Download Paper

Total Page:16

File Type:pdf, Size:1020Kb

Download Paper REORBITING OF SATELLITES IN HIGH ALTITUDES Rüdiger Jehn(1), Alessandro Rossi(2), Tim Flohrer(1), Daniel Navarro-Reyes(3) (1)ESA/ESOC, Robert-Bosch-Str. 5, 64293 Darmstadt, Germany, Email: [email protected] (2) Istituto Scienza e Tecnologie dell’Informazione, via Moruzzi 1, 56124 Pisa, Italy, Email: [email protected] (3)ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands, Email: [email protected] ABSTRACT final decay is about 10-7 which can be considered low enough to make it an attractive re-orbiting alternative. The Inter-Agency Space Debris Coordination 1. INTRODUCTION Committee (IADC) and UNCOPUOS request that GEO spacecraft at their end-of-life are raised to a graveyard The geostationary ring is a valuable resource currently orbit with sufficient altitude clearance to operational populated by 335 operational satellites. Unlike in low satellites. Based on orbital data in ESA's DISCOS Earth orbit there is no atmospheric drag which will database the situation near the geostationary ring (GEO) remove abandoned objects over time. Therefore, it is the is assessed for a reference epoch in December 2008. An responsibility of the spacecraft operators to keep this analysis of the orbital evolution histories of 970 objects unique orbital region clean. showed that 335 of the GEO objects were controlled inside their longitude slots, 476 were drifting above, Already in 1977, Perek proposed that spacecraft should below or through GEO, 154 were captured at one of the be systematically removed from GEO at their end-of- two stable libration points, and 5 objects had an ill- mission [11]. In the same year, for the first time in space defined orbit status (e.g. due to insufficient orbit data). history, INTELSAT sent an aging satellite into a GEO Furthermore, there were 46 controlled satellites and 170 graveyard orbit. Since then a number of guidelines and uncontrolled objects with no TLE information at all. recommendations for GEO end-of-mission disposal by Thus, the total number of known objects in the national and international institutions was following as geostationary region was 1186, out of which 381 were described in [9] and [2]. In the early 1980s, the disposal controlled, 800 were uncontrolled and 5 could not be orbit guideline of NOAA (US National Oceanic and classified. Atmospheric Administration) was 300 km above GEO. During the year 2008, 12 GEO spacecraft reached their Also during the 1980s, the International Telecommuni- end of life. Seven of them were re-orbited following the cations Union (ITU) began addressing the issue of end- IADC guidelines, two were re-orbited with an of-mission disposal and super-synchronous graveyard insufficient GEO clearance and three spacecraft were orbits. Although the ITU did not explicitly recommend abandoned without any re-orbiting manoeuvre. The re- a specific super-synchronous graveyard orbit, its orbiting statistics of the years from 1997 to 2008 show definition of GSO "as a mean radius of 42,164 ± 300 km that the adherence to the IADC space debris mitigation and extending to 15º north and south latitude" indirectly guidelines is slowly improving over time. dictated a minimum perigee altitude of the disposal orbit of 300 km above GEO. Also the re-orbiting practice of GPS satellites is analysed. For 22 of the 56 launched GPS satellites a In 1989 ESA adopted a resolution on space debris, disposal manoeuvre was identified from the DISCOS including as a risk reduction measure "the re-orbiting of TLE data. Since the year 2000, the orbits of the GPS geostationary satellites at the end of their life into a satellites are usually raised by about 1000 km at end-of- disposal orbit". Subsequently 10 ESA-controlled life. geostationary satellites (all except for the failed Olympus-1 satellite) were re-orbited by at least 300 km Finally the re-orbiting options of Galileo satellites are above GEO after completion of their mission. compared. An alternative to the currently proposed orbit raising after end-of-life is the re-orbiting into a lower In 1995 the International Academy of Astronautics orbit with the highest achievable eccentricity. It will recommended to re-orbit "geostationary satellites at take more than 100 years until a satellite will finally end-of-life to disposal orbits with a minimum altitude decay. But the average risk that the satellite will increase of 300 km to 400 km above GEO depending on encounter a collision during its long journey towards its spacecraft characteristics" [1]. At the same time, _____________________________________________________ Proc. ‘5th European Conference on Space Debris’, Darmstadt, Germany 30 March – 2 April 2009, (ESA SP-672, July 2009) national space agencies like NASA, NASDA, RKA x C2: objects under longitude control (only E-W (later ROSCOSMOS), CNES and ESA developed their control) - the longitude is nearly constant but the own guidelines. All of these recommended an altitude inclination is larger than 0.3º, increase of more than 200 km above GEO. Finally, in x D: objects in a drift orbit, 1997, an international consensus was found within the x L1: objects in a libration orbit around the Eastern Inter-Agency Space Debris Coordination Committee stable point (longitude 75ºE), (IADC). The recommended minimum altitude increase x L2: objects in a libration orbit around the Western (in km) was given as stable point (longitude 105ºW), x L : objects in a libration orbit around both stable 2 1+2 H = 235km + 1000km u cR u (A/m)/(1 kg/m ) (1) points. where cR is the solar radiation pressure coefficient 3. THE CURRENT STATUS OF GEO (usually with a value between 1 and 2), A is the projected cross-sectional area and m is the mass of the Next to the 970 objects which fulfilled the orbital satellite. criteria by 31 Dec 2008, there are 216 more objects also known to be in this orbital region although no orbital In view of such guidelines and recommendations one elements are available in DISCOS. Thus, the total would expect that the geostationary ring is a well number of objects in the geostationary region is 1186. protected and unlittered space. However, only about They were classified as follows: 40% of all retired GEO satellites follow the internationally agreed recommendations. About 60% so x 381 are controlled (251 under longitude and far are re-boosted into a too low orbit that will sooner or inclination control), later return to the GEO altitude, or they are completely x 476 are in a drift orbit, abandoned in the GEO ring without any end-of-life x 154 are in a libration orbit, disposal manoeuvre. x 103 are uncontrolled with no orbital elements available, In this paper an updated survey of the GEO population, x 5 could not be classified (4 of them were recently and a summary of GEO re-orbiting practices is provided launched and are en route to their longitude slot). for the past 12 years (1997-2008). x 67 were uncatalogued but can be correlated with a launch event 2. ANALYSIS OF GEO ORBITAL DATA The basic source of information for the analysis Fig. 1 illustrates the fractional contributions of the presented here are the Two-Line Elements (TLE) different GEO categories. In ESA’s annual report generated by the US Space Surveillance Network. "Classification of Geosynchronous Objects" [8] the Updates of these TLE data are automatically status of all individual objects can be traced. In this downloaded and processed by ESA's DISCOS Database paper we confine ourselves to some statistical data. (Database and Information System Characterizing Objects in Space) on a daily basis. For the GEO Classification of geosynchronous objects Total: 1186 environment characterization one TLE per week and Status: January 2009 object is considered. The GEO objects are selected from 251 the DISCOS Database according to the following 130 criteria: 99 38 x eccentricity smaller than 0.1 17 x mean motion between 0.9 and 1.1 revolutions per sidereal day, corresponding to a radius of 42,164 170 -2,500/ +3,150 km 476 5 x inclination lower than 30° Libration around 2 points: 17 Controlled : 130 Libration around 105 W: 38 Drift : 476 970 objects met these criteria as of 31 December 2008. Libration around 75 E: 99 Indeterminate : 5 Controlled (E-W and N-S): 251 Uncontrolled (no TLEs): 170 Their orbital histories were analyzed in order to classify the objects according to six different categories: Figure 1. Number of objects in each category in Jan 2009. The 130 controlled objects consist of objects in class C (only East-West station keeping) and objects x C1: objects under longitude and inclination control 2 (E-W as well as N-S control) - the longitude is where no TLEs are available. nearly constant and the inclination is smaller than 0.3º, Fig. 2 shows the number of objects under control Objects in drift orbit (bottom bars), in drift orbit (intermediate bars), and in Status : January 2009 4000 libration orbit (top bars) as a function of the launch year. Most of the satellites launched before 1990 are 3000 meanwhile either in a drift orbit or in a libration orbit. 2000 Up to 10 objects per year were abandoned in such libration orbits (see Table 1), with a decrease in recent 1000 years to 3 or less. 0 GEO protected zone Classification of geosynchronous objects Altitude range (in km) -1000 (Objects with recently updated TLEs) Status: January 2009 -2000 45 Satellites under control Objects in drift orbit 40 Objects in libration orbit -3000 -3000 -2000 -1000 0 1000 2000 35 Semi-major axis mean deviation from the geostationary altitude (in km) 30 Figure 4. Distribution and altitude range of objects in a 25 drift orbit.
Recommended publications
  • Aeronautics and Space Report of the President, 1976 Activities
    Aeronautics and Space Report of the President 19 76 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1976 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Table of Contents Page Page I. Summary of U.S. Aeronautics and Space Ac- X. National Academy of Sciences, National Acad- tivities of 1976 _________________________ 1 emy .of Engineering, National Research 67 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ __ 1 Council _______________________________ Space _______________________________ 1 Introduction _ _ _____ _ ______ __ _ ______ __ 67 Aeronautics __ __________ ____ __________ 4 Aerospace Science _ _ _ __ - _ _ _ __ _ __ _ __ _ - - - 67 The Heritage ________________________ 5 Space Applications .................... 69 .. 70 11. National Aeronautics and Space Administration G Aerospace Engineering _ _ _ _ _ _ _ __ _ _ _ - - - - - 6 Education ____________________-------71 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 72 Applications to Earth __________________ 6 XI. Office of Telecommunications Policy __i____-- 10 Introduction __ __ __________ _____ ____ __ 72 Science ______________________________ 72 Space Transportation __________________ 15 International Satellite Systems _____ _ _____ 18 Direct Broadcast Satellites ______________ 72 Space Research and Technology _ _ ___ ____ 73 Tracking and Data Acquisition __________ 19 Frequency Management _____ __ _ __ _ ___ __ 20 Domestic Satellite Applications __________ 73 International Affairs ___________________ 74 User Affairs ________________________ 23 XII.
    [Show full text]
  • Pioneer Venus Spacecraft Volume 1 Executive Summary
    FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By cS. D.DORFMAN E.. t July 1973 0 197 *MO P;cCO S Prepared Under UFContract P4. No. NAS S By SHUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA AMES For Sr AMES RESEARCH CENTER U U NATIONAL AERONAUTICS AND OH 0:44 SPACE ADMINISTRATION i' $li FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By S. D.DORFMAN July 1973 Prepared Under Contract No. NAS2-D' "750 By HUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA For AMES RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HS-507-0760 PREFACE The Hughes Aircraft Company Pioneer Venus final report is based on study task reports prepared during performance of the "System Design Study of the Pioneer Spacecraft. " These task reports were forwarded to Ames Research Center as they were completed during the nine months study The significant phase. results from these task reports, along with study results developed after task report publication dates, are reviewed in this final report to provide complete study documentation. Wherever appropriate, the task reports are cited by referencing a task number and Hughes report refer- ence number. The task reports can be made available to the ally interested reader specific- in the details omitted in the final report for the sake of brevity. This Pioneer Venus Study final report describes the following configurations: baseline * "Thor/Delta Spacecraft Baseline" is the baseline presented at the midterm review on 26 February 1973. * "Atlas/Centaur Spacecraft Baseline" is the baseline resulting from studies conducted since the midterm, but prior to receipt of the NASA execution phase RFP, and subsequent to decisions to launch both the multiprobe and orbiter missions in 1978 and use the Atlas/Centaur launch vehicle.
    [Show full text]
  • Proceedings, ITC/USA
    International Telemetering Conference Proceedings, Volume 18 (1982) Item Type text; Proceedings Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © International Foundation for Telemetering Download date 09/10/2021 04:34:04 Link to Item http://hdl.handle.net/10150/582013 INTERNATIONAL TELEMETERING CONFERENCE SEPTEMBER 28, 29, 30, 1982 SPONSORED BY INTERNATIONAL FOUNDATION FOR TELEMETERING CO-TECHNICAL SPONSOR INSTRUMENT SOCIETY OF AMERICA Sheraton Harbor Island Hotel and Convention Center San Diego, California VOLUME XVIII 1982 1982 INTERNATIONAL TELEMETERING CONFERENCE Ed Bejarano, General Chairman Robert Klessig, Vice Chairman Norman F. Lantz, Technical Program Chairman Gary Davis, Vice Technical Chairman Alain Hackstaff, Exhibits Chairman Warren Price, Publicity Chairman Burton E. Norman, Finance Chairman Francis X. Byrnes, Local Arrangements Chairman Fran LaPierre, Registration Chairman Bruce Thyden, Golf Tournament Technical Program Committee: Lee H. Glass Karen L. Billings BOARD, INTERNATIONAL FOUNDATION FOR TELEMETERING H. F. Pruss, President W. W. Hammond, Vice-President D. R. Andelin, Asst. Secretary & Treasurer R. D. Bently, Secretary B. Chin, Director F. R. Gerardi, Director T. J. Hoban, Director R. Klessig, Director W. A. Richardson, Director C. Weaver, Director 1982 ITC/USA Program Chairman Norman F. Lantz Program Chairman The conference theme this year is “Systems and Technology in the ’80’s: Expanding Horizons.” It was selected to continue the theme which began with ITC/USA ’80. The technological advances that have occurred over the past decade have, and continue to have, a profound affect on the nature and applications of telemetry systems. It is felt that the papers and tutorials which make up this year’s conference will provide you with some insight into these “Expanding Horizons.” The technical exhibits compliment the technical sessions.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Advances in Space Research Forecasting the Impact of an 1859
    Advances in Space Research Forecasting the Impact of an 1859-calibre Superstorm on Satellite Resources Sten Odenwald1,2, James Green2, William Taylor1,2 1. QSS Group, Inc., 4500 Forbes Blvd., Lanham, MD, 20706. 2. NASA, Goddard Space Flight Center, Greenbelt, MD 20771 Submitted: June 30, 2005, Accepted: September 25, 2005 Abstract: We have developed simple models to assess the economic impacts to the current satellite resource caused by the worst-case scenario of a hypothetical superstorm event occurring during the next sunspot cycle. Although the consequences may be severe, our worse-case scenario does not include the complete failure of the entire 937 operating satellites in the current population, which have a replacement value of ~$170-230 billion, and supporting a ~$90 billion/year industry. Our estimates suggest a potential economic loss of < $70 billion for lost revenue (~$44 billion) and satellite replacement for GEO satellites (~$24 billion) caused by a ‘once a century’ single storm similar to the 1859 superstorm. We estimate that 80 satellites (LEO, MEO, GEO) may be disabled as a consequence of a superstorm event. Additional impacts may include the failure of many of the GPS, GLONASS and Galileo satellite systems in MEO. Approximately 97 LEO satellites, which normally would not have re-entered for many decades, may prematurely de-orbit by ca 2021 as a result of the temporarily increased atmospheric drag caused by a superstorm event occurring in ca 2012. The $100 billion International Space Station may lose significant altitude, placing it in critical need for re-boosting by an amount potentially outside the range of typical Space Shuttle operations, which are in any case scheduled to end in 2010.
    [Show full text]
  • Aeronautics and Space Report of the President 1981 Activities
    Aeronautics and Space Report of the President 1981 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1981 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Con tents Page Page Summary ................................ 1 Department of Agriculture ................. 57 Communications ...................... 1 Federal Communications Commission ........ 58 Earth’s Resources and Environment ...... 2 CommunicationsSatellites .............. 58 Space Science ........................ 3 Experiments and Studies ............... 59 Space Transportation .................. 4 Department of Transportation .............. 61 International Activities ................ 5 Aviation Safety ....................... 61 Aeronautics .......................... 6 Environmental Research ............... 63 National Aeronautics and Space Air Navigation and Air Traffic Control ... 64 Administration ..................... 8 Environmental Protection Agency ........... 66 Applications to the Earth ............... 8 National Science Foundation ................ 67 Science .............................. 13 Smithsonian Institution .................... 68 Space Transportation .................. 19 Spacesciences ........................ 68 Space Research and Technology ......... 23 Lunar Research ...................... 69 Space Tracking and Data Services ........ 25 Planetary Research .................... 70 Aeronautical
    [Show full text]
  • Proceedings, ITC/USA
    COMSAT SATELLITE CONTROL NETWORKS Item Type text; Proceedings Authors Johnson, Charles E. Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © International Foundation for Telemetering Download date 28/09/2021 18:06:39 Link to Item http://hdl.handle.net/10150/613091 COMSAT SATELLITE CONTROL NETWORKS Charles E. Johnson Manager Automated Test Spacecraft Engineering Communications Satellite Corporation Palo Alto, California INTRODUCTION The COMSAT family of companies is actively involved in the operation of the Intelsat, COMSAT General, and Satellite Business Systems (SBS) ground networks which currently control twenty-five communications satellites utilizing three control centers and thirteen ground stations with forty-five antennas. Satellites controlled include INTELSAT IV (7), INTELSAT IVA (5), INTELSAT V (4), COMSTAR (4), MARISAT (3), and SBS (2). COMSAT also operates a launch services network consisting of a COMSAT Launch Control Center and Intelsat ground stations, as required, to guide spacecraft to the proper orbit station. Intelsat V flight 4 was launched in March 1982. Two additional Intelsat V’s and one SBS are scheduled for launch this year. The latter will be on the first commercial shuttle mission. The ground control networks contain a commonality traceable to COMSAT’s influence in the design of the satellites and experience in the control of communications satellites dating back to the launch of the Early Bird in 1965. This paper presents an overview of operational and planned networks in which COMSAT plays a significant role. CONTROL OF THE SPACE SEGMENT The primary objective of each of these networks is to control the space segment of the satellite system so as to provide uninterrupted commercial communications service consistent with the requirements of the ground segment.
    [Show full text]
  • Commercial Communications Satellites DRIFTING: BS-3N; BSAT-1A, -1B, Geosynchronous Orbit Insat 1D (Between 68° & 72°E)
    Commercial Communications Satellites DRIFTING: BS-3N; BSAT-1A, -1B, Geosynchronous Orbit Insat 1D (between 68° & 72°E) 93.5°E 100.0°E 95°E 91.5°E 100.5°E 97.5°E LMI AP 2 (Gorizont 30) 105.0°E Cakra 105.5°E °E °E °E 108.0°E °E °E 109.0°E °E 110.0°E 110.5°E °E °E 88.0 TDRS-6 87.5°E °E 85.0 113.0°E warta 1, 83.0 80.0 °E 78.5 76.5 °E 116 75.0 74.0 72.0 °E 119.5°E 70.5 PALAPA B4 (I) .0°E 68.5 120.0°E Sinosat/Intelsat APR °E 66.0 °E 122.0°E P Telkom 1, AA Comstar D4) °E 123.0 2A, 2 64.0 I Thuraya 1 (I) 124.0°E alapa C2, nmarsat II F-4 (I) 62.0 Leasat F-5 (I) °E ; Intelsat 601 (I), 906 60.0 ° (aka °E Asiasat 3S Meas E C Asia °E Insat 3A Intelsat APR-1, 3B F1 57.0 128.0°E ; ar-1 Asiastar IV 56.0 °E N-SAT-110 NSS-6 55.0 53.0 Ko sat 2 fi 1 (I) °E 132.0°E at 1 134.0°E Koreasat 3 at 2E/ 704 °E r telsat 709 2 50.5 °E easat 2 P-1 S-4 7, -10 ST-1 48.0 Chinast 136.0 In Ins Esia Thaicom 2, 3Apstar 2R/Telstar 10 47.5 LMI-1 Thaicom 1 Insat 3CPA ) °E 138.0°E IpS -2 W5 t 1 142.0°E °E PAS- a 45.0 ) JCSat 4AAsiasat (6) Intelsat as (I 14 Garuda 1 tar 1 2 Inmarsat III F-1, -703 ore ya °E 144.0°E3.5°E Intelsat 902 AM-22/SESAT 2 ra 2.0 °E Intelsat 904 (aka K 4 E 146.0°E 4 NSS t 3E, Intelsat 7006 ar 1) Thu 39.0 ° JC MOST-1 r B 38.0 °E 148.0°E Insa pe*St 6.0 Apstar 5/TelstarApstar 18 N-Star1A, 6 A Sa Express 3 °E 150.0°E t pe*Sta ) N-Star B, C 3 Intelsat 7 (nee Euro d 33.0 °E 150.5°E Superbird C Eutelsat II F-2 (I) -Bir 31.0 Inmars Euro , EurasiaSat 1, nee e °E 152.0°E Apstar 1 90°E apa C1) 3 ( 30.5 E JCSa a PAS-12 9.0° 154.0°E t II F-1 -Sat 2(aka Pal 2 °E t 1B (5), 1; MBSat (I) Turksat-1C 28.5 (I) Hellas °E Agi SESAT 28.2 156.0°E R(4) Measatla 2 2 Paksat 1sat 802, Eurobird W4, at 1B (I) Intelsat[BACK-UP] 602 Intel 2) 26.0°E 157.0°E robird Optus B3 Turks (Eu 24.5°E 158.0 Arabsat 2B , 2D ), 2D °E JCSat 2A(8) Xtar-Eurird 1 S-5 23.5 °E Eurob 2C (PA 160.0°E 135°E 45°E Astra 2A, 2B IntelsatOptus 604 (I) C1 sat 3A, F-5 E Arab III 21.5° 162.0°E Superbird A 3A .0°E Inmarsat1D, 21 164.0°E Optus B1 Astra W3) Superbird B2 (4) (nee 2°E 166.0° W6 , 2C 19.
    [Show full text]
  • Of the President
    Aeronautics and Space Report of the President 1977 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1977 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Table of Contents Page Page I. Summary of U.S. Aeronautics and VI. Department of the Interior __________ 66 Space Activities of 1977 __________ 1 Introduction ____ __________ _ _ __ 66 Introduction _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ - 1 Earth Resources Observation Communications _ _ - _ _ _ _ _ ___ _ _ - 1 Systems Program _____________ 66 Earth's Resources _______ _______ 2 National Cartographic Informa- Space Science __________________ 5 tion Center __________________ 67 Transportation _ _ _ _ _ _ _ ___ _ _ _ _ __ 7 Monitoring the Environment ___ 67 Space Energy __________________ 11 Research _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ 68 11. National.. Aeronautics and Space International Activities _________ 69 Administration _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 13 VII. Department of Transportation _______ 70 Introduction _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 13 Introduction _ _ _ _ _ _ - _ - _ _ - _ _ - _ - _ 70 Applications to Earth _ _______ _ __ 13 Air Safety ..................... 70 Science _______________________ 18 Air Traffic Control and Air Space Transportation _ _______ __ _ 22 Navigation - _ - _ _ _ _ _ - _ _ _ _ - _ _ _ _ 72 Space Research and Technology- - 26 OST Research Support __________ 7.3 Tracking and Data Acquisition __ 27 NASA Energy Programs ________ 28 Aeronautical Research and Appendixes Development _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ 29 111.
    [Show full text]
  • Classification of Geosynchronous Objects
    esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 F +49 (0)6151 90495 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer Reference GEN-DB-LOG-00086-OPS-GR Issue 14 Revision 1 Date of Issue 17 February 2012 Status Issued Document Type TN Distribution open European Space Agency Agence spatiale européenne Abstract This is a status report on geosynchronous objects as of the end of 2011. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring (here defined as orbits with mean motion between 0.9 and 1.1 revolutions per day, eccentricity smaller than 0.2 and inclination below 70 deg) is analysed. From 1234 objects for which orbital data are available, 406 are controlled inside their longitude slots, 629 are drifting above, below or through GEO, 172 are in a libration orbit and 18 whose status could not be determined. Furthermore, there are 74 uncontrolled objects without orbital data (of which 66 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1307 . During 2011 at least sixteen spacecraft reached end-of-life. Thirteen of them were reorbited following the IADC recommendations, one of those below the GEO protected region. Three spacecraft were reorbited too low. We identified one spacecraft that seems to be abandoned or could not make any reorbiting manouevre at all in 2009 and is now librating inside the geostationary ring.
    [Show full text]
  • Introduction to Space Science and Spacecraft Applications
    INTRODUCTION TO SPACESCIENCES AND SPACECRAFT APPLICATIONS INTRODUCTION TO SPACESCIENCES AND SPACECRAFT APPLICATIONS BRUCEA. CAMPBELL AND SAMUEL WALTER MCCANDLESS,JR. Gulf Publishing Company Houston, Texas Introduction to Space Sciences and Spacecraft Applications Copyright 0 1996 by Gulf Publishing Company, Houston, Texas. All rights reserved. Printed in the United States of America. This book, or parts thereof, may not be reproduced in any form without permission of the publisher. Gulf Publishing Company Book Division P.O. Box 2608 Houston, Texas 77252-2608 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Campbell, Bruce A., 1955- Introduction to space sciences and spacecraft applications / Bruce A. Campbell, Samuel Walter McCandless, Jr. p. cm. Includes bibliographical references and index. ISBN 0-88415-411-4 1. Astronautics. 2. Space vehicles. I. McCandless, Samuel Wal- ter. 11. Title. TL791.C36 1996 629.4-dc20 96- 14936 CIP Printed on acid-free paper (=) iv Contents Acknowledgments viii About the Authors viii Preface ix CHAPTER 1 Introduction and History 1 Uses of Space, 1. History of Spaceflight, 3. ReferencedAdditional Reading, 23. Exercises, 23. PART 1 SPACE SCIENCES CHAPTER 2 Orbital Principles 26 Orbital Principles, 28. Orbital Elements, 38. Orbital Properties, 39. Useful Orbits, 44. Orbit Establishment and Orbital Maneuvers, 47. ReferencedAdditional Reading, 5 1. Exercises, 5 1. CHAPTER 3 Propulsion 53 First Principles, 54. Orbit Establishment and Orbital Maneuvers, 63. ReferencedAdditional Reading, 74. Exercises, 74. CHAPTER 4 Spacecraft Environment 76 The Sun, 76. The Earth, 87. Spacecraft Effects, 97. ReferencedAdditional Reading, 101. Exercises, 101. V PART 2 SPACECRAFT APPLICATIONS CHAPTER 5 Communications 104 Communications Theory, 104.
    [Show full text]
  • 19740027142.Pdf
    1974027142-002 AUGUST1974 PIONEERMARSSURFACEPENETRATORMISSION MissionAnalysisandOrbiterDesign NASA ContractNAS 2-8424 ir- ................. :HUr GHES: Q • _ _ _ J hPA,-F ANU C,_MMI_NIc-A],t'_,_ ,,POUP HughesRef. No. D2546 • SCG40274R 1974027142-003 i m •" CONTENTS Page r* 1. INTRODUCTION 1 2. SUMMARY 3 Z. 1 Mission Profile 3 Z. Z Penetrator Deployment Options 4 2. 3 Communications and Data Handling 6 Z. 4 Pioneer Mars Orbiter Design 7 3. MISSION ANALYSIS 11 3. 1 Pioneer Mars Orbiter Flight Mechanics 11 3.1. 1 Launch and Interplanetary Transit Phase 1Z 3.1. Z PMO Baseline Interplanetary Trajectory 15 , 3. 1. 3 PMO Mars Arrival Conditions 15 3.1.4 PMO Mars Orbit Phase 17 3. Z Mission Operations 19 3. 2. 1 Launch and Interplanetary Transit 19 3. Z.Z PMO Mars Orbit Phase Z0 3. 2. 3 Data Transmissions Zl 3. Z. 4 Operations During Eclipses and Occultations Z1 3.3 Orbiter Science Potential 21 3.4 Penetrator Deployment 23 3.4. 1 Deployment Options Z4 3.4. 2 Targeting Accuracy 96 3.4. 3 Penetrator Impact Position Determination Z6 3.4.4 Communications Geometry 26 3. 5 Communications and Data Handling Z8 3.5. 1 Penetrator/PMO Communications Link 28 3.5.2- PMO/Earth Link 30 3.6 Orbiter Dynamics Analysis 33 3.6.1 Steady State Dynamics 33 3.6. Z Penetrator Deployment Effects 35 4. PIONEER MARS ORBITER DESIGN CONCEPT 39 4. I Mission Impact on PMO Design 39 4. Z PMO Design 40 4. Z. I Configuration 40 4. Z. 2- Mass Properties 46 4.
    [Show full text]