ASTR 1010 Laboratory Introduction to Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

ASTR 1010 Laboratory Introduction to Astronomy DEPARTMENT OF ASTROPHYSICAL AND PLANETARY SCIENCES ASTR 1010 Laboratory Introduction to Astronomy Fall 2011 University of Colorado at Boulder Acknowledgements The 1010 laboratory manual originated in the experiments compiled and developed over many years by Dr. Roy Garstang for the APAS 121/122 labs. In 1987 Dr. Garstang published the Sommers-Bausch Observatory Manual of General Astronomy Projects. A number of his 88 exercises were adapted for use in the new APAS 101 (now ASTR 1010) course that was initiated in 1988. Since that time the manual has undergone considerable evolution and expansion under the guidance of faculty lab instructors, including Drs. Raul Stern, Scott Roberston, Larry Esposito, John Stocke, J. McKim Malville, Ted Snow, Fran Bagenal, Nick Schneider, Bob Pappalardo, Brian Hynek, Doug Duncan, and Seth Hornstein. The Kepler’s Laws simulator is part of the Planetary Orbit Simulator Module of the Nebraska Astronomy Applet Project. Supporting materials can be found at http://astro.unl.edu. Virtually every teaching assistant who has conducted a lab in the APAS/APS/ ASTR 121/122/101/1010/1030 series has contributed to this manual by identifying areas of difficulty, making suggestions for improvements, or providing ideas that germinated into new experiments. Some recent major contributors from previous quarters include Mary Urquhart, Travis Rector, Kelsey Johnson, Amanda Sickafoose, Cori Krauss, John Weiss, James Roberts, Margaret Mitter, Colin Wallace, Joseph Parker, and Seth Jacobson. Keith Gleason Seth Hornstein August 2011 Front Cover: Comet Hale-Bopp over the Flatirons courtesy Niescja Turner and Carter Emmart Back Cover: CCD Mosaic of the Full Moon contributed by Keith Gleason ASTR 1010 Astronomy Lab 3 3 TABLE OF CONTENTS GENERAL INFORMATION ................................................................................ 4 CELESTIAL CALENDAR Fall 2011 ..............................................................................10 UNITS AND CONVERSIONS .........................................................................................13 SCIENTIFIC NOTATION ................................................................................................18 MATH REVIEW ...............................................................................................................21 ASTRONOMICAL WEBSITES .......................................................................................26 DAYTIME LABORATORY EXPERIMENTS .................................................. 27 PRELAB QUESTIONS .....................................................................................................29 THE COLORADO MODEL SOLAR SYSTEM ..............................................................31 MOTIONS OF THE SUN .................................................................................................41 MOTIONS OF THE MOON ✩ .........................................................................................47 THE ERATOSTHENES CHALLENGE ...........................................................................55 KEPLER'S LAWS .............................................................................................................63 COLLISIONS, SLEDGEHAMMERS, & IMPACT CRATERS .....................................67 TELESCOPE OPTICS ......................................................................................................81 SPECTROSCOPY I – Light & Color ✩ ............................................................................93 SPECTROSCOPY II – Spectral Barcodes ✩ ..................................................................101 THE SEASONS ...............................................................................................................109 DETECTING EXTRASOLAR PLANETS .....................................................................119 NIGHTTIME OBSERVING PROJECTS ........................................................ 125 CONSTELLATION AND BRIGHT STAR IDENTIFICATION ★ ...............................127 TELESCOPE OBSERVING ★ .......................................................................................131 OBSERVING LUNAR FEATURES ★ ..........................................................................139 ★ - Clear skies are required for this exercise ✩ - Clear skies are needed for a portion of the exercise 4 ASTR 1010 Astronomy Lab 4 General Information GENERAL INFORMATION You must enroll for both the lecture section and a laboratory section. Your lecture section will usually be held in the classroom in Duane Physics Building (just south of Folsom Stadium). An occasional lecture may be held instead at the Fiske Planetarium (at the intersection of Regent Drive and Kittridge Loop; see map below). Your laboratory section will meet once per week during the daytime in Room S175 at Sommers-Bausch Observatory (just east of the Fiske Planetarium). Follow the walkway around the south side of Fiske and up the hill to the Observatory. You will also have nighttime observing sessions using the Sommers-Bausch Observatory telescopes to view and study the constellations, the moon, planets, stars, and other celestial objects. Folsom Engineering Street Center Folsom Events Stadium Colorado Center Avenue Business DUANE PHYSICS Regent Colorado Scale (CLASSROOMS) Drive Model Solar System GAMOW TOWER CDSS (APAS OFFICE) SOMMERS-BAUSCH OBSERVATORY JILA Tower Hallet FISKE Willard PLANETARIUM 18th Street Kittridge Regent MATERIALS The following materials are needed: • ASTR 1010 Astronomy Lab Manual, Fall 2011 (this booklet), available from the CU Bookstore. Replacement copies are available in Acrobat PDF format downloadable from the SBO website: http://cosmos.colorado.edu/sbo/manuals/astr1010/astr1010.html ASTR 1010 Astronomy Lab 5 General Information5 • Calculator. All students should have access to a scientific calculator that can perform scientific notation, exponentials, and trig functions (sines, cosines, etc.). • A 3-ring binder to hold this lab manual, your lab notes, and lab write-ups. • Highly recommended: a planisphere, or rotating star map (available from Fiske Planetarium, the CU bookstore, other bookshops, and on line). THE LABORATORY SECTIONS Your laboratory session will meet for 1 hour and 50 minutes in the daytime once each week in the Sommers-Bausch Observatory (SBO), Classroom S175. Each lab section will be run by a lab instructor, who will also grade your lab exercises and assign you scores for the work you hand in. Your lab instructor will give you organizational details and information about grading at the first lab session. The lab exercises do not exactly follow the lectures or the textbook. We concentrate on how we know what we know; thus we spend more time making and interpreting observations. Modern astronomers, in practice, spend almost no time at the eyepiece of a telescope. They work with photographs, satellite data, computer images, or computer simulations. In our laboratory we will explore both the traditional and more modern techniques. You are expected to attend all lab sessions. The lab exercises can only be done using the equipment and facilities in the SBO classroom. Therefore, if you do not attend the daytime lab sessions, you cannot complete those experiments and cannot get credit. The observational exercises can only be done at night using the Observatory telescopes. If you do not attend the nighttime sessions, you cannot complete these either. NIGHTTIME OBSERVING You are expected to attend nighttime observing labs. These are held in the evenings approximately every second or third week at the Sommers-Bausch Observatory, Mondays through Thursdays. Your lab instructor will tell you the dates and times. Write the dates and times of the nighttime sessions on your calendar so you do not miss them. The telescopes are not in a heated area, so dress warmly for the night observing sessions! If you have a job that conflicts with the nighttime sessions, it is your responsibility to make arrangements with your instructor to attend at different times. 6 ASTR 1010 Astronomy Lab 6 General Information THE LABORATORY WRITE-UPS You are expected to turn in lab assignments of collegiate quality. This means that they must be neat and easy to read, well-organized, and demonstrating a mastery of the English language (grammar and spelling), as well as mastery of the subject matter. Your presentation of neat, well-organized, readable work will help you prepare for other courses and jobs where appearance certainly counts (and it makes your work much easier to grade!). By requiring you to explain your work clearly, we can ensure that you fully understand it. If you find writing clear explanations to be difficult, it could mean that you do not understand the concepts well. Your lab instructor can help you in this area; simply ask his or her assistance. Some of the labs are designed to be written up as full reports. A few are of the "fill in the blank" type. In either case, please use the following guidelines: 1. Write the title and date at the top of the first page of the exercise. 2. Write an introductory sentence or two describing what you are doing in that exercise. For instance: "Today we used the heliostat to observe and draw sunspots." 3. Number the parts of your lab the same as the numbers in the lab manual: I.1, I.2, II.1, II.2, etc. This is particularly useful to the instructor in finding your responses to the questions. 4. Put titles on your figures, and label the columns in your tables. 5. Put units after your numerical answers. An answer
Recommended publications
  • Craters in Shadow
    Section 3: Craters in Shadow Kepler Copernicus Eratosthenes Seen it Clavius Seen it Section 3: Craters in Shadow Visibility: A pair of binoculars is the minimum requirement to see these features. When: Look for them when the terminator’s close by, typically a day before last quarter. Not all craters are best seen when the Sun is high in the lunar sky - in fact most aren’t! If craters aren’t par- ticularly bright or dark, they tend to disappear into the background when the Moon’s phase is close to full. These craters are best seen when the ‘terminator’ is nearby, or when the Sun is low in the lunar sky as seen from the crater. This causes oblique lighting to fall on the crater and create exaggerated shadows. Ultimately, this makes the crater look more dramatic and easier to see. We’ll use this effect for the next section on lunar mountains, but before we do, there are a couple of craters that we’d like to bring to your attention. Actually, the Moon is covered with a whole host of wonderful craters that look amazing when the lighting is oblique. During the summer and into the early autumn, it’s the later phases of the Moon are best positioned in the sky - the phases following full Moon. Unfortunately, this means viewing in the early hours but don’t worry as we’ve kept things simple. We just want to give you a taste of what a shadowed crater looks like for this marathon, so the going here is really pretty easy! First, locate the two craters Kepler and Copernicus which were marathon targets pointed out in Section 2.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Warfare in a Fragile World: Military Impact on the Human Environment
    Recent Slprt•• books World Armaments and Disarmament: SIPRI Yearbook 1979 World Armaments and Disarmament: SIPRI Yearbooks 1968-1979, Cumulative Index Nuclear Energy and Nuclear Weapon Proliferation Other related •• 8lprt books Ecological Consequences of the Second Ihdochina War Weapons of Mass Destruction and the Environment Publish~d on behalf of SIPRI by Taylor & Francis Ltd 10-14 Macklin Street London WC2B 5NF Distributed in the USA by Crane, Russak & Company Inc 3 East 44th Street New York NY 10017 USA and in Scandinavia by Almqvist & WikseH International PO Box 62 S-101 20 Stockholm Sweden For a complete list of SIPRI publications write to SIPRI Sveavagen 166 , S-113 46 Stockholm Sweden Stoekholol International Peace Research Institute Warfare in a Fragile World Military Impact onthe Human Environment Stockholm International Peace Research Institute SIPRI is an independent institute for research into problems of peace and conflict, especially those of disarmament and arms regulation. It was established in 1966 to commemorate Sweden's 150 years of unbroken peace. The Institute is financed by the Swedish Parliament. The staff, the Governing Board and the Scientific Council are international. As a consultative body, the Scientific Council is not responsible for the views expressed in the publications of the Institute. Governing Board Dr Rolf Bjornerstedt, Chairman (Sweden) Professor Robert Neild, Vice-Chairman (United Kingdom) Mr Tim Greve (Norway) Academician Ivan M£ilek (Czechoslovakia) Professor Leo Mates (Yugoslavia) Professor
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • Icebreaker: a Lunar South Pole Exploring Robot Cmu-Ri-Tr-97-22
    ICEBREAKER: A LUNAR SOUTH POLE EXPLORING ROBOT CMU-RI-TR-97-22 Matthew C. Deans Alex D. Foessel Gregory A. Fries Diana LaBelle N. Keith Lay Stewart Moorehead Ben Shamah Kimberly J. Shillcutt Professor: Dr. William Whittaker The Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 Spring 1996-97 Executive Summary Icebreaker: A Lunar South Pole Exploring Robot Due to the low angles of sunlight at the lunar poles, craters and other depressions in the polar regions can contain areas which are in permanent darkness and are at cryogenic temperatures. Many scientists have theorized that these cold traps could contain large quantities of frozen volatiles such as water and carbon dioxide which have been deposited over billions of years by comets, meteors and solar wind. Recent bistatic radar data from the Clementine mission has yielded results consistent with water ice at the South Pole of the Moon however Earth based observations from the Arecibo Radar Observatory indicate that ice may not exist. Due to the controversy surrounding orbital and Earth based observations, the only way to definitively answer the question of whether ice exists on the Lunar South Pole is in situ analysis. The discovery of water ice and other volatiles on the Moon has many important benefits. First, this would provide a source of rocket fuel which could be used to power rockets to Earth, Mars or beyond, avoiding the high cost of Earth based launches. Secondly, water and carbon dioxide along with nitrogen from ammonia form the essential elements for life and could be used to help support human colonies on the Moon.
    [Show full text]
  • Apollo 12 Photography Index
    %uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII.
    [Show full text]
  • Slaves, Sex, and Transgression in Greek Old Comedy
    Slaves, Sex, and Transgression in Greek Old Comedy By Daniel Christopher Walin A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Classics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Mark Griffith, Chair Professor Donald J. Mastronarde Professor Kathleen McCarthy Professor Emily Mackil Spring 2012 1 Abstract Slaves, Sex, and Transgression in Greek Old Comedy by Daniel Christopher Walin Doctor of Philosophy in Classics University of California, Berkeley Professor Mark Griffith, Chair This dissertation examines the often surprising role of the slave characters of Greek Old Comedy in sexual humor, building on work I began in my 2009 Classical Quarterly article ("An Aristophanic Slave: Peace 819–1126"). The slave characters of New and Roman comedy have long been the subject of productive scholarly interest; slave characters in Old Comedy, by contrast, have received relatively little attention (the sole extensive study being Stefanis 1980). Yet a closer look at the ancestors of the later, more familiar comic slaves offers new perspectives on Greek attitudes toward sex and social status, as well as what an Athenian audience expected from and enjoyed in Old Comedy. Moreover, my arguments about how to read several passages involving slave characters, if accepted, will have larger implications for our interpretation of individual plays. The first chapter sets the stage for the discussion of "sexually presumptive" slave characters by treating the idea of sexual relations between slaves and free women in Greek literature generally and Old Comedy in particular. I first examine the various (non-comic) treatments of this theme in Greek historiography, then its exploitation for comic effect in the fifth mimiamb of Herodas and in Machon's Chreiai.
    [Show full text]