Fpgas Fundamentals, Advanced Features, and Applications in Industrial Electronics Embedded Processors in FPGA Architectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L'universite BORDEAUX 1 DOCTEUR Ahmed BEN ATITALLAH
N° d’ordre 3409 THESE présentée à L’UNIVERSITE BORDEAUX 1 ECOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGENIEUR POUR OBTENIR LE GRADE DE DOCTEUR SPECIALITE : ELECTRONIQUE Par Ahmed BEN ATITALLAH Etude et Implantation d’Algorithmes de Compression d’Images dans un Environnement Mixte Matériel et Logiciel Soutenue le : 11 Juillet 2007 Après avis de : M. Noureddine ELLOUZE Professeur à l’ENIT, Tunis, Tunisie Rapporteur M. Patrick GARDA Professeur à l’Université Paris VI Rapporteur Devant la Commission d’examen formée de : M. Lotfi KAMOUN Professeur à l’ENIS, Sfax, Tunisie Président M. Patrick GARDA Professeur à l’Université Paris VI Rapporteur M. Noureddine ELLOUZE Professeur à l’ENIT, Tunis, Tunisie Rapporteur M. Philippe MARCHEGAY Professeur à l’ENSEIRB M. Nouri MASMOUDI Professeur à l’ENIS, Sfax, Tunisie M. Patrice KADIONIK Maître de Conférences à l’ENSEIRB M. Patrice NOUEL Maître de Conférences à l’ENSEIRB -2007- A mes parents A ma famille A tous ceux qui me tiennent à cœur REMERCIEMENTS Cette thèse s’est effectuée en cotutelle entre l’équipe circuits et systèmes du Laboratoire d'Electronique et des Technologies de l'Information (LETI) de l’ENIS à Sfax, Tunisie ainsi que dans l’équipe Circuits Intégrés Numériques du Laboratoire de l’Intégration du Matériau au Système (IMS) de l’Université de Bordeaux et de l’ENSEIRB. Je remercie Monsieur le Professeur Nouri MASMOUDI ainsi que Monsieur le Professeur Philippe MARCHEGAY pour m’avoir accueilli au sein de leur équipe et pour l’intérêt qu’ils ont porté au déroulement de mes travaux. Je tiens à présenter ma vive gratitude à Monsieur Patrice KADIONIK, Maître de conférences à l’ENSEIRB, co-encadrant de ma thèse et Monsieur Patrice NOUEL, Maître de conférences à l’ENSEIRB, qui ont contribué activement à la réalisation de mes travaux, d’une part pour leurs conseils efficaces, leurs grandes compétences mais aussi pour leurs grandes qualités humaines. -
Field Programmable Gate Arrays with Hardwired Networks on Chip
Field Programmable Gate Arrays with Hardwired Networks on Chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 6 november 2012 om 15:00 uur door MUHAMMAD AQEEL WAHLAH Master of Science in Information Technology Pakistan Institute of Engineering and Applied Sciences (PIEAS) geboren te Lahore, Pakistan. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.G.W. Goossens Copromotor: Dr. ir. J.S.S.M. Wong Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor Prof. dr. S. Pillement Technical University of Nantes, France Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany Prof. dr. D. Stroobandt University of Gent, Belgium Prof. dr. K.L.M. Bertels Technische Universiteit Delft Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid ISBN: 978-94-6186-066-8 Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip Copyright ⃝c 2012 Muhammad Aqeel Wahlah All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. Printed in The Netherlands Acknowledgments oday when I look back, I find it a very interesting journey filled with different emotions, i.e., joy and frustration, hope and despair, and T laughter and sadness. -
Configurable RISC-V Softcore Processor for FPGA Implementation
1 Configurable RISC-V softcore processor for FPGA implementation Joao˜ Filipe Monteiro Rodrigues, Instituto Superior Tecnico,´ Universidade de Lisboa Abstract—Over the past years, the processor market has and development of several programming tools. The RISC-V been dominated by proprietary architectures that implement Foundation controls the RISC-V evolution, and its members instruction sets that require licensing and the payment of fees to are responsible for promoting the adoption of RISC-V and receive permission so they can be used. ARM is an example of one of those companies that sell its microarchitectures to participating in the development of the new ISA. In the list of the manufactures so they can implement them into their own members are big companies like Google, NVIDIA, Western products, and it does not allow the use of its instruction set Digital, Samsung, or Qualcomm. (ISA) in other implementations without licensing. The RISC-V The main goal of this work is the development of a RISC- instruction set appeared proposing the hardware and software V softcore processor to be implemented in an FPGA, using development without costs, through the creation of an open- source ISA. This way, it is possible that any project that im- a non-RISC-V core as the base of this architecture. The plements the RISC-V ISA can be made available open-source or proposed solution is focused on solving the problems and even implemented in commercial products. However, the RISC- limitations identified in the other RISC-V cores that were V solutions that have been developed do not present the needed analyzed in this thesis, especially in terms of the adaptability requirements so they can be included in projects, especially the and flexibility, allowing future modifications according to the research projects, because they offer poor documentation, and their performances are not suitable. -
Debugging System for Openrisc 1000- Based Systems
Debugging System for OpenRisc 1000- based Systems Nathan Yawn [email protected] 05/12/09 Copyright (C) 2008 Nathan Yawn Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license should be included with this document. If not, the license may be obtained from www.gnu.org, or by writing to the Free Software Foundation. This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. History Rev Date Author Comments 1.0 20/7/2008 Nathan Yawn Initial version Contents 1.Introduction.............................................................................................................................................5 1.1.Overview.........................................................................................................................................5 1.2.Versions...........................................................................................................................................6 1.3.Stub-based methods.........................................................................................................................6 2.System Components................................................................................................................................7 -
Latticemico32 Development Kit User's Guide for Latticeecp
LatticeMico32 Development Kit User’s Guide for LatticeECP Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 May 2007 Copyright Copyright © 2007 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. -
Latticemico32 Software Developer User Guide
LatticeMico32 Software Developer User Guide May 2014 Copyright Copyright © 2014 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device, DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex -
A Superscalar Out-Of-Order X86 Soft Processor for FPGA
A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel -
RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (Built 15Th February 2018)
RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (built 15th February 2018) CONTENTS I RTEMS CPU Architecture Supplement1 1 Preface 5 2 Port Specific Information7 2.1 CPU Model Dependent Features...........................8 2.1.1 CPU Model Name...............................8 2.1.2 Floating Point Unit..............................8 2.2 Multilibs........................................9 2.3 Calling Conventions.................................. 10 2.3.1 Calling Mechanism.............................. 10 2.3.2 Register Usage................................. 10 2.3.3 Parameter Passing............................... 10 2.3.4 User-Provided Routines............................ 10 2.4 Memory Model..................................... 11 2.4.1 Flat Memory Model.............................. 11 2.5 Interrupt Processing.................................. 12 2.5.1 Vectoring of an Interrupt Handler...................... 12 2.5.2 Interrupt Levels................................ 12 2.5.3 Disabling of Interrupts by RTEMS...................... 12 2.6 Default Fatal Error Processing............................. 14 2.7 Symmetric Multiprocessing.............................. 15 2.8 Thread-Local Storage................................. 16 2.9 CPU counter...................................... 17 2.10 Interrupt Profiling................................... 18 2.11 Board Support Packages................................ 19 2.11.1 System Reset................................. 19 3 ARM Specific Information 21 3.1 CPU Model Dependent Features.......................... -
Implementation, Verification and Validation of an Openrisc-1200
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 1, 2019 Implementation, Verification and Validation of an OpenRISC-1200 Soft-core Processor on FPGA Abdul Rafay Khatri Department of Electronic Engineering, QUEST, NawabShah, Pakistan Abstract—An embedded system is a dedicated computer system in which hardware and software are combined to per- form some specific tasks. Recent advancements in the Field Programmable Gate Array (FPGA) technology make it possible to implement the complete embedded system on a single FPGA chip. The fundamental component of an embedded system is a microprocessor. Soft-core processors are written in hardware description languages and functionally equivalent to an ordinary microprocessor. These soft-core processors are synthesized and implemented on the FPGA devices. In this paper, the OpenRISC 1200 processor is used, which is a 32-bit soft-core processor and Fig. 1. General block diagram of embedded systems. written in the Verilog HDL. Xilinx ISE tools perform synthesis, design implementation and configure/program the FPGA. For verification and debugging purpose, a software toolchain from (RISC) processor. This processor consists of all necessary GNU is configured and installed. The software is written in C components which are available in any other microproces- and Assembly languages. The communication between the host computer and FPGA board is carried out through the serial RS- sor. These components are connected through a bus called 232 port. Wishbone bus. In this work, the OR1200 processor is used to implement the system on a chip technology on a Virtex-5 Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open- FPGA board from Xilinx. -
Programmable Logic Design Grzegorz Budzyń Lecture 11: Microcontroller
ProgrammableProgrammable LogicLogic DesignDesign GrzegorzGrzegorz BudzyBudzy ńń LLectureecture 11:11: MicrocontrollerMicrocontroller corescores inin FPGAFPGA Plan • Introduction • PicoBlaze • MicroBlaze • Cortex-M1 Introduction Introduction • There are dozens of 8-bit microcontroller architectures and instruction sets • Modern FPGAs can efficiently implement practically any 8-bit microcontroller • Available FPGA soft cores support popular instruction sets such as the PIC, 8051, AVR, 6502, 8080, and Z80 microcontrollers • Each significant FPGA producer offers their own soft core solution Introduction • Microcontrollers and FPGAs both successfully implement practically any digital logic function. • Each solution has unique advantages in cost, performance, and ease of use. • Microcontrollers are well suited to control applications, especially with widely changing requirements. • The FPGA resources required to implement the microcontroller are relatively constant. Introduction • The same FPGA logic is re-used by the various microcontroller instructions, conserving resources. • The program memory requirements grow with increasing complexity • Programming control sequences or state machines in assembly code is often easier than creating similar structures in FPGA logic • Microcontrollers are typically limited by performance. Each instruction executes sequentially. Introduction – block diagram Source:[1] FPGA vs Soft Core Microcontroller: – Easy to program, excellent for control and state machine applications – Resource requirements remain constant -
Softcores for FPGA: the Free and Open Source Alternatives
Softcores for FPGA: The Free and Open Source Alternatives Jeremy Bennett and Simon Cook, Embecosm Abstract Open source soft cores have reached a degree of maturity. You can find them in products as diverse as a Samsung set-top box, NXP's ZigBee chips and NASA's TechEdSat. In this article we'll look at some of the more widely used: the OpenRISC 1000 from OpenCores, Gaisler's LEON family, Lattice Semiconductor's LM32 and Oracle's OpenSPARC, as well as more bleeding edge research designs such as BERI and CHERI from Cambridge University Computer Laboratory. We'll consider the technology, the business case, the engineering risks, and the licensing challenges of using such designs. What do we mean by “free” “Free” is an overloaded term in English. It can mean something you don't pay for, as in “this beer is free”. But it can also mean freedom, as in “you are free to share this article”. It is this latter sense that is central when we talk about free software or hardware designs. Of course such software or hardware designs may also be free, in the sense that you don't have to pay for them, but that is secondary. “Free” software in this sense has been around for a very long time. Explicitly since 1993 and Richard Stallman's GNU Manifesto, but implicitly since the first software was written and shared with colleagues and friends. That freedom is achieved by making the source code available, so others can modify the program, hence the more recent alternative name “open source”, but it is freedom that remains the key concept. -
Openpiton: an Open Source Manycore Research Framework
OpenPiton: An Open Source Manycore Research Framework Jonathan Balkind Michael McKeown Yaosheng Fu Tri Nguyen Yanqi Zhou Alexey Lavrov Mohammad Shahrad Adi Fuchs Samuel Payne ∗ Xiaohua Liang Matthew Matl David Wentzlaff Princeton University fjbalkind,mmckeown,yfu,trin,yanqiz,alavrov,mshahrad,[email protected], [email protected], fxiaohua,mmatl,[email protected] Abstract chipset Industry is building larger, more complex, manycore proces- sors on the back of strong institutional knowledge, but aca- demic projects face difficulties in replicating that scale. To Tile alleviate these difficulties and to develop and share knowl- edge, the community needs open architecture frameworks for simulation, synthesis, and software exploration which Chip support extensibility, scalability, and configurability, along- side an established base of verification tools and supported software. In this paper we present OpenPiton, an open source framework for building scalable architecture research proto- types from 1 core to 500 million cores. OpenPiton is the world’s first open source, general-purpose, multithreaded manycore processor and framework. OpenPiton leverages the industry hardened OpenSPARC T1 core with modifica- Figure 1: OpenPiton Architecture. Multiple manycore chips tions and builds upon it with a scratch-built, scalable uncore are connected together with chipset logic and networks to creating a flexible, modern manycore design. In addition, build large scalable manycore systems. OpenPiton’s cache OpenPiton provides synthesis and backend scripts for ASIC coherence protocol extends off chip. and FPGA to enable other researchers to bring their designs to implementation. OpenPiton provides a complete verifica- tion infrastructure of over 8000 tests, is supported by mature software tools, runs full-stack multiuser Debian Linux, and has been widespread across the industry with manycore pro- is written in industry standard Verilog.