Of the President

Total Page:16

File Type:pdf, Size:1020Kb

Of the President Aeronautics and Space Report of the President 1977 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1977 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Table of Contents Page Page I. Summary of U.S. Aeronautics and VI. Department of the Interior __________ 66 Space Activities of 1977 __________ 1 Introduction ____ __________ _ _ __ 66 Introduction _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ - 1 Earth Resources Observation Communications _ _ - _ _ _ _ _ ___ _ _ - 1 Systems Program _____________ 66 Earth's Resources _______ _______ 2 National Cartographic Informa- Space Science __________________ 5 tion Center __________________ 67 Transportation _ _ _ _ _ _ _ ___ _ _ _ _ __ 7 Monitoring the Environment ___ 67 Space Energy __________________ 11 Research _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ 68 11. National.. Aeronautics and Space International Activities _________ 69 Administration _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - 13 VII. Department of Transportation _______ 70 Introduction _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 13 Introduction _ _ _ _ _ _ - _ - _ _ - _ _ - _ - _ 70 Applications to Earth _ _______ _ __ 13 Air Safety ..................... 70 Science _______________________ 18 Air Traffic Control and Air Space Transportation _ _______ __ _ 22 Navigation - _ - _ _ _ _ _ - _ _ _ _ - _ _ _ _ 72 Space Research and Technology- - 26 OST Research Support __________ 7.3 Tracking and Data Acquisition __ 27 NASA Energy Programs ________ 28 Aeronautical Research and Appendixes Development _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ 29 111. Department of Defense _____________ 33 A-1 U.S. Spacecraft Record _____________ 75 Introduction. .. _ __ __ ________ __ ___ 33 A-2 World Record of Space Launchings Space Activities _______________ 33 Successful in Attaining Earth Aeronautical Activities _________ 39 Orbit or Beyond ________________ 75 Relationship with NASA 46 _______ A-3 Successful U.S. Launchings-1977 ___ 76 IV. Department of Commerce ___________ 49 B-1 U.S. Applications Satellites, 1973-1977 82 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 49 Space Systems _________________ 49 B-2 US.-Launched Scientific Payloads, Other Uses of Satellites and Space 54 1973-1977 _____________________- 84 Space Support Activities ________ 56 13-3 USLaunched Space Probes, 1973- Space and Atmospheric Research- 57 1977 _______________________-__- 85 Data Programs ________________ 58 C History of United States and Soviet Aeronautical Program's _ _ _ _ _ _ - _ - 59 Manned Space Flights ___________ 86 V. Department of Energy 60 ______________ D U.S. Space Launch Vehicles ___-___--88 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ 60 Space Applications of Nuclear E- 1 Space Activities of the U.S. Govern- Power ____________________ __ 60 ment U.S. Space Budget-Budget Authority 89 Program Planning _____________ 63 _ ______ ______________ - Space Disposal of Nuclear Wastes 63 E-2 Space Activities Budget ___________- 90 Satellite Power Stations _________ 64 Aeronautics Budget _ ____-__-_ - -- - - - 90 iii Aerospace Events of 1977 The United States in 1977 conducted the successful approach and landing tests of the Space Shuttle Orbiter, neared completion of the Shuttle facilities at the Kennedy Space Center, made operational use of data from the network of environmental satellites, and continued work to improve military aviation. On October 12, 1977, Enteiprise, the Space Shuttle’s Orbiter No. I (above) separated from its 747 carrier aircraft and began its 5-minute glide to its first landing on a concrete runway. This was the last of five approach and landing flights conducted in 1977 at NASA’s Dryden Flight Research Center at Edwards, California. The live flights confirmed the Orbiter’s ability to descend through the atmosphere and make an airplane-like landing. In preparation for the orbital flight tests scheduled for 1979, the Shuttle fa- cilities at Kennedy Space Center in Florida neared completion. These Octo- ber photos show (below, left) Launch Complex 39 being reworked from its Apollo launch configuration to its Shuttle configuration, and (below, light) the Orbiter landing facility (at top) and tow road leading to the pair of rectangular buildings where Orbiters will be refurbished after flight. iv Environmental satellites continued to pro- vide data used in operational weather fore- casting and resources monitoring. At left, an enhanced infrared image fiom the Goes 1 satellite shows areas of precipitation acioss North America on July 19, 1977. The densest precipitation is seen over westein Pennsyl- vania; indeed, it was causing the Johnston flood of July 19-20. A threatening absence of piecipitation is erident below in contrast be- tween the April snow pack in the Sierra Nevada Mountains in 1W5 (left) and 1977 (right). This radiometer image from the Noaa 5 weather satellite gave accurate warn- ing of the severe water shortage in the West- ern states during the summer of 1977. In 1977, the Department of Defense con- ducted flight tests of the Navy’s Tomahawk cruise missile (right) and deployed increas- ing numbers of the new F-16 fighter aircraft (below) to the fleet’s aircraft carriers. V Summary of United States Aeronautics I and Space Activities in 1977 Introduction Operational Space Systems Intelsat. The International Telecommunications The national programs in aeronautics and space Satellite Organization (Intelsat) increased its made steady progress in 1977 toward their long- membership by 24 countries in 1977, bringing the term objectives. In aeronautics the goals were im- total to 101. Its space capability was also aug- proved performance, energy efficiency, and safety mented, by the launch on May 26, 1977, of another in our aircraft. In space the goals were: better Intelsat IV-A satellite into synchronous orbit to remote sensing systems to generate more sophis- serve the Atlantic Ocean region. ticated information about the Earth’s environment; Marisat. The Marine Satellite (MARISAT) con- cost-effective, versatile space transportation; and sortium expanded commercial service to the Indian understanding the origins and processes of the Ocean in 1977, adding to its service in the Atlantic Earth, the solar system, and the Universe. and Pacific for commercial shipping and in all Aeronautical research made real gains toward three oceans for the U.S. Navy. The number of developing technologies that would enable future U.S. ships equipped with MARISAT terminals transport aircraft to reduce fuel consumption by tripled and that of the world fleet doubled. Con- up to 50 percent along with lower noise and emis- stant contact with the home office makes ship de- sion levels. ployment much more cost-effective and speeds de- The United States attempted 26 launches into livery of goods. space in 1977; 24 of them put 29 satellites into Milita y Communications Satellites. The three orbit. NASA orbited 15 satellites in 14 launches; 2 major operating requirements for military com- launches failed, and a third placed a satellite into munication by satellite are (1) high-capacity elliptical instead of synchronous orbit. DoD orbited worldwide point-to-point communication, (2) mod- 14 satellites in 10 launches, with another 2 erate-capacity service to mobile users, and (3) launched for DoD by NASA. Of the NASA total, command and control communication for strategic only 4 were NASA launches; costs of launching the forces. remainder were reimbursed by governmental, in- For the first of these needs, in 1977 the Defense ternational, and commercial customers. The NASA Communications Satellite Program (DSCS) had launches included a high-energy astronomy satel- four operational spacecraft: two DSCS satellites lite, two planetary satellites heading toward Jupiter, launched in May 1977 and deployed over the At- and a radiation-counting satellite focused on the lantic and west Pacific, a DSCS experimental satel- magnetosphere. lite launched in December 1973 and now over the This chapter will summarize highlights of the Indian Ocean, and NATO IIIB on loan for tem- year, arranged topically rather than by agency. porary use over the eastern Pacific. Four more Subsequent chapters will be devoted to the aero- DSCS 11 satellites were scheduled for launch in nautics and space activities of the six Federal agen- 1978 and development continued of the improved cies with the largest programs in those areas, as DSCS I11 model. determined by their budgets. The moderate-capacity requirement will be met by the Fleet Satellite Communications Service Communications (FLTSATCOM) for contacting mobile units of the Navy and Air Force. The first satellite is sched- Communications satellites were the first space uled for launch early in 1978. systems to demonstrate commercial feasibility and The strategic command and control system is are still the largest and fastest growing segment of now provided by transponders on several satellites, space development. pending development of a strategic satellite system. 1 Domestic Commercial Satellites. At the begin- tions in the Earth's atmosphere and water and on ning of 1977, three domestic communications satel- its land surface. These data were increasingly used lite systems were already in operation in the 4 and in analysis and protection of the environment. 6 GHz (gigahertz) bands. This year the Federal Communications Commission authorized Satellite lnveatorying and Monitoring Business Systems to develop and flight-test satellites operating in the 12- and 14-GHz bands to provide Lundsat Expel-iments.
Recommended publications
  • Geostationary Operational Environmental Satellite- R Series (GOES-R) 2016
    Student Works 12-14-2016 Geostationary Operational Environmental Satellite- R Series (GOES-R) 2016 Paige N. Dixon Embry-Riddle Aeronautical University Follow this and additional works at: https://commons.erau.edu/student-works Part of the Aviation and Space Education Commons, Meteorology Commons, and the Space Vehicles Commons Scholarly Commons Citation Dixon, P. N. (2016). Geostationary Operational Environmental Satellite- R Series (GOES-R) 2016. , (). Retrieved from https://commons.erau.edu/student-works/67 This Undergraduate Research is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Student Works by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Geostationary Operational Environmental Satellite- R Series (GOES-R) 2016 Paige N. Dixon Embry-Riddle Aeronautical University, Prescott, Arizona ABSTRACT This is a report on the first NOAA GOES-R satellite, launched on November 19th, 2016. This report will cover some of the details of the GOES-R project, as well as discuss the collaborations that made the project possible. This document will also detail some of the new satellite’s capabilities including geostationary lightning detection, and space weather monitoring, and will focus on real-world application of such technology. Additionally, this report will list some of the current and projected GOES-R products, and the potential benefits if testing proves successful. 1 1. Introduction The National Oceanic and Atmospheric Administration better known as NOAA, in collaboration with the National Aeronautics and Space Administration or NASA launched the first of the R-series GOES satellites into orbit on 19 November, of this year.
    [Show full text]
  • Aeronautics and Space Report of the President, 1976 Activities
    Aeronautics and Space Report of the President 19 76 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1976 Activities National Aeronautics and Space Administration Washington, D.C. 20546 Table of Contents Page Page I. Summary of U.S. Aeronautics and Space Ac- X. National Academy of Sciences, National Acad- tivities of 1976 _________________________ 1 emy .of Engineering, National Research 67 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ __ 1 Council _______________________________ Space _______________________________ 1 Introduction _ _ _____ _ ______ __ _ ______ __ 67 Aeronautics __ __________ ____ __________ 4 Aerospace Science _ _ _ __ - _ _ _ __ _ __ _ __ _ - - - 67 The Heritage ________________________ 5 Space Applications .................... 69 .. 70 11. National Aeronautics and Space Administration G Aerospace Engineering _ _ _ _ _ _ _ __ _ _ _ - - - - - 6 Education ____________________-------71 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 72 Applications to Earth __________________ 6 XI. Office of Telecommunications Policy __i____-- 10 Introduction __ __ __________ _____ ____ __ 72 Science ______________________________ 72 Space Transportation __________________ 15 International Satellite Systems _____ _ _____ 18 Direct Broadcast Satellites ______________ 72 Space Research and Technology _ _ ___ ____ 73 Tracking and Data Acquisition __________ 19 Frequency Management _____ __ _ __ _ ___ __ 20 Domestic Satellite Applications __________ 73 International Affairs ___________________ 74 User Affairs ________________________ 23 XII.
    [Show full text]
  • L RES~ARCH Coljncll ·
    NA~IOf\i'At ACADEMIES OF SCIENCE AND ENGiNEERING 7 ·.· ·.·. : NATIONAL RES~ARCH ColJNCll · of the UNITED STATES OF AMERICA UNITED• STATES NATIONAL COMMITTEEI . International Union of Radio Sden<:e Nationa.1 Radio Science Meeting 13-15 January 1982 · f l··.. ·· Sponsored by USNC/URSI in cooperation with r Institute of Electrical and Electronics Engineers University of· Colorado Boulder, Colorado U.S.A. ~· 1' National Radio Science Meeting 13-15 January 19 82 Condensed Technical Program TUESDAY, 12 JANUARY 0900 CCIR U.S. Study Group 5 OT 8-8 CCIR U.S. Study ,Gr.oup 6 Radio Building 2000-2400 USNC/URSI Meeting Broker Inn WEDNESDAY, 13 JANUARY 0900-1200 A-1 Time Domai~ 1-ieasurements CRl-42 B-1 Scattering CR2-28 B-2 Electromagnetic Theory CR2-28 C-1 Topics in Information Theory CR0-30 F-1 Propagation Theory and Models CR2-26 J-1 Millimeter-Wave Astronomy UMC Ballroom 1330-1700 A-2 Microwave/Millimeter Wave Measurements CRl-42 B-3 Antenna Theory and Practice CR2-28 B-4 Inverse Scattering CR2-6 C-2 Digital HF: Equaltz ation and Reiated CR0-30 Techniques E-1 EM Noise in the Sea CRl-40 F-2 Ground-Based Remote Sensing CR2-26 H-1 VLF-ELF Wave Injection Into the CRl-46 Magnetosphere J-2 Very Long Baseline Interferometry UMC 157 1700 Commission A Business Meeting CRl-42 Commission C Business Meeting CR0-30 Commission E Business Meeting CRl-40 Commission F Business Meeting CR2-26 Commission H Business Meeting CRl-46 1800-2000 Reception Engineering Center 2000-2200 IEEE Wave Propagation Standards Committee CRl-46 TH.URSDAY, 14 JANUARY 0830-1200 A-3
    [Show full text]
  • Satellite Regulatory and Usage in Indonesia
    Ministry of Communication and Information Technology Toward The Indonesian Information Society Satellite Regulatory and Usage in Indonesia ITU/MIC International Satellite Symposium 2015 30 September- 1 October 2015 Danang City, Vietnam Directorate General of Resource Management and Equipment Standard of Post and Information Technology Background The largest archipelago country : 13,466 islands (already have coordinates and registered) source: Geospasial Information Indonesia (BIG) May 2014 total land area: 1,919,440 km2 (land: 1,826,440 km2, inland water: 93,000 km2) source: statistics Indonesia (BPS) May 2014 The Role of Satellite In Indonesia (1/2) BACKBONE NETWORK IN INDONESIA No access and terestrial backbone ACCESS NETWORK (CELLULAR) IN INDONESIA Still needed The Role of Satellite In Indonesia (2/2) Backbone Network : Fiber Optic • Lack of terrestrial backbone network in Eastern Part of Indonesia due to geographical condition • Terrestrial Access Network has not covered entire Indonesian teritory • Blank spot area only served by satellite infrastructure Access Network : Cellular network • Satellite plays an important role in connecting Indonesia and serving the unserved areas • Indonesia is highly dependent on satellite Overview: Satellite Industry in Indonesia Indonesia satelit operator: 119 txp C and 5 txp Ku Not enough supply from National Satellite Operator From 2009-2016 : No added capacity from National Operator To fulfill demands, foreign satellites can provide service in Indonesia through national telco and broadcasting operators Threre are 34 foreign satellites provide service in Indonesia Number of Foreign Satellites Providing Service in Indonesia 35 34 30 25 22 20 18 15 10 10 9 5 5 2009 2010 2011 2012 2013 2014 0 .
    [Show full text]
  • Vostok by Andrew J
    Mercury's Competition: Vostok by Andrew J. LePage May 15, 2000 All through 1959 and into 1960, America's very single space suit-clad cosmonaut in a semi reclined public Mercury manned space program was making ejection seat which served a dual purpose: During the slow but steady progress (see Giving Mercury early phases of ascent, this seat could safely eject the Wings in the September 1, 1999 issue of cosmonaut away from the craft in case of a problem. SpaceViews). While it was quite clear that the Soviet Because of weight restrictions, the capsule could not Union also planned to send men into space, it was carry a large enough parachute to guarantee a soft difficult to sort the facts from the stream of enough landing for the pilot at the end of a normal propaganda. That began to change on May 15, 1960 mission. Instead a forced landing procedure was with the launch of Korabl Sputnik 1 (Spaceship developed where, after reentry was done, the Satellite 1) also referred to as "Sputnik 4" in the cosmonaut ejected from the descent module at an West. altitude of 7 kilometers (23,000 feet). He then used his own parachute to make a soft landing separate Carrying a dummy cosmonaut in a 312 by 369 from the more quickly falling descent module. kilometer (194 by 229 mile) orbit inclined 65 degrees to the equator, Korabl Sputnik 1 was the long awaited During the flight, the cabin interior maintained an inaugural flight of Mercury's competition. Although oxygen-nitrogen atmosphere at a pressure of one bar the actual configuration of the spacecraft would (15 psi) like on the ground.
    [Show full text]
  • Gridded Satellite (Gridsat) GOES and CONUS Data Kenneth R
    Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-33 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 27 April 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data Gridded Satellite (GridSat) GOES and CONUS data Kenneth R. Knapp1 and Scott L. Wilkins2 1NOAA/NESDIS/National Centers for Environmental Information, Asheville, NC 28801, USA 2Cooperative Institute for Climate and Satellites – North Carolina (CICS-NC), North Carolina State University, Asheville, NC 5 28801, USA Correspondence to: Kenneth R. Knapp ([email protected]) Abstract. The Geostationary Operational Environmental Satellite (GOES) series is operated by the U. S. National Oceanographic and Atmospheric Administration (NOAA). While in operation since the 1970s, the current series (GOES 8- 15) has been operational since 1994. This document describes the Gridded Satellite (GridSat) data, which provides GOES data 10 in a modern format. Four steps describe the conversion of original GOES data to GridSat data: 1) temporal resampling to produce files with evenly spaced time steps, 2) spatial remapping to produce evenly spaced gridded data (0.04° latitude), 3) calibrating the original data and storing brightness temperatures for infrared channels and reflectance for the visible channel, and 4) calculating spatial variability to provide extra information that can help identify clouds. The GridSat data are provided on two separate domains: GridSat-GOES provides hourly data for the Western Hemisphere (spanning the entire GOES domain) 15 and GridSat-CONUS covers the contiguous U.S. (CONUS) every 15 minutes. Dataset reference: doi:10.7289/V5HM56GM 1 Introduction NOAA has used the Geostationary Operational Environmental Satellite (GOES) series since 1975 to monitor weather.
    [Show full text]
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Pioneer Venus Spacecraft Volume 1 Executive Summary
    FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By cS. D.DORFMAN E.. t July 1973 0 197 *MO P;cCO S Prepared Under UFContract P4. No. NAS S By SHUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA AMES For Sr AMES RESEARCH CENTER U U NATIONAL AERONAUTICS AND OH 0:44 SPACE ADMINISTRATION i' $li FINAL REPORT SYSTEM DESIGN OF THE PIONEER VENUS SPACECRAFT VOLUME 1 EXECUTIVE SUMMARY By S. D.DORFMAN July 1973 Prepared Under Contract No. NAS2-D' "750 By HUGHES AIRCRAFT COMPANY EL SEGUNDO, CALIFORNIA For AMES RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HS-507-0760 PREFACE The Hughes Aircraft Company Pioneer Venus final report is based on study task reports prepared during performance of the "System Design Study of the Pioneer Spacecraft. " These task reports were forwarded to Ames Research Center as they were completed during the nine months study The significant phase. results from these task reports, along with study results developed after task report publication dates, are reviewed in this final report to provide complete study documentation. Wherever appropriate, the task reports are cited by referencing a task number and Hughes report refer- ence number. The task reports can be made available to the ally interested reader specific- in the details omitted in the final report for the sake of brevity. This Pioneer Venus Study final report describes the following configurations: baseline * "Thor/Delta Spacecraft Baseline" is the baseline presented at the midterm review on 26 February 1973. * "Atlas/Centaur Spacecraft Baseline" is the baseline resulting from studies conducted since the midterm, but prior to receipt of the NASA execution phase RFP, and subsequent to decisions to launch both the multiprobe and orbiter missions in 1978 and use the Atlas/Centaur launch vehicle.
    [Show full text]
  • Praxis Manned Spaceflight Log 1961±2006
    Praxis Manned Space¯ight Log 1961±2006 Tim Furniss and David J. Shayler with Michael D. Shayler Praxis Manned Spaceflight Log 1961±2006 Published in association with PPraxisraxis PPublishiublishingng Chichester, UK Tim Furniss David J. Shayler Space¯ight Correspondent Astronautical Historian Flight International Astro Info Service Bideford Halesowen Devon West Midlands UK UK Michael D. Shayler Editor and Designer Astro Info Service Birmingham UK SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason B.Sc., M.Sc., Ph.D. ISBN 10: 0-387-34175-7 Springer Berlin Heidelberg New York ISBN 13: 978-0-387-34175-0 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2006937359 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project Copy Editor: Mike Shayler Typesetting: Originator Publishing Services, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Authors' Preface ......................................
    [Show full text]
  • On the Spectra of Gamma-Ray Bursts at High Energies
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1986 ON THE SPECTRA OF GAMMA-RAY BURSTS AT HIGH ENERGIES STEVEN MICHAEL MATZ University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation MATZ, STEVEN MICHAEL, "ON THE SPECTRA OF GAMMA-RAY BURSTS AT HIGH ENERGIES" (1986). Doctoral Dissertations. 1483. https://scholars.unh.edu/dissertation/1483 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps.
    [Show full text]
  • Proceedings, ITC/USA
    International Telemetering Conference Proceedings, Volume 18 (1982) Item Type text; Proceedings Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © International Foundation for Telemetering Download date 09/10/2021 04:34:04 Link to Item http://hdl.handle.net/10150/582013 INTERNATIONAL TELEMETERING CONFERENCE SEPTEMBER 28, 29, 30, 1982 SPONSORED BY INTERNATIONAL FOUNDATION FOR TELEMETERING CO-TECHNICAL SPONSOR INSTRUMENT SOCIETY OF AMERICA Sheraton Harbor Island Hotel and Convention Center San Diego, California VOLUME XVIII 1982 1982 INTERNATIONAL TELEMETERING CONFERENCE Ed Bejarano, General Chairman Robert Klessig, Vice Chairman Norman F. Lantz, Technical Program Chairman Gary Davis, Vice Technical Chairman Alain Hackstaff, Exhibits Chairman Warren Price, Publicity Chairman Burton E. Norman, Finance Chairman Francis X. Byrnes, Local Arrangements Chairman Fran LaPierre, Registration Chairman Bruce Thyden, Golf Tournament Technical Program Committee: Lee H. Glass Karen L. Billings BOARD, INTERNATIONAL FOUNDATION FOR TELEMETERING H. F. Pruss, President W. W. Hammond, Vice-President D. R. Andelin, Asst. Secretary & Treasurer R. D. Bently, Secretary B. Chin, Director F. R. Gerardi, Director T. J. Hoban, Director R. Klessig, Director W. A. Richardson, Director C. Weaver, Director 1982 ITC/USA Program Chairman Norman F. Lantz Program Chairman The conference theme this year is “Systems and Technology in the ’80’s: Expanding Horizons.” It was selected to continue the theme which began with ITC/USA ’80. The technological advances that have occurred over the past decade have, and continue to have, a profound affect on the nature and applications of telemetry systems. It is felt that the papers and tutorials which make up this year’s conference will provide you with some insight into these “Expanding Horizons.” The technical exhibits compliment the technical sessions.
    [Show full text]
  • Press Kit , Project ~Arisat-B RELEASE NO: 7643
    ! News National Aeronautics and Space Administration Washrngton. D.C.20546 AC 202 755-8370 * For Release IMMEDIATE Press Kit , Project ~arisat-B RELEASE NO: 7643 Contents , GENERAL RE&EASE........:.....e...................... 1-3 DELTA LAUNCH VEHICLEoooo...o........oom....a...o.o. 4 STRAIGH$-SIGHT DELTA FACTS AND FIGURES. ............ 5-6 TYPICAL LAUNCH SEQUENCE FOR MARISAT-B ...............7-8 LAUNCH OP&~TIONS,..........................:...... 9 'NASA TEAM...................^.^..^.^.^..^.^^^ 9-10 COMSAT GENERAL CORP.,.............................. 11 ---- ---- -- -- - - -- - - - - - - .- (111SA-lleus-Release-76-83) . NASA TOLAUNCH SECOND BABISAT POB COBSAT GENERAL COOP- (NASA) 12 p Unclas 43127 N!News National Aeronautics and Space Administration' .> t r I Washington, 0.C.20546 I) AC 202 755-8310 For Release: ' Bill O'bonnell Headquarters, Washington, D.C. IMMEDIATE (Phone: 202/73518487) .. +. 4.: RELEASE NO: 76-83 NASA TO LAUNCH SECOND .~RISATFOR COMSAT GENBRAL,CORP. The 98cond maritime satellite (Marisat) will be launched a ,' by NASA for COMSAT General Corp. from Cape Canaveral, Fla., about May 27. 1, The spacecraft will be the second in the new Marisat system designed to provide communications t6 the :u.s. Navy, commercial shipping and offshore industries. I , Marisat-B will be il'alaced into synchronous orbit. over' the equator above the Pacific Ocean at 176.5 degrees W, longitude just west of Hawaii. A third Marisat has been t built as a spare. The first spacecraft, Marisat-1, was launched success- fully Feb. 19 on a Delta vehicle and is in orbit over the Atlantic at 15 degrees W. longitude, where it has been pro- viding service on UHF frequencies to the Navy since March 25.
    [Show full text]