the TRAIL gene using a high throughput luciferase reporter gene assay. We selected TRAIL-inducing compound 10 (TIC10) for further study based on its induction of TRAIL at the cell surface and its promising therapeutic index. TIC10 is a potent, stable, and orally active antitumor agent that crosses the blood-brain barrier and transcriptionally induces TRAIL and TRAIL-mediated cell death in a p53-independent manner.
    [Show full text]
  • Identification and Diagnostic Performance of a Small RNA Within the PCA3 and BMCC1 Gene Locus That Potentially Targets Mrna
    Published OnlineFirst November 12, 2014; DOI: 10.1158/1055-9965.EPI-14-0377 Research Article Cancer Epidemiology, Biomarkers Identification and Diagnostic Performance of a & Prevention Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA Ross M. Drayton1, Ishtiaq Rehman1, Raymond Clarke2, Zhongming Zhao3,4, Karl Pang1, Saiful Miah1, Robert Stoehr5, Arndt Hartmann5, Sheila Blizard1, Martin Lavin2, Helen E. Bryant1, Elena S. Martens-Uzunova6, Guido Jenster6, Freddie C. Hamdy7, Robert A. Gardiner2, and James W.F. Catto1 Abstract Background: PCA3 is a long noncoding RNA (lncRNA) with malignant prostatic tissues, exfoliated urinary cells from men unknown function, upregulated in prostate cancer. LncRNAs may with prostate cancer (13–273 fold change; t test P < 0.003), and be processed into smaller active species. We hypothesized this for closely correlated to PCA3 expression (r ¼ 0.84–0.93; P < 0.001). PCA3. Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, Methods: We computed feasible RNA hairpins within the 0.78) could predict the presence of cancer in most men. PCA3- BMCC1 gene (encompassing PCA3) and searched a prostate shRNA2 knockup altered the expression of predicted target transcriptome for these. We measured expression using qRT- mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCR in three cohorts of prostate cancer tissues (n ¼ 60), PCA3-shRNA2 expression was negatively correlated with COPS2 exfoliated urinary cells (n ¼ 484 with cancer and n ¼ 166 in patient samples (r ¼0.32; P < 0.001). controls), and in cell lines (n ¼ 22). We used in silico predictions Conclusion: We identified a short RNA within PCA3, whose and RNA knockup to identify potential mRNA targets of short expression is correlated to PCA3, which may target mRNAs transcribed RNAs.
    [Show full text]
  • Supplementary Material for “Characterization of the Opossum Immune Genome Provides Insights Into the Evolution of the Mammalian Immune System”
    Supplementary material for “Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system” Katherine Belov1*, Claire E. Sanderson1, Janine E. Deakin2, Emily S.W. Wong1, Daniel Assange3, Kaighin A. McColl3, Alex Gout3,4, Bernard de Bono5, Terence P. Speed3, John Trowsdale5, Anthony T. Papenfuss3 1. Faculty of Veterinary Science, University of Sydney, Sydney, Australia 2. ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, Australia 3. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 4. Department of Medical Biology, The University of Melbourne, Parkville, Australia 5. Immunology Division, University of Cambridge, Cambridge, UK *Corresponding author: K. Belov, Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia ph 61 2 9351 3454, fx 61 2 9351 3957, email [email protected] MHC paralogous regions Only 36 of the 114 genes in the opossum MHC have paralogs in one of the three paralogous regions (Supplementary Table 1). Genes represented in at least three of the four paralogous regions (13 genes) were used to compare gene order, revealing rearrangements between the four regions in opossum. Table 1: MHC genes with paralogs on opossum chromosomes 1, 2 and 3, corresponding to MHC paralogous regions on human chromosomes 9, 1 and 19 respectively. MHC Chromosome 1 Chromosome 2 Chromosome 3 (Human Chr 9) (Human Chr 1) (Human Chr 19) AGPAT1 AGPAT2 AIF1 C9orf58 ATP6V1G2 ATP6V1G1 ATP6V1G3 B3GALT4 B3GALT2 BAT1 DDX39 BAT2 KIAA0515 BAT2D1 BRD2 BRD3 BRDT BRD4 C4 C5 C3 SLC44A4 SLC44A5 SLC44A2 CLIC1 CLIC3 CLIC4 COL11A2 COL5A1 COL11A1 COL5A3 CREBL1 ATF6 DDAH2 DDAH1 DDR1 DDR2 EGFL8 EGFL7 EHMT2 EHMT1 GPX5 GPX4 MHC Class I CD1 HSPA1A HSPA5 MDC1 PRG4 NOTCH4 NOTCH1 NOTCH2 NOTCH3 PBX2 PBX3 PBX1 PBX4 PHF1 MTF2 PRSS16 DPP7 PSMB9 PSMB7 RGL2 RALGDS RGL1 RGL3 RING1 RNF2 RXRB RXRA RXRG SYNGAP1 RASAL2 TAP ABCA2 TNF/LTA/LTB TNFSF8/TNFSF15 TNFSF4 CD70/TNFSF9/ TNFSF14/ TNXB TNC TNR Table 2.
    [Show full text]
  • Broad Poster Vivek
    A novel computational method for finding regions with copy number abnormalities in cancer cells Vivek, Manuel Garber, and Mike Zody Broad Institute of MIT and Harvard, Cambridge, MA, USA Introduction Results Cancer can result from the over expression of oncogenes, genes which control and regulate cell growth. Sometimes oncogenes increase in 1 2 3 activity due to a specific genetic mutation called a translocation (Fig 1). SMAD4 – a gene known to be deleted in pancreatic COX10 – a gene deleted in cytochrome c oxidase AK001392 – a hereditary prostate cancer protein This translocation allows the oncogene to remain as active as its paired carcinoma deficiency, known to be related to cell proliferation gene. Amplification of this mutation can occur, thereby creating the proper conditions for uncontrolled cell growth; consequently, each Results from Analysis Program Results from Analysis Program Results from Analysis Program component of the translocation will amplify in similar quantities. In this mutation, the chromosomal region containing the oncogene displaces to Region 1 Region 2 R2 Region 1 Region 2 R2 Region 1 Region 2 R2 a region on another chromosome containing a gene that is expressed Chr18:47044749-47311978 Chr17:13930739-14654741 0.499070821478475 Chr17:13930739-14654741 Chr18:26861790-27072166 0.47355172850856 Chr17:12542326-13930738 Chr8:1789292-1801984 0.406208680312004 frequently. Actual region containing gene Actual region containing gene Actual region containing gene chr18: 45,842,214 - 48,514,513 chr17: 13,966,862 - 14,068,461 chr17: 12,542,326 - 13,930,738 Fig 1. Two chromosomal regions (abcdef and ghijk) are translocating to create two new regions (abckl and ghijedf).
    [Show full text]
  • The Genetics of Normal and Defective Color Vision
    Vision Research xxx (2011) xxx–xxx Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Review The genetics of normal and defective color vision Jay Neitz ⇑, Maureen Neitz University of Washington, Dept. of Ophthalmology, Seattle, WA 98195, United States article info a b s t r a c t Article history: The contributions of genetics research to the science of normal and defective color vision over the previ- Received 3 July 2010 ous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary Received in revised form 25 November 2010 issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward Available online xxxx through the application of the tools of molecular genetics. For all their complexity, the biological pro- cesses responsible for color vision are more accessible than for many other neural systems. This is partly Keywords: because of the wealth of genetic variations that affect color perception, both within and across species, Color vision and because components of the color vision system lend themselves to genetic manipulation. Mutations Cone photoreceptor and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pig- Colorblindness Cone mosaic ments are responsible for color vision deficiencies and mutations have been identified that affect the Opsin genes number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, Evolution and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of pri- Comparative color vision mate color vision, and has been done in experimental animals can produce expanded color vision capac- Cone photopigments ities and this has provided insight into the underlying neural circuitry.
    [Show full text]
  • Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter
    New Developments Splicing-Correcting Therapeutic Approaches for Retinal Dystrophies: Where Endogenous Gene Regulation and Specificity Matter Niccolo` Bacchi,1 Simona Casarosa,1,2 and Michela A. Denti1,3 1Centre for Integrative Biology (CIBIO) - University of Trento, Trento, Italy 2Neuroscience Institute - National Research Council (CNR), Pisa, Italy 3Neuroscience Institute - National Research Council (CNR), Padova, Italy Correspondence: Simona Casarosa, Splicing is an important and highly regulated step in gene expression. The ability to modulate Centre for Integrative Biology it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing- (CIBIO) - University of Trento, Via correction approaches have recently been successfully exploited for some genetic diseases, Sommarive 9, 38123 Trento, Italy; and are currently demonstrating safety and efficacy in different clinical trials. Their [email protected]. application for the treatment of retinal dystrophies could potentially solve a vast panel of Michela A. Denti, Centre for Inte- grative Biology (CIBIO) - University cases, as illustrated by the abundance of mutations that could be targeted and the versatility of ofTrento,ViaSommarive9,38123 the technique. In this review, we will give an insight of the different therapeutic strategies, Trento, Italy; focusing on the current status of their application for retinal dystrophies. [email protected]. Keywords: splicing correction, antisense oligonucleotides, retinal dystrophy, gene therapy SC and MAD contributed equally to the work presented here and should therefore be regarded as equivalent authors. Submitted: April 8, 2014 Accepted: April 11, 2014 Citation: Bacchi N, Casarosa S, Denti MA. Splicing-correcting therapeutic approaches for retinal dystrophies: where endogenous gene regulation and specificity matter. Invest Oph- thalmol Vis Sci.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Effet De La Cryptorchidie Sur Le Transcriptome Testiculaire Humain
    MARIE EVE BERGERON EFFET DE LA CRYPTORCHIDIE SUR LE TRANSCRIPTOME TESTICULAIRE HUMAIN Mémoire présenté à la Faculté des études supérieures et postdoctorales de l’Université Laval dans le cadre du programme de maîtrise en Physiologie-Endocrinologie pour l’obtention du grade de Maître ès sciences (M.Sc.) DÉPARTEMENT D’OBSTÉTRIQUE ET DE GYNÉCOLOGIE FACULTÉ DE MÉDECINE UNIVERSITÉ LAVAL QUÉBEC 2012 © Marie Eve Bergeron, 2012 Résumé Les niveaux d’expression de nombreux gènes peuvent être affectés par l’environnement et mener au développement de la cryptorchidie. Cette malformation congénitale est la plus commune dont une des conséquences majeures est l’infertilité masculine due au testicule non-descendu, auquel un risque plus élevé de cancer testiculaire est associé. L’expression des ARN totaux isolés à partir de biopsies testiculaires ont été analysés par micropuces, puis par une analyse bio-informatique et une validation par RT-qPCR de plusieurs gènes sélectionnés. Ces analyses m’ont permis d’identifier plus de deux milles candidats montrant une expression différente entre des sujets cryptorchides et normaux. Certains de ces gènes sélectionnés peuvent être associés à la descente testiculaire, d’autres au cancer testiculaire ou encore aux divers types cellulaires retrouvés dans cet organe. Les différences dans le transcriptome dues à la cryptorchidie vont nous aider à comprendre la cause génétique de cette maladie. ii Abstract Expression level of numerous genes may be affected by environmental condition and lead to development of cryptorchidism. The most common congenital malformation in male is cryptorchidism. One major consequence of this anomaly is infertility due to undescended testis, to which an increased risk of testicular cancer is associated.
    [Show full text]