Satellite Overview Wireless Networks Satellite Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbookhandbook Mobile-Satellite Service (MSS) Handbook
n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play. -
Aeronautics and Space Report of the President, 1976 Activities
Aeronautics and Space Report of the President 19 76 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1976 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Table of Contents Page Page I. Summary of U.S. Aeronautics and Space Ac- X. National Academy of Sciences, National Acad- tivities of 1976 _________________________ 1 emy .of Engineering, National Research 67 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ __ 1 Council _______________________________ Space _______________________________ 1 Introduction _ _ _____ _ ______ __ _ ______ __ 67 Aeronautics __ __________ ____ __________ 4 Aerospace Science _ _ _ __ - _ _ _ __ _ __ _ __ _ - - - 67 The Heritage ________________________ 5 Space Applications .................... 69 .. 70 11. National Aeronautics and Space Administration G Aerospace Engineering _ _ _ _ _ _ _ __ _ _ _ - - - - - 6 Education ____________________-------71 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 72 Applications to Earth __________________ 6 XI. Office of Telecommunications Policy __i____-- 10 Introduction __ __ __________ _____ ____ __ 72 Science ______________________________ 72 Space Transportation __________________ 15 International Satellite Systems _____ _ _____ 18 Direct Broadcast Satellites ______________ 72 Space Research and Technology _ _ ___ ____ 73 Tracking and Data Acquisition __________ 19 Frequency Management _____ __ _ __ _ ___ __ 20 Domestic Satellite Applications __________ 73 International Affairs ___________________ 74 User Affairs ________________________ 23 XII. -
Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. -
Space Business Review International Mobile Telecommunications Services, Including Wimax
December 2007 - SPECIAL EDITION: THE TOP-10 SPACE BUSINESS STORIES OF 2007 - #1 - M&A Transactions Keep Pace #5 - 50th Anniversary of Sputnik Despite challenging credit markets, merger, As we celebrate the 50th anniversary of the acquisition and investment activity kept pace in satellite that introduced the “space age”, 2007. Abertis & Caisse des Dépôts et approximately 1,000 satellites now orbit the consignations purchase 32% (€1.07B) and Earth and the space business has grown to 25.5% (€862.7M) stakes, respectively, in more than $100 billion in annual revenues. Eutelsat (Jan.). GE Capital sells back its 19.5% #6 - Satellite Manufacturers Remain Busy interest in SES Global for €588 million in cash 18 commercial satellite orders announced in and assets including stakes in AsiaSat, Star 2007. Ball Aerospace & Technologies: One and Orbcomm (Feb.). JSAT & SKY WorldView-2. EADS Astrium: YahSat 1A Perfect Communications merge (March). BC and 1B, Arabsat 5A, BADR-5 (the foregoing Partners to acquire Intelsat Ltd. for $16.4 billion, in cooperation with Thales Alenia Space) including debt (June). Carlyle Group to acquire and Alphasat 1-XL. Israel Aerospace ARINC (July). Apax Partners France Industries: Amos-4. Lockheed Martin purchases Telenor Satellite Services for $400 Commercial Space Systems: JCSAT-12. million (Sept.). Loral Space & Orbital Sciences Corporation: Optus-D3, Communications and PSP Canada conclude AMC-5R. Space Systems/Loral: Nimiq 5, C$3.25 billion acquisition of Telesat Canada ProtoStar I, Intelsat 14, SIRIUS FM-6, Abertis to acquire 28.4% stake in Hispasat EchoStar XIV, NSS-12. Thales Alenia (Nov.). CIP Canada Investment, indirectly Space: THOR 6, Palapa-D. -
Realizing Resilient Tactical Networks with Maximum Government Control on High-Throughput Satellites
WHITE PAPER Realizing Resilient Tactical Networks with Maximum Government Control on High-throughput Satellites 1 Wide-beam connectivity is an essential aspect of military satellite communications and High Throughput Satellite (HTS) technology is proving to be ideally suited for many Government applications. While most satellite operators offer closed HTS architectures that are vendor-locked with very little control offered to users, the Intelsat Epic Next Generation (Epic) HTS architecture is enterprise- grade, open architecture and vendor-agnostic. Intelsat Epic allows Government and military access to bandwidth-efficient, higher data throughputs on a global-scale via a wide variety of user-chosen waveforms, modems and antennas. Intelsat is proud to present the next generation of satellite communications that features higher data throughput rates and security while offering cost-efficiencies across the board. Introduction High Throughput Satellites (HTS) have been the center of solutions. Interoperability between the various military attention for the past five years. It is important to note that branches, allied, and coalition forces continues to be a most of these systems have been purpose-built solutions to challenge. Finally, most military and government users require service homogeneous sets of users via closed architectures. operational coverage in remote and austere regions such Systems such as ViaSat Exede, Inmarsat Global Express, Hughes as deserts, jungles, and oceans—well outside of population Jupiter, and Eutelsat KA-SAT require new investments in centers for which these closed architectures are optimized. proprietary modem technologies and service architectures. These closed systems offer star-only connectivity and keep With the disconnects between these closed HTS solutions and quality of service control with the service provider, not the end the challenges faced by the Government, it is no wonder that users. -
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12Th STREET S.W
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET S.W. WASHINGTON D.C. 20554 News media information 202-418-0500 Internet: http://www.fcc.gov (or ftp.fcc.gov) TTY (202) 418-2555 DA No. 20-883 Report No. SAT-01490 Friday August 14, 2020 Satellite Policy Branch Information Actions Taken The Commission, by its International Bureau, took the following actions pursuant to delegated authority. The effective date of these actions is the release date of this Notice, except where an effective date is specified. SAT-MPL-20200401-00029 E S3048 New Skies Satellites B.V. Modification to PDR/PPL Grant of Authority Effective Date: 06/19/2020 Nature of Service: Fixed Satellite Service On August 11, 2020, the Satellite Division reissued the market access conditions for the NSS-6 space station to reflect a 0.3º degree change in orientation of one of the satellite's beams. Grant of this change was requested pursuant to 25.117(h)(2) of the Commission's rules and became effective on June 19, 2020. SAT-STA-20200624-00082 E S2960 Intelsat License LLC, as debtor-in-possession Special Temporary Authority Grant of Authority Effective Date: 08/13/2020 On August 13, 2020, the Satellite Division granted, with conditions, the request of Intelsat License LLC as debtor-in-possession (Intelsat) for special temporary authority, for an additional period of 180 days, to continue to operate a C/Ku-band satellite, the JCSAT-RA space station, at the 168.9º E.L. orbital location to provide fixed-satellite service in the 3940-4200 MHz (space-to-Earth), 6225-6485 MHz (Earth-to-space), 12.2-12.75 GHz (space-to-Earth), and 13.75-14.5 GHz (Earth-to-space) frequency bands. -
In the Matter of ) ) Expanding Flexible Use of the ) WT Docket No
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 _______________________________________ ) In the Matter of ) ) Expanding Flexible Use of the ) WT Docket No. 20-443 12.-12.7 GHz Band ) ) Expanding Flexible Use in Mid-Band Spectrum ) GN Docket No. 17-183 Between 3.7-24 GHz ) ) ) REPLY COMMENTS OF DISH NETWORK CORPORATION Jeff Blum, Executive Vice President, Pantelis Michalopoulos External & Legislative Affairs Christopher Bjornson Alison Minea, Director & Senior Counsel Andrew M. Golodny Hadass Kogan, Director & Senior Counsel Travis West DISH NETWORK CORPORATION STEPTOE & JOHNSON LLP 1110 Vermont Avenue, N.W., Suite 450 1330 Connecticut Avenue, N.W. Washington, D.C. 20005 Washington, D.C. 20036 (202) 463-3702 (202) 429-3000 Counsel for DISH Network Corporation July 7, 2021 Table of Contents I. INTRODUCTION AND SUMMARY .............................................................................. 1 II. A BROAD SPECTRUM OF PUBLIC INTEREST AND BUSINESS ENTITIES, INCLUDING DISINTERESTED ENTITIES, SUPPORTS 5G IN THE BAND ............. 7 III. THE PROPOSAL’S FEW OPPONENTS DO NOT CLOSE THE DOOR TO 5G IN THE BAND .................................................................................................................. 9 IV. SHARING IS EMINENTLY FEASIBLE ....................................................................... 10 A. Sharing Is Possible Between Higher-Power Two-Way Terrestrial Services and DBS ............................................................................................................... 10 -
Pioneer Venus Spacecraft Volume 1 Executive Summary
FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By cS. D.DORFMAN E.. t July 1973 0 197 *MO P;cCO S Prepared Under UFContract P4. No. NAS S By SHUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA AMES For Sr AMES RESEARCH CENTER U U NATIONAL AERONAUTICS AND OH 0:44 SPACE ADMINISTRATION i' $li FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By S. D.DORFMAN July 1973 Prepared Under Contract No. NAS2-D' "750 By HUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA For AMES RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HS-507-0760 PREFACE The Hughes Aircraft Company Pioneer Venus final report is based on study task reports prepared during performance of the "System Design Study of the Pioneer Spacecraft. " These task reports were forwarded to Ames Research Center as they were completed during the nine months study The significant phase. results from these task reports, along with study results developed after task report publication dates, are reviewed in this final report to provide complete study documentation. Wherever appropriate, the task reports are cited by referencing a task number and Hughes report refer- ence number. The task reports can be made available to the ally interested reader specific- in the details omitted in the final report for the sake of brevity. This Pioneer Venus Study final report describes the following configurations: baseline * "Thor/Delta Spacecraft Baseline" is the baseline presented at the midterm review on 26 February 1973. * "Atlas/Centaur Spacecraft Baseline" is the baseline resulting from studies conducted since the midterm, but prior to receipt of the NASA execution phase RFP, and subsequent to decisions to launch both the multiprobe and orbiter missions in 1978 and use the Atlas/Centaur launch vehicle. -
Positioning Using IRIDIUM Satellite Signals of Opportunity in Weak Signal Environment
electronics Article Positioning Using IRIDIUM Satellite Signals of Opportunity in Weak Signal Environment Zizhong Tan, Honglei Qin, Li Cong * and Chao Zhao School of Electronic and Information Engineering, Beihang University (BUAA), Beijing 100191, China; [email protected] (Z.T.); [email protected] (H.Q.); [email protected] (C.Z.) * Correspondence: [email protected]; Tel.: +86-1381-0629-638 Received: 9 December 2019; Accepted: 25 December 2019; Published: 27 December 2019 Abstract: In order to get rid of the dependence of the navigation and positioning system on the global navigation satellite system (GNSS), radio, television, satellite, and other signals of opportunity (SOPs) can be used to achieve receiver positioning. The space-based SOPs based on satellites offer better coverage and availability than ground-based SOPs. Based on the related research of Iridium SOPs positioning in the open environment, this paper mainly focuses on the occluded environment and studies the Iridium SOPs positioning technique in weak signal environment. A new quadratic square accumulating instantaneous Doppler estimation algorithm (QSA-IDE) is proposed after analysing the orbit and signal characteristics of the Iridium satellite. The new method can improve the ability of the Iridium weak signal Doppler estimation. The theoretical analysis and positioning results based on real signal data show that the positioning based on Iridium SOPs can be realized in a weak signal environment. The research broadens the applicable environment of the Iridium SOPs positioning, thereby improving the availability and continuity of its positioning. Keywords: signals of opportunity positioning; Iridium; weak signal; instantaneous Doppler 1. Introduction The new methods for receiver positioning based on abundant and various frequency signals have emerged in recent years. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12Th STREET S.W
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET S.W. WASHINGTON D.C. 20554 News media information 202-418-0500 Internet: http://www.fcc.gov (or ftp.fcc.gov) TTY (202) 418-2555 Report No. SES-01927 Wednesday February 8, 2017 Satellite Communications Services Information re: Actions Taken The Commission, by its International Bureau, took the following actions pursuant to delegated authority. The effective dates of the actions are the dates specified. SES-LIC-20161223-00969 E E160180 ACC Licensee, LLC EZ Application for Authority 01/31/2017 - 01/31/2032 Grant of Authority Date Effective: 01/31/2017 Class of Station: Temporary Fixed Earth Station Nature of Service: Fixed Satellite Service SITE ID: 1 LOCATION: Transportable ANTENNA ID: 1 1.4 meters AVL Technologies 1410K 14000.0000 - 14500.0000 MHz 36M0G7W 65.47 dBW Compressed Digital Video and Audio Points of Communication: 1 - PERMITTED LIST - () SES-MOD-20161216-00949 E E040399 WLS Television, Inc. Application for Modification 11/30/2004 - 11/30/2019 Grant of Authority Date Effective: 02/01/2017 Class of Station: Temporary Fixed Earth Station Nature of Service: Fixed Satellite Service SITE ID: 1 LOCATION: GREATER CHICAGO METRO AREA AND MIDWESTERN USA, VARIOUS ANTENNA ID: 1 1.5 meters ADVENT COMMUNICATIONS NEWS SWIFT 150 KMA Page 1 of 5 14000.0000 - 14500.0000 MHz 36M0G7W 66.30 dBW PSK DIGITAL VIDEO, AUDIO, VOICE AND DATA ANTENNA ID: 2CHICAGO 1.4 meters AVL TECHNOLOGIES 1410 14000.0000 - 14500.0000 MHz 36M0G7W 65.00 dBW SINGLE CARRIER DVB S/S2 DIGITAL VIDEO, PROGRAM AUDIO,, VOICE AND DATA. Points of Communication: 1 - PERMITTED LIST - () SES-RWL-20170131-00110 E E020099 Vyve Broadband A Renewal 04/04/2017 - 04/04/2032 Grant of Authority Date Effective: 02/02/2017 Class of Station: Fixed Earth Stations Nature of Service: Domestic Fixed Satellite Service SITE ID: 1 LOCATION: 19670 302ND ROAD, ATCHISON, ATCHISON, KS 39 ° 35 ' 44.90 " N LAT. -
DESIGN of a LOW-COST AUGMENTATION NAVIGATION SYSTEM: the UNITED KINGDOM’S IMMEDIATE ANSWER to the GALILEO BREXIT
DESIGN OF A LOW-COST AUGMENTATION NAVIGATION SYSTEM: THE UNITED KINGDOM’s IMMEDIATE ANSWER TO THE GALILEO BREXIT CONUNDRUM Lawal S Lasisi Satellite Applications and Development, Nigerian Communications Satellite Ltd, Obasanjo Space Center, affiliated to Federal University of Technology, Minna-Nigeria. e-mail: [email protected]; +2348023151587. Chatwin R Chris Engineering and Design, School of Engineering and Informatics, Room 2B07, Shawcross Building, University of Sussex, Falmer, Brighton-UK, BN1 9QT e-mail: [email protected]; +441273678901. ABSTRACT United Kingdom’s Brexit from the European Union implies restricted access to the European Global Navigation Satellite System (GNSS) System - Galileo; with no access to the secured and encrypted signal used for defense and government purposes, which is restricted to European Union (EU) members. To mitigate this issue, the United Kingdom can, as a matter of urgency, launch a payload on a national military Communications Satellite to provide Navigation Overlay Services for the United Kingdom territory, surrounding waters and neighboring ally countries to meet the requirements of: Defense systems, Aviation, Maritime requirements and the effectiveness of Location-based Services for Emergencies and Crisis management etc. This paper describes the design of a navigation overlay service system as a hoisted payload on a national satellite and the required supporting ground infrastructure, highlighting various applications, services and solutions. Keywords: Brexit, Communications Satellite, Defence, European Union (EU), Galileo, GNSS, Military, Precision Point Positioning, SBAS. 1 INTRODUCTION TO GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) The United States Global Positioning System (GPS) marked the beginning of Global Navigation Satellite Systems (GNSS). After the First World War, radio time signals offered alternative technology for determination of the Greenwich Time line and thus longitude at sea.