CLASSIFICATION of GEOSYNCHRONOUS OBJECTS ISSUE 13 Produced with the DISCOS Database

Total Page:16

File Type:pdf, Size:1020Kb

CLASSIFICATION of GEOSYNCHRONOUS OBJECTS ISSUE 13 Produced with the DISCOS Database EUROPEAN SPACE AGENCY EUROPEAN SPACE OPERATIONS CENTRE GROUND SYSTEMS ENGINEERING DEPARTMENT Space Debris Office GEN-DB-LOG-00074-OPS-GR CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS ISSUE 13 by T. Flohrer, R. Choc, and B. Bastida Produced with the DISCOS Database February 2011 ESOC Robert-Bosch-Str. 5, 64293 Darmstadt, Germany 3 Abstract This is a status report on geosynchronous objects as of the end of 2010. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring (here defined as orbits with mean motion between 0.9 and 1.1 revolutions per day, eccentricity smaller than 0.2 and inclination below 30 deg) is analysed. From 1202 objects for which orbital data are available, 397 are controlled inside their longitude slots, 622 are drifting above, below or through GEO, 172 are in a libration orbit and 11 whose status could not be determined. Fur- thermore, there are 72 uncontrolled objects without orbital data (of which 66 have not been catalogued). Thus the total number of known objects in the geostationary region is 1274. During 2010 at least sixteen spacecraft reached end-of-life. Eleven of them were reorbited following the IADC recommendations, of which one spacecraft was reorbited with a perigee of 241 km - it is not yet clear if it will enter the 200-km protected zone around GEO or not -, four spacecraft were reorbited too low and at least one spacecraft did not or could not make any reorbiting manouevre at all and is now librating inside the geostationary ring. If you detect any error or if you have any comment or question please contact Tim Flohrer European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 Fax.: +49-6151-902625 E-mail: tim.fl[email protected] CONTENTS 4 Contents 1 Introduction 5 2 List of geosynchronous objects 6 3 Table 1: Objects with Two-Line-Element data 29 3.1 Satellites under longitude and inclination control (E-W and N-S control) .......... 30 3.2 Satellites under longitude control (only E-W control) . .................... 47 3.3 Objects in a drift orbit . ....................................... 53 3.4 Objects in a libration orbit around the Eastern stable point . ............... 87 3.5 Objects in a libration orbit around the Western stable point . ............... 94 3.6 Objects in a libration orbit around both stable points . .................... 97 4 Table 2: Objects without Two-Line-Element data 103 4.1 Satellites under longitude and inclination control (E-W and N-S control) .......... 105 4.2 Satellites under longitude control (only E-W control) . .................... 106 4.3 Objects in a drift orbit . ....................................... 109 4.4 Objects in a libration orbit around the Eastern stable point . ............... 115 4.5 Objects in a libration orbit around the Western stable point . ............... 116 4.6 Objects in a libration orbit around both stable points . .................... 116 4.7 Unidentified objects . ....................................... 117 4.8 Uncontrolled objects . ....................................... 118 4.9 Uncontrolled uncatalogued objects . .............................. 119 5 Table 3: objects of indeterminate status 121 6 Figures 125 7 Summary 132 8 References 133 9 Acknowledgements 133 1 INTRODUCTION 5 1 Introduction All objects near the geostationary ring which are catalogued in ESA’s DISCOS Database (Database and Information System Characterising Objects in Space) are listed in this document. The main purpose is to classify all these objects according to different categories. Indeed, six different types of categories are defined: • C1: objects under longitude and inclination control (E-W as well as N-S control) - the longitude is nearly constant and the inclination is smaller than 0.3 degrees, • C2: objects under longitude control (only E-W control) - the longitude is nearly constant but the inclination is higher than 0.3 degrees, • D: objects in a drift orbit, • L1: objects in a libration orbit around the Eastern stable point (longitude 75 degrees East), • L2: objects in a libration orbit around the Western stable point (longitude 105 degrees West), • L3: objects in a libration orbit around both stable points. All objects are selected from ESA’s DISCOS Database according to the following criteria: • eccentricity smaller than 0.2 • mean motion between 0.9 and 1.1 revolution per sidereal day, corresponding approximately to a semi-major axis between 42164-2500 and 42164+3150 km. • inclination lower than 30 degrees The basic source of information are the NASA Two-Line Elements (TLE). The DISCOS Database is up- dated at regular intervals by ESOC’s Space Debris Office (on average 1 TLE per week and per object is stored). The accuracy of TLE is limited. At the geostationary altitude, only objects larger than about 1 m in size are tracked on a regular basis. The main information given by this catalogue is the classification of the objects according to their type of motion. It should be noted that also some of the derived param- eters like libration period and libration amplitude may sometimes have a limited accuracy. For further information about the method of classification please refer to Classification of geostationary objects, (Ref. 1). This document contains three tables: • Table 1 contains objects with recently updated orbital elements. They are ordered according to their type of motion and some orbital information is given. • Table 2 contains objects for which there were no TLEs available during the last 6 months. The orbital data is provided by Vladimir Agapov, Keldysh Institute for Applied Mathematics, Moscow (KIAM). • Table 3 contains all the objects the status of which cannot be determined by our software. The main reason for the difficulty to classify an object is that there are not enough TLEs available or that the status has recently changed (satellite newly launched or recently manoeuvred). In order to find a specific object in one of the three tables, there is a list of all objects in ascending order of their COSPAR identification in Chapter 2. 2 LIST OF GEOSYNCHRONOUS OBJECTS 6 2 List of geosynchronous objects All the catalogued objects near the geostationary ring are listed here. They are ordered according to their COSPAR designation. The status of these objects (controlled, drifting, libration), the table in which they are classified and a reference number are also given. Column 1: COSPAR designation. Column 2: Object’s common name. Column 3: Number of the Table in which the object is classified: • Table 1: objects with updated TLEs. • Table 2: objects with orbital data by KIAM or without any orbital data. • Table 3: status is indeterminate. Column 4: The status of the object: • C1: objects under longitude and inclination control (E-W as well as N-S control), • C2: objects under longitude control (only E-W control), • C: objects under control (source: KIAM - no TLEs available). • D: objects in a drift orbit, • L1: objects in a libration orbit around the Eastern stable point (longitude 75 degrees East), • L2: objects in a libration orbit around the Western stable point (longitude 105 degrees West), • L3: objects in a libration orbit around both stable points. • Ind: the status could not be determined. • U: uncontrolled objects (source: KIAM - no TLEs available). Column 5: A reference number to find the object in its table. Please note, that objects in tables 4.7 (Unidentified objects) and 4.9 (Uncontrolled uncatalogued objects) are not included in this list. 2 LIST OF GEOSYNCHRONOUS OBJECTS 7 COSPAR NAME TABLE STATUS No 64047A Syncom 3 1. D 395. 65028A Intelsat I F-1 1. L2 24. 66053A GGTS 1 1. D 511. 66053B IDCSP 1 1. D 509. 66053C IDCSP 2 1. D 507. 66053D IDCSP 3 1. D 504. 66053E IDCSP 4 1. D 501. 66053F IDCSP 5 1. D 498. 66053G IDCSP 6 1. D 495. 66053H IDCSP 7 1. D 493. 66053J Titan IIIC stage 3 (Transtage) 1. D 491. 66110A ATS 1 1. D 398. 67001A Intelsat II F-2 1. D 396. 67003A IDCSP 8 1. D 515. 67003B IDCSP 9 1. D 514. 67003C IDCSP 10 1. D 513. 67003D IDCSP 11 1. D 512. 67003E IDCSP 12 1. D 510. 67003F IDCSP 13 1. D 503. 67003G IDCSP 14 1. D 500. 67003H IDCSP 15 1. D 496. 67026A Intelsat II F-3 1. L1 101. 67066A IDCSP 16 1. D 522. 67066B IDCSP 17 1. D 521. 67066C IDCSP 18 1. D 520. 67066D IDCSP 19 1. D 519. 67066E LES 5 1. D 518. 67066F DODGE 1 1. D 517. 67066G Titan IIIC stage 3 (Transtage) 1. D 516. 67094A Intelsat II F-4 1. L2 28. 67111A ATS 3 1. C2 64. 68050A OPS 9341 (IDSCS 20) 1. D 508. 68050B OPS 9342 (IDSCS 21) 1. D 506. 68050C OPS 9343 (IDSCS 22) 1. D 505. 68050D OPS 9344 (IDSCS 23) 1. D 502. 68050E OPS 9345 (IDSCS 24) 1. D 499. 68050F OPS 9346 (IDSCS 25) 1. D 497. 68050G OPS 9347 (IDSCS 26) 1. D 494. 68050H OPS 9348 (IDSCS 27) 1. D 492. 68050J Titan IIIC stage 3 (Transtage) 1. D 490. 68063A OPS 2222 (CANYON 1) 2. D1 69. 68063B Atlas SLV-3A stage 2 (Agena D) 2. D1 9. 68081A OV2 5 1. D 465. 68081D LES 6 1. L2 22. 68081E Titan IIIC stage 3 (Transtage) 1. D 463. 68081G LES 6 operational debris 1. D 439. 68081H LES 6 operational debris 1. D 468. 68081J Transtage 5 debris 1. D 431. 68081K Transtage 5 debris 1. D 472. 68081L Transtage 5 debris 1. D 469. 68081M Transtage 5 debris 1. D 424. 68081N Transtage 5 debris 1. D 433. 68081P Transtage 5 debris 1. D 459.
Recommended publications
  • AMC-14 MO Final.Qxp 2/29/2008 1:15 PM Page 1
    AMC-14 MO final.qxp 2/29/2008 1:15 PM Page 1 THE VEHICLE THE SATELLITE PROTON HISTORY PROTON www.ilslaunch.com Lead designer was Vladimir Chelomei, DESCRIPTION who designed it with the intention of creating a powerful rocket for both TOTAL HEIGHT military payloads and as a high- 56.2 m (184 ft) performance ICBM. The program GROSS LIFTOFF was changed, and the rocket WEIGHT was developed exclusively for 691,272 kg launching spacecraft. (1,523,565 lbm) First named UR-500, but PROPELLANT UDMH and N O adopted the name 2 4 “Proton,” which also was INITIAL LAUNCH the name of the first July 16, 1965 three payloads Proton-1 Spacecraft launched. PAYLOAD FAIRINGS Proton launched Russian There are multiple payload fair- ing designs presently qualified for interplanetary missions to flight, including standard commer- the Moon, Venus, Mars, and cial payload fairings developed specif- Halley’s Comet. ically to meet the needs of our Western customers. Proton launched the Salyut space stations, the Mir BREEZE M UPPER STAGE SATELLITE OPERATOR core segment and both The Breeze M is powered by one pump-fed gim- SES AMERICOM baled main engine that develops thrust of 19.6 kN the Zarya and Zvezda www.ses-americom.com (4,400 lbf). The Breeze M is composed of a central core modules for today’s and a jettisonable additional propellant tank. Inert mass of the SATELLITE MANUFACTURER International Space stage at liftoff is approximately 2,370 kg (5,225 lbm). The quan- Lockheed Martin Commercial Space Systems Station. tity of propellant carried is dependent on specific mission require- www.lmcommercialspace.com ments and is varied to maximize mission performance.
    [Show full text]
  • Satellite Systems
    Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian.
    [Show full text]
  • 1. INTRODUCTION 2. EASY INSTALLATION GUIDE 8. Explain How to Download S/W by USB and How to Upload and Download 9. HOW to DOWNLO
    1. INTRODUCTION Overview…………………………………………………………………………..………………...……... 2 Main Features……………………………………………………………………………... ...………... ....4 2. EASY INSTALLATION GUIDE...…………...…………...…………...…………...……….. .. 3 3. SAFETY Instructions.………………………………………………………………………… …6 4. CHECK POINTS BEFORE USE……………………………………………………………… 7 Accessories Satellite Dish 5. CONTROLS/FUNCTIONS……………………………………………………………………….8 Front/Rear panel Remote controller Front Display 6. EQUIPMENT CONNECTION……………………………………………………………....… 11 CONNECTION WITH ANTENNA / TV SET / A/V SYSTEM 7. OPERATION…………………………………………………………………….………………….. 12 Getting Started System Settings Edit Channels EPG CAM(COMMON INTERFACE MODULE) Only CAS(CONDITIONAL ACCESS SYSTEM) USB Menu PVR Menu 8. Explain how to download S/W by USB and how to upload and download channels by USB……………………….……………………………………….…………………31 9. HOW TO DOWNLOAD SOFTWARE FROM PC TO RECEIVER…………….…32 10. Trouble Shooting……………………….……………………………………….………………34 11. Specifications…………………………………………………………………….……………….35 12. Glossary of Terms……………………………………………………………….……………...37 1 INTRODUCTION OVERVIEW This combo receiver is designed for using both free-to-air and encrypted channel reception. Enjoy the rich choice of more than 20,000 different channels, broadcasting a large range of culture, sports, cinema, news, events, etc. This receiver is a technical masterpiece, assembled with the highest qualified electronic parts. MAIN FEATURES • High Definition Tuners : DVB-S/DVB-S2 Satellite & DVB-T Terrestrial Compliant • DVB-S/DVB-S2 Satellite Compliant(MPEG-II/MPEG-IV/H.264)
    [Show full text]
  • From Strength to Strength Worldreginfo - 24C738cf-4419-4596-B904-D98a652df72b 2011 SES Astra and SES World Skies Become SES
    SES Annual report 2013 Annual Annual report 2013 From strength to strength WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2011 SES Astra and SES World Skies become SES 2010 2009 3rd orbital position Investment in O3b Networks over Europe 2008 2006 SES combines Americom & Coverage of 99% of New Skies into SES World Skies the world’s population 2005 2004 SES acquires New Skies Satellites Launch of HDTV 2001 Acquisition of GE Americom 1999 First Ka-Band payload in orbit 1998 Astra reaches 70m households in Europe Second orbital slot: 28.2° East 1996 SES lists on Luxembourg Stock Exchange First SES launch on Proton: ASTRA 1F Digital TV launch 1995 ASTRA 1E launch 1994 ASTRA 1D launch 1993 ASTRA 1C launch 1991 ASTRA 1B launch 1990 World’s first satellite co-location Astra reach: 16.6 million households in Europe 1989 Start of operations @ 19.2° East 1988 ASTRA 1A launches on board Ariane 4 1st satellite optimised for DTH 1987 Satellite control facility (SCF) operational 1985 SES establishes in Luxembourg Europe’s first private satellite operator WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2012 First emergency.lu deployment SES unveils Sat>IP 2013 SES reach: 291 million TV households worldwide SES maiden launch with SpaceX More than 6,200 TV channels 1,800 in HD 2010 First Ultra HD demo channel in HEVC 3rd orbital position over Europe 25 years in space With the very first SES satellite, ASTRA 1A, launched on December 11 1988, SES celebrated 25 years in space in 2013. Since then, the company has grown from a single satellite/one product/one-market business (direct-to-home satellite television in Europe) into a truly global operation.
    [Show full text]
  • Classification of Geosynchronous Objects Issue 12
    EUROPEAN SPACE AGENCY EUROPEAN SPACE OPERATIONS CENTRE GROUND SYSTEMS ENGINEERING DEPARTMENT Space Debris Office CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS ISSUE 12 by R. Choc and R. Jehn Produced with the DISCOS Database February 2010 ESOC Robert-Bosch-Str. 5, 64293 Darmstadt, Germany 3 Abstract This is a status report on geosynchronous objects as of the end of 2009. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring (here defined as orbits with mean motion between 0.9 and 1.1 revolutions per day, eccentricity smaller than 0.2 and inclination below 30 deg) is analysed. From 1161 objects for which orbital data are available, 391 are controlled inside their longitude slots, 594 are drifting above, below or through GEO, 169 are in a libration orbit and 7 whose status could not be determined. Furthermore, there are 77 uncontrolled objects without orbital data (of which 66 have not been catalogued). Thus the total number of known objects in the geostationary region is 1238. During 2009 twenty-one spacecraft reached end-of-life. Eleven of them were reorbited following the IADC recommendations, one spacecraft was reorbited with a perigee of 225 km - it is not yet clear if it will enter the 200-km protected zone around GEO or not -, six spacecraft were reorbited too low and three spacecraft did not or could not make any reorbiting manouevre at all and are now librating inside the geostationary ring. If you detect any error or if you have any comment or question please contact R¨udiger Jehn European Space Operations Center Robert-Bosch-Str.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • 1 Before the Federal Communications Commission Washington, D.C
    Federal Communications Commission DA 06-4 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) AFRISPACE, INC. ) IB File No. SAT-LOA-20050311- ) 00061 Application for Authority to Launch and ) Operate a Replacement Satellite, AfriStar-2, ) Call Sign: S2666 at 21° E.L. and to Co-locate It with AfriStar-1 ) ) ORDER AND AUTHORIZATION Adopted: January 03, 2006 Released: January 03, 2006 By the Chief, International Bureau: I. INTRODUCTION 1. By this Order, we authorize AfriSpace, Inc. (AfriSpace)1 to launch and operate the AfriStar-2 satellite in the geostationary-satellite orbit (GSO) at the 21° East Longitude (E.L.) orbital location. AfriStar-2 is controlled from the United States and is capable of providing Broadcasting-Satellite Service (sound) (BSS (sound)) to Africa and Europe on a non-common carrier basis. We authorize AfriStar-2 to operate downlinks within 2.6 megahertz of spectrum in each polarization with a center frequency of 1479.5 MHz. We also authorize AfriSpace to utilize feeder links and telecommand links for the AfriStar-2 satellite in the 7025-7075 MHz frequency band, to operate its telemetry link for the AfriStar-2 satellite at a center frequency of 1491.7 MHz, and to co-locate the AfriStar-2 satellite at 21° E.L. with the AfriStar-1 satellite currently in orbit. In addition, we grant AfriSpace a waiver of the Commission’s rule regarding transponder saturation flux densities for the AfriStar-2 satellite.2 These authorizations give AfriSpace the capability to continue to provide service to existing customers despite unanticipated technical difficulties experienced by the AfriStar-1 satellite and to serve new customers, conditioned on AfriSpace complying with the applicable laws, regulations, rules, and licensing procedures of any countries it proposes to serve.
    [Show full text]
  • Licence 23 118.7 W Ka FSS Part I
    Licence 23 118.7oW Ka FSS Part I - Executive Summary ABRIDGED 1 15 November 2006 Licence 23 – Part I Executive Summary - Outline Vision Benefits to Canadians 129oW 12 GHz BSS - Ciel-2 Program Success Shareholders & Management Canadian Market Overview Orbital Resource Landscape Ciel’s Licence Targets for the Call Ciel’s Vision of the Spectrum to Serve Canadian Satellite Users Operations Plan to Deploy Multiple Spacecraft Programs Licence 23 – 118.7oW Ka FSS - Ciel-3 Program ABRIDGED 2 15 November 2006 Licence 23 – Part I Vision Continue to grow Ciel, Canada’s only established alternative satellite operator by: Enabling: Ka Expansion capacity to the established FSS Ext. 12 17 Ku Canadian cable networks & Direct-to- GHz GHz FSS BSS BSS Home (DTH) platforms Broadband Launch of a new IP Media platform for Internet Broadcast Broadcast Access Canadian telco/mobile networks & DTH Distribution Distribution – Broadcast DTH Cable & DTH Distribution – Broadband Internet access platform for IPTV & DTH underserved communities across Canada Securing Canadian access to the remaining orbital positions through the launch of new wholesale platforms Building on the success of the 129oW 12 GHz BSS program Emerging Satellite Platform Enabling a Full Range of BSS and FSS Services ABRIDGED 3 15 November 2006 Licence 23 – Part I Benefits to Canadians Benefit Description Expansion Capacity for Canadian HDTV capacity for Canadian Broadcasters & BDUs Satellite Users Broadband capacity for underserved Canadian communities Canada First - Commitment to reserve a majority
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • Historical Dictionary of Air Intelligence
    Historical Dictionaries of Intelligence and Counterintelligence Jon Woronoff, Series Editor 1. British Intelligence, by Nigel West, 2005. 2. United States Intelligence, by Michael A. Turner, 2006. 3. Israeli Intelligence, by Ephraim Kahana, 2006. 4. International Intelligence, by Nigel West, 2006. 5. Russian and Soviet Intelligence, by Robert W. Pringle, 2006. 6. Cold War Counterintelligence, by Nigel West, 2007. 7. World War II Intelligence, by Nigel West, 2008. 8. Sexspionage, by Nigel West, 2009. 9. Air Intelligence, by Glenmore S. Trenear-Harvey, 2009. Historical Dictionary of Air Intelligence Glenmore S. Trenear-Harvey Historical Dictionaries of Intelligence and Counterintelligence, No. 9 The Scarecrow Press, Inc. Lanham, Maryland • Toronto • Plymouth, UK 2009 SCARECROW PRESS, INC. Published in the United States of America by Scarecrow Press, Inc. A wholly owned subsidiary of The Rowman & Littlefield Publishing Group, Inc. 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706 www.scarecrowpress.com Estover Road Plymouth PL6 7PY United Kingdom Copyright © 2009 by Glenmore S. Trenear-Harvey All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. British Library Cataloguing in Publication Information Available Library of Congress Cataloging-in-Publication Data Trenear-Harvey, Glenmore S., 1940– Historical dictionary of air intelligence / Glenmore S. Trenear-Harvey. p. cm. — (Historical dictionaries of intelligence and counterintelligence ; no. 9) Includes bibliographical references. ISBN-13: 978-0-8108-5982-1 (cloth : alk. paper) ISBN-10: 0-8108-5982-3 (cloth : alk. paper) ISBN-13: 978-0-8108-6294-4 (eBook) ISBN-10: 0-8108-6294-8 (eBook) 1.
    [Show full text]