Supplementary Data

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Data Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type Sagopilone Carboplatin Paclitaxel Gemcitabine Lu7064 PLC R NR R NR Lu7126 SCC NR NR nt R Lu7166 LCC NR NR NR NR Lu7177 SCC R NR NR R Lu7187 PLC NR NR NR R Lu7198 ADC NR NR NR NR tox Lu7298 SCC R NR NR NR Lu7336 PLC R NR R R tox Lu7343 SCC R NR NR R Lu7387 ADC R NR R NR Lu7406 ADC NR NR NR NR Lu7414 SCC R NR NR NR Lu7433 SCC R R R NR Lu7462 ADC R NR NR R Lu7466 ADC R NR R R Lu7506 SCC R R R NR Lu7558 PLC NR R NR R Lu7612 SCC NR R R NR tox Lu7668 DDC R R R Tox Lu7700 ADC R NR NR R Lu7747 SCC NR NR NR NR Lu7860 SCC R NR R NR Overall response 14 (64%) 5 (23%) 9 (43%) 9 (43%) n (%) R, responder (tumor shrinkage and stable disease); NR, non-responder (tumor progression); nt, not tested; tox, toxic; ADC, adenocarcinoma; DDC, dedifferentiated carcinoma; LCC, large cell carcinoma; PLC, pleiomorphic carcinoma; SCC, squamous cell carcinoma Page 2 Supplementary Table 2. Genes regulated only in Sagopilone responder xenografts 24 hours after a single Sagopilone treatment at p<0.01 A Genes up-regulated after Sagopilone treatment Ratio of Ratio of P-Value: Means: P-Value: Means: Non- Non- Responde Respon Responde Responde r der r r Gene Entrez Xenograft Xenogr Xenograft Xenograft Probe-Set Symbol Gene Description Gene ID s afts s s hypothetical protein 1553736_at MGC23401 MGC23401 196441 2.24E-05 1.62 3.77E-01 1.10 205235_s_at MPHOSPH1 M-phase phosphoprotein 1 9585 1.35E-04 1.31 5.92E-01 1.06 210527_x_at TUBA2 tubulin, alpha 2 7278 4.47E-04 1.20 2.00E-02 1.18 hypothetical protein 225762_x_at LOC284801 LOC284801 284801 5.47E-04 1.39 3.55E-01 1.17 CDC20 cell division cycle 202870_s_at CDC20 20 homolog (S. cerevisiae) 991 6.42E-04 1.40 2.67E-02 1.29 202705_at CCNB2 cyclin B2 9133 7.76E-04 1.31 3.62E-02 1.18 214710_s_at CCNB1 cyclin B1 891 9.08E-04 1.42 2.27E-02 1.20 cyclin-dependent kinase inhibitor 3 (CDK2- associated dual specificity 209714_s_at CDKN3 phosphatase) 1033 1.07E-03 1.44 7.53E-01 1.05 chromosome 10 open 218542_at C10orf3 reading frame 3 55165 1.10E-03 1.28 4.47E-01 1.11 tubulin, alpha, ubiquitous, 211072_x_at K-ALPHA-1 tubulin, alpha, ubiquitous 10376 1.68E-03 1.10 2.58E-02 1.08 WW domain containing 242427_at WAC adaptor with coiled-coil 51322 1.85E-03 1.38 2.04E-01 1.11 NIMA (never in mitosis 204641_at NEK2 gene a)-related kinase 2 4751 2.05E-03 1.32 5.53E-02 1.21 chromosome 15 open 225300_at C15orf23 reading frame 23 90417 2.29E-03 1.30 1.92E-01 1.13 cyclin-dependent kinase inhibitor 3 (CDK2- associated dual specificity 1555758_a_at CDKN3 phosphatase) 1033 2.68E-03 1.39 7.04E-01 1.06 CDC28 protein kinase 204170_s_at CKS2 regulatory subunit 2 1164 2.72E-03 1.27 2.87E-01 1.12 cylicin, basic protein of 216809_at CYLC1 sperm head cytoskeleton 1 1538 2.81E-03 1.31 4.46E-01 0.88 226980_at DEPDC1B DEP domain containing 1B 55789 2.86E-03 1.37 6.34E-01 1.07 pituitary tumor-transforming 203554_x_at PTTG1 1 9232 3.43E-03 1.28 3.25E-01 1.11 204444_at KIF11 kinesin family member 11 3832 3.78E-03 1.21 8.85E-01 0.99 chromosome 8 open 227402_s_at C8orf53 reading frame 53 84294 3.97E-03 1.24 9.37E-02 1.13 218755_at KIF20A kinesin family member 20A 10112 4.11E-03 1.29 4.33E-02 1.16 zinc finger and BTB domain 226284_at ZBTB2 containing 2 57621 4.69E-03 1.14 2.30E-01 1.11 pituitary tumor-transforming 208511_at PTTG3 3 26255 4.91E-03 1.32 6.17E-01 1.06 gb:AI857685 227249_at /DB_XREF=gi:5511301 5.29E-03 1.26 9.60E-02 1.28 Page 3 /DB_XREF=wk96d11.x1 /CLONE=IMAGE:2423253 /FEA=EST /CNT=36 /TID=Hs.263925.3 /TIER=Stack /STK=24 /UG=Hs.263925 /LL=54820 /UG_GENE=FLJ20101 /UG_TITLE=LIS1- interacting ... translocase of inner mitochondrial membrane 9 218316_at TIMM9 homolog (yeast) 26520 5.37E-03 1.20 9.74E-01 1.00 discs, large homolog 7 203764_at DLG7 (Drosophila) 9787 5.75E-03 1.36 5.39E-01 1.12 1570528_at XYLT2 xylosyltransferase II 64132 5.79E-03 1.84 6.07E-01 0.86 centromere protein A, 204962_s_at CENPA 17kDa 1058 5.87E-03 1.34 1.79E-01 1.14 family with sequence 221591_s_at FAM64A similarity 64, member A 54478 5.95E-03 1.27 1.99E-01 1.13 trophinin associated protein 204649_at TROAP (tastin) 10024 6.24E-03 1.25 5.27E-02 1.16 chromosome 14 open 221907_at C14orf172 reading frame 172 115708 6.26E-03 1.19 8.89E-01 0.98 hypothetical protein 1559002_at LOC340544 LOC340544 340544 6.54E-03 1.20 7.05E-01 0.97 hypothetical protein 220060_s_at FLJ20641 FLJ20641 55010 6.58E-03 1.27 9.39E-01 1.01 209464_at AURKB aurora kinase B 9212 7.53E-03 1.26 8.50E-01 1.02 proline/serine-rich coiled- 201896_s_at PSRC1 coil 1 84722 7.67E-03 1.26 2.20E-01 1.12 Homo sapiens, clone 1569958_at IMAGE:4064953, mRNA 8.43E-03 1.75 7.66E-01 0.95 213599_at OIP5 Opa interacting protein 5 11339 8.84E-03 1.29 5.37E-01 1.07 gb:AL133269 /DB_XREF=gi:9662888 /FEA=DNA /CNT=1 /TID=Hs.302112.0 /TIER=ConsEnd /STK=0 /UG=Hs.302112 /UG_TITLE=Human DNA sequence from clone RP3- 468K3 on chromosome 6q25-26. Contains a beta 216475_at tubulin ... 8.97E-03 1.24 3.91E-01 1.09 218848_at WDR58 WD repeat domain 58 79228 9.16E-03 1.27 9.48E-01 1.01 209408_at KIF2C kinesin family member 2C 11004 9.23E-03 1.20 1.15E-01 1.14 209118_s_at TUBA3 tubulin, alpha 3 7846 9.36E-03 1.53 1.31E-01 1.55 238156_at RPS6 Ribosomal protein S6 6194 9.41E-03 1.27 4.39E-02 1.15 ELK4, ETS-domain protein 206919_at ELK4 (SRF accessory protein 1) 2005 9.86E-03 1.24 6.99E-01 0.92 Page 4 B Genes down-regulated after Sagopilone treatment Ratio of Ratio of P-Value: Means: P-Value: Means: Non- Non- Responde Respon Responde Responde Entrez r der r r Gene Gen Xenograft Xenogr Xenograft Xenograft Probe-Set Symbol Gene Description e ID s afts s s 241520_x_at KLHL15 Kelch-like 15 (Drosophila) 80311 1.90E-05 0.76 9.54E-01 1.01 Vitamin K epoxide reductase 238305_at VKORC1L1 complex, subunit 1-like 1 154807 6.06E-04 0.47 4.63E-01 0.83 Hypothetical gene supported 1558504_at LOC440721 by AK024248; AL137733 440721 1.09E-03 0.79 5.93E-01 1.06 POU domain, class 5, transcription factor 1, POU domain, class 5, transcription factor 1 pseudogene 1, similar to POU domain, class LOC441628 5, transcription factor 1 : POU5F1 : (Octamer-binding 441628, 210905_x_at POU5F1P1 transcription factor ... 5460, 5462 1.32E-03 0.57 2.88E-01 0.78 hypothetical protein 243047_at FLJ10404 FLJ10404 54540 1.37E-03 0.64 1.81E-01 0.80 217207_s_at BTNL3 butyrophilin-like 3 10917 1.46E-03 0.74 7.77E-01 0.96 1561589_a_ at NBEAL1 neurobeachin-like 1 65065 1.50E-03 0.76 6.38E-01 1.05 Peptidylprolyl isomerase domain and WD repeat 236999_at PPWD1 containing 1 23398 1.81E-03 0.57 6.69E-01 0.90 232410_at RCOR3 REST corepressor 3 55758 1.88E-03 0.75 6.48E-01 0.94 zyg-11 homolog B (C. 202456_s_at ZYG11BL elegans)-like 10444 1.90E-03 0.60 9.85E-01 1.01 DEAD (Asp-Glu-Ala-Asp) box 1558120_at DDX3X polypeptide 3, X-linked 1654 1.94E-03 0.57 7.63E-01 0.96 gb:AF119896.1 /DB_XREF=gi:7770228 /FEA=FLmRNA /CNT=3 /TID=Hs.283978.0 /TIER=FL /STK=0 /UG=Hs.283978 /DEF=Homo sapiens PRO2751 mRNA, complete cds.
Recommended publications
  • Impaired Immune Surveillance Accelerates Accumulation of Senescent Cells and Aging
    ARTICLE https://doi.org/10.1038/s41467-018-07825-3 OPEN Impaired immune surveillance accelerates accumulation of senescent cells and aging Yossi Ovadya1, Tomer Landsberger2, Hanna Leins3,4, Ezra Vadai1, Hilah Gal1, Anat Biran1, Reut Yosef1, Adi Sagiv1, Amit Agrawal1, Alon Shapira1, Joseph Windheim1, Michael Tsoory5, Reinhold Schirmbeck4, Ido Amit 2, Hartmut Geiger3,6 & Valery Krizhanovsky 1 Cellular senescence is a stress response that imposes stable cell-cycle arrest in damaged 1234567890():,; cells, preventing their propagation in tissues. However, senescent cells accumulate in tissues in advanced age, where they might promote tissue degeneration and malignant transfor- mation. The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. Here we show that Prf1−/− mice with impaired cell cytotoxicity exhibit both higher senescent-cell tissue burden and chronic inflammation. They suffer from multiple age-related disorders and lower survival. Strikingly, pharmacological elimination of senescent-cells by ABT-737 partially alleviates accelerated aging phenotype in these mice. In LMNA+/G609G progeroid mice, impaired cell cytotoxicity further promotes senescent-cell accumulation and shortens lifespan. ABT-737 administration during the second half of life of these progeroid mice abrogates senescence signature and increases median survival. Our findings shed new light on mechanisms governing senescent- cell presence in aging, and could motivate new strategies for regenerative medicine. 1 Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel. 2 Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel. 3 Institute of Molecular Medicine, Stem Cell and Aging, Ulm University, Ulm 89081, Germany.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • The Utility of Genetic Risk Scores in Predicting the Onset of Stroke March 2021 6
    DOT/FAA/AM-21/24 Office of Aerospace Medicine Washington, DC 20591 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke Diana Judith Monroy Rios, M.D1 and Scott J. Nicholson, Ph.D.2 1. KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510 Bogotá D.C. Colombia 2. FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 March 2021 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. _________________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: (www.faa.gov/go/oamtechreports) Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-21/24 4. Title and Subtitle 5. Report Date March 2021 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Diana Judith Monroy Rios M.D1, and Scott J. Nicholson, Ph.D.2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 1 KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510, Bogotá D.C. Colombia 11. Contract or Grant No. 2 FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W.
    [Show full text]
  • Keratins and Plakin Family Cytolinker Proteins Control the Length Of
    RESEARCH ARTICLE Keratins and plakin family cytolinker proteins control the length of epithelial microridge protrusions Yasuko Inaba*, Vasudha Chauhan, Aaron Paul van Loon, Lamia Saiyara Choudhury, Alvaro Sagasti* Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States Abstract Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments. *For correspondence: [email protected] (YI); Introduction [email protected] (AS) Cytoskeletal filaments are scaffolds for membrane protrusions that create a vast diversity of cell shapes. The three major classes of cytoskeletal elements—microtubules, actin filaments, and inter- Competing interests: The mediate filaments (IFs)—each have distinct mechanical and biochemical properties and associate authors declare that no with different regulatory proteins, suiting them to different functions.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Pancancer Progression Human Vjune2017
    Gene Symbol Accession Alias/Prev Symbol Official Full Name AAMP NM_001087.3 - angio-associated, migratory cell protein ABI3BP NM_015429.3 NESHBP|TARSH ABI family, member 3 (NESH) binding protein ACHE NM_000665.3 ACEE|ARACHE|N-ACHE|YT acetylcholinesterase ACTG2 NM_001615.3 ACT|ACTA3|ACTE|ACTL3|ACTSG actin, gamma 2, smooth muscle, enteric ACVR1 NM_001105.2 ACTRI|ACVR1A|ACVRLK2|ALK2|FOP|SKR1|TSRI activin A receptor, type I ACVR1C NM_145259.2 ACVRLK7|ALK7 activin A receptor, type IC ACVRL1 NM_000020.1 ACVRLK1|ALK-1|ALK1|HHT|HHT2|ORW2|SKR3|TSR-I activin A receptor type II-like 1 ADAM15 NM_207195.1 MDC15 ADAM metallopeptidase domain 15 ADAM17 NM_003183.4 ADAM18|CD156B|CSVP|NISBD|TACE ADAM metallopeptidase domain 17 ADAM28 NM_014265.4 ADAM 28|ADAM23|MDC-L|MDC-Lm|MDC-Ls|MDCL|eMDC II|eMDCII ADAM metallopeptidase domain 28 ADAM8 NM_001109.4 CD156|MS2 ADAM metallopeptidase domain 8 ADAM9 NM_001005845.1 CORD9|MCMP|MDC9|Mltng ADAM metallopeptidase domain 9 ADAMTS1 NM_006988.3 C3-C5|METH1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 ADAMTS12 NM_030955.2 PRO4389 ADAM metallopeptidase with thrombospondin type 1 motif, 12 ADAMTS8 NM_007037.4 ADAM-TS8|METH2 ADAM metallopeptidase with thrombospondin type 1 motif, 8 ADAP1 NM_006869.2 CENTA1|GCS1L|p42IP4 ArfGAP with dual PH domains 1 ADD1 NM_001119.4 ADDA adducin 1 (alpha) ADM2 NM_001253845.1 AM2|dJ579N16.4 adrenomedullin 2 ADRA2B NM_000682.4 ADRA2L1|ADRA2RL1|ADRARL1|ALPHA2BAR|alpha-2BAR adrenoceptor alpha 2B AEBP1 NM_001129.3 ACLP AE binding protein 1 AGGF1 NM_018046.3 GPATC7|GPATCH7|HSU84971|HUS84971|VG5Q
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]