Icebreaker: a Lunar South Pole Exploring Robot Cmu-Ri-Tr-97-22

Total Page:16

File Type:pdf, Size:1020Kb

Icebreaker: a Lunar South Pole Exploring Robot Cmu-Ri-Tr-97-22 ICEBREAKER: A LUNAR SOUTH POLE EXPLORING ROBOT CMU-RI-TR-97-22 Matthew C. Deans Alex D. Foessel Gregory A. Fries Diana LaBelle N. Keith Lay Stewart Moorehead Ben Shamah Kimberly J. Shillcutt Professor: Dr. William Whittaker The Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 Spring 1996-97 Executive Summary Icebreaker: A Lunar South Pole Exploring Robot Due to the low angles of sunlight at the lunar poles, craters and other depressions in the polar regions can contain areas which are in permanent darkness and are at cryogenic temperatures. Many scientists have theorized that these cold traps could contain large quantities of frozen volatiles such as water and carbon dioxide which have been deposited over billions of years by comets, meteors and solar wind. Recent bistatic radar data from the Clementine mission has yielded results consistent with water ice at the South Pole of the Moon however Earth based observations from the Arecibo Radar Observatory indicate that ice may not exist. Due to the controversy surrounding orbital and Earth based observations, the only way to definitively answer the question of whether ice exists on the Lunar South Pole is in situ analysis. The discovery of water ice and other volatiles on the Moon has many important benefits. First, this would provide a source of rocket fuel which could be used to power rockets to Earth, Mars or beyond, avoiding the high cost of Earth based launches. Secondly, water and carbon dioxide along with nitrogen from ammonia form the essential elements for life and could be used to help support human colonies on the Moon. Thirdly, since these volatiles have been accumulating for billions of years they can provide valu- able information about the history of the Moon and cometary impacts. The discovery of volatiles on the Moon would radically change our outlook on the solar system and our ability to explore it. A surface mission is the only way in which volatile deposits and their composition can be verified. Such a mission would have to survive the Lunar South Pole environment which is significantly different than at the equator. A robot would have to be able to operate in cryogenic temperatures and complete darkness while in the cold traps. However the surface temperature in the sun is quite mild compared to the baking heat of the equatorial regions. Communications with Earth are only possible for two weeks in a month, furthermore the Earth’s low elevation allows communications to be obstructed by lunar terrain. The Sun is also very low on the horizon (which causes long shadows). While this low Sun angle creates the cold traps, it also allows for regions with almost permanent light - ideal for charging batteries and travel between cold traps. Further, with the Sun on the horizon, the shaded side of the robot as well as its top offer excellent surfaces for radiation of excess heat since they point to the black of space. Also solar pan- els do not have to track the Sun as it moves across the sky since it is always on the horizon. In general the pole is an environment which is more favorable to robots than other regions of the Moon. Icebreaker is a robot design capable of finding ice at the Lunar South Pole. The goals of its mission are to confirm the presence of ice and map its local distribution, determine composition of the ice, determine the existence and nature of stratigraphy and finally to measure the composition of ice to a depth of one meter below the surface. To do this Icebreaker will visit at least two cold traps and take ten samples from each during a two week period during which communications with Earth are present. An artists conception of Icebreaker is shown above. It is a four wheeled, all wheel drive robot with drive motors mounted inside the wheels. The front wheels of Icebreaker are Ackerman steered and the rear wheels are connected to the chassis through a bogie mechanism. Dust, kicked up by the wheels, is pre- vented from collecting on the solar panels and optics by fenders. Due to mass and volume constraints in the Delta II 7925H rocket fairing, Icebreaker will be a combined lander/rover vehicle. This class of vehicles combines the functions of a traditional landing craft and rover into one vehicle. Thruster and fuel tanks are an integral part of Icebreaker and allow it to touchdown on its wheels with very little energy and no disposable shock absorbing structure. Thus Icebreaker will land on the Moon and then drive off in its quest for volatiles. An inertial measurement unit (IMU) and a pair of star tracker cameras are used to fix the position of Ice- breaker on the surface of the Moon, as well as during the flight through space. Radar altimeter and belly camera are used to control the landing. A panospheric camera, mounted on top of the solar panel is used to detect the horizon, as well as to return images to Earth. A pair of forward looking, horizontal baseline ste- reo cameras return stereo images to a human teleoperator. Strobe lights will be used when ambient light is insufficient for the cameras. A radar sensor is used to detect obstacles and permit the robot to travel auton- omously. To meet the mission goals of determining the composition of volatiles and determining stratigraphy, Ice- breaker has a set of scientific instruments. An infrared camera, tuned to water ice, will be used to locate possible deposits of volatiles. After the robot closes on a potential deposit, a cryogenic sampling drill is used to collect a sample. This drill is capable of collecting samples up to a depth of 1m. The drill will then deposit the sample into a Regolith Evolved Gas Analyzer (REGA). The REGA will heat the sample, and using a mass spectrometer, determine the chemical and isotopic composition of the sample. Stratigraphy will be determined by taking and analyzing samples from various known depths. Icebreaker will return scientific data and images to the Earth over a 10kbps, S-Band radio link. A switched array of limited aperture, high gain antennas, mounted on top of Icebreaker will be used to send and receive data to Earth through NASA’s Deep Space Network. As a backup, a small omnidirectional low gain antenna is also included. While Icebreaker does not have to deal with the extreme heat encountered at the equatorial regions of the Moon, the cryogenic temperatures inside the cold traps make heating an important issue. The main body of Icebreaker will be temperature controlled to preserve the computers, scientific instruments and batter- ies. This will be done through a series of heat pipes and insulation. Small quantities of RHU’s will also be used to generate heat, particularly in isolated regions such as the video cameras. Power will be generated using solar panels. A solar panel fin is mounted from bow to stern of Icebreaker. This fin is fixed and thus cannot be pointed towards the Sun. Batteries will be used to store electricity, both for journeys into cold traps and for driving when the Sun is not illuminating Icebreaker’s solar panels. The possibility of finding ice deposits within regions of permanent dark adjacent to regions of permanent light makes the Lunar South Pole so valuable to humanity that it warrants a mission of exploration. Ice- breaker provides a viable design to successfully complete such a mission. The design rests on the firm foundations of previous NASA research programs. It also makes contributions to advance the current state of the art. The combined lander/rover concept allows current rockets to deliver large scientific payloads to the planets. The use of radar for terrain mapping provides immunity to dust and lighting conditions which could make it the next standard in sensing technology for planetary rovers. i Table of Contents Chapter: 1 Introduction ................................................................................1 1.1 Motivation........................................................................................................ 1 1.2 Objectives ........................................................................................................ 2 1.3 Mission Objectives .......................................................................................... 2 Chapter: 2 Lunar South Pole Environment ...................................................3 2.1 Sun and Earth Visibility................................................................................... 3 2.2 Terrain.............................................................................................................. 4 2.3 Temperature..................................................................................................... 5 2.4 Atmosphere...................................................................................................... 5 Chapter: 3 Mission Overview .......................................................................7 3.1 Design Overview ............................................................................................. 7 3.2 Landing Site..................................................................................................... 9 Chapter: 4 Mission Operations .....................................................................11 4.1 Initial Test Mode/Shakedown.......................................................................... 11 4.2 Driving............................................................................................................. 12 4.3 Drilling/Scientific Analysis ............................................................................. 13 4.4 Charging
Recommended publications
  • The Surrender Software
    Scientific image rendering for space scenes with the SurRender software Scientific image rendering for space scenes with the SurRender software R. Brochard, J. Lebreton*, C. Robin, K. Kanani, G. Jonniaux, A. Masson, N. Despré, A. Berjaoui Airbus Defence and Space, 31 rue des Cosmonautes, 31402 Toulouse Cedex, France [email protected] *Corresponding Author Abstract The autonomy of spacecrafts can advantageously be enhanced by vision-based navigation (VBN) techniques. Applications range from manoeuvers around Solar System objects and landing on planetary surfaces, to in -orbit servicing or space debris removal, and even ground imaging. The development and validation of VBN algorithms for space exploration missions relies on the availability of physically accurate relevant images. Yet archival data from past missions can rarely serve this purpose and acquiring new data is often costly. Airbus has developed the image rendering software SurRender, which addresses the specific challenges of realistic image simulation with high level of representativeness for space scenes. In this paper we introduce the software SurRender and how its unique capabilities have proved successful for a variety of applications. Images are rendered by raytracing, which implements the physical principles of geometrical light propagation. Images are rendered in physical units using a macroscopic instrument model and scene objects reflectance functions. It is specially optimized for space scenes, with huge distances between objects and scenes up to Solar System size. Raytracing conveniently tackles some important effects for VBN algorithms: image quality, eclipses, secondary illumination, subpixel limb imaging, etc. From a user standpoint, a simulation is easily setup using the available interfaces (MATLAB/Simulink, Python, and more) by specifying the position of the bodies (Sun, planets, satellites, …) over time, complex 3D shapes and material surface properties, before positioning the camera.
    [Show full text]
  • EPSC2012-280 2012 European Planetary Science Congress 2012 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2012
    EPSC Abstracts Vol. 7 EPSC2012-280 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 A Simulation of exosphere of Ceres Ruby Lin Tu (1), Wing-Huen Ip(1,2,3) and Yung-Ching Wang (3) (1) Institute of Space Science, National Central University, Taiwan, (2) Institute of Astronomy, National Central University, Taiwan, (3) Space Science Institute, Macau University Science and Technology, Macau Abstract For the purpose of tracing the ballistic trajectories of water molecules on Ceres’ surface, we have to After Vesta, the NASA Dawn spacecraft will visit the produce a surface temperature map by omitting the largest asteroid Ceres, to carry out in-depth topographic variations and the presence of impact observations of its surface morphology and craters. Our model solves the heat conduction mineralogical composition. We examine different equation by taking account of the energy balance source mechanisms of a possible surface-bounded condition at the surface boundary and the lower exosphere composed of water molecules and other boundary condition (with dT/dz=0) into account. In species. Our preliminary assessment is that solar between the heat diffusion equation is solved by wind interaction and meteoroid impact are not using the Crank-Nicolson finite difference routine adequate because of the large injection speed of the gas at production relative to the surface escape velocity of Ceres. One potential source is a low-level (1) outgassing effect from its subsurface due to thermal sublimation. In this work, the scenario of building up a tenuous exosphere by ballistic transport and the eventual recycling of the water molecules to the polar cold trap is described.
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Warfare in a Fragile World: Military Impact on the Human Environment
    Recent Slprt•• books World Armaments and Disarmament: SIPRI Yearbook 1979 World Armaments and Disarmament: SIPRI Yearbooks 1968-1979, Cumulative Index Nuclear Energy and Nuclear Weapon Proliferation Other related •• 8lprt books Ecological Consequences of the Second Ihdochina War Weapons of Mass Destruction and the Environment Publish~d on behalf of SIPRI by Taylor & Francis Ltd 10-14 Macklin Street London WC2B 5NF Distributed in the USA by Crane, Russak & Company Inc 3 East 44th Street New York NY 10017 USA and in Scandinavia by Almqvist & WikseH International PO Box 62 S-101 20 Stockholm Sweden For a complete list of SIPRI publications write to SIPRI Sveavagen 166 , S-113 46 Stockholm Sweden Stoekholol International Peace Research Institute Warfare in a Fragile World Military Impact onthe Human Environment Stockholm International Peace Research Institute SIPRI is an independent institute for research into problems of peace and conflict, especially those of disarmament and arms regulation. It was established in 1966 to commemorate Sweden's 150 years of unbroken peace. The Institute is financed by the Swedish Parliament. The staff, the Governing Board and the Scientific Council are international. As a consultative body, the Scientific Council is not responsible for the views expressed in the publications of the Institute. Governing Board Dr Rolf Bjornerstedt, Chairman (Sweden) Professor Robert Neild, Vice-Chairman (United Kingdom) Mr Tim Greve (Norway) Academician Ivan M£ilek (Czechoslovakia) Professor Leo Mates (Yugoslavia) Professor
    [Show full text]
  • Planning a Mission to the Lunar South Pole
    Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed.
    [Show full text]
  • Download Complete Volume
    JOURNAL OF THE TRANSACTIONS OF THE - VICTOR I A INSTITUTE. VOL. XXI. SECTION NI;> I FROM SEA. COAST AT A.Sl(A,LA ~ H JERUSAlEM TO THE J,JR~AN IIIC.0 JEHi CH O." t<0~110,n·... lsc"lt3''"'EII -I,,..,;;": C.S. Wlc.Sw,a.~t,n,,,ofl'l,illutin., N. l. Nwri,.wlil,: .l,V,W,,tn,u,, C. l . Crct,rcc,,,,,, J.,,,.,,,.i,,,,..., _ N. 1.:. }Vu.blit.n. Sun.J&/.,)1.,. F. V, £,,1.~1,,,,~. SECTION N'? 2. FRO M T H E. T A.B LE · LANO Of' S ,JUD.EA TOT Mt PLAINS Of'MOA.B ~. oFKtRAH. 8YJEB£L USOUM. TA.SL£ L,.ND or MOAB SECTION N~ 7 !='ROM cuLr o F sun MEAFtTO R eY THE M OUNTAINS o, s 1ttA.1 ro-:-wt: PLAT EAU or TH£ TIH. No rt,h, G. &rcy !Jra..,,,i, t;,e, (F>1.r-i,.t(C11) a.n.d, 5,·'hi.tt. w.:.th. ·m.,,m.flr-OU.4 d.y1<.r f! , • ..,,po.-w,g s,uubto,.,, n,,d.Li,,,... •w,,.-B,:,i,, / S . 8 L j 11flRl20NTALSCALr 11MIL[ S• I INCH. J)y l~o;1nniu,on of th i:J Oommittce (•f the /'o,T,i:sti.1w E :cpluMtivn Fund. JOURNAL OF THE TRANSACTIONS OF ~ht lictoria Jnstitut~, <'lR l!gilosopgital cSotiet~ of ~reat Jritain. EDITED BY THE HONORARY SECRETARY, CAPTAIN FRANCIS W. H. PETRIE, F.G.fS., &c. VOL. XXI. LONDON: (tBublisbell n11 tbe Institute). INDIA: W. THACKER & Co. UNITED STATES: G. T.PUTNAM'S SONS, N.Y_.
    [Show full text]
  • (Unin)Habitable? Runaway Greenhouse
    GEOS 22060/ GEOS 32060 / ASTR 45900 What makes a planet (unin)habitable? Runaway greenhouse Lecture 8 Tuesday 30 April 2019 Logiscs • Homework 1 and Homework 2 are graded • Homework 3 will be issued on Wed or Thu and due on Fri 10 • Total number of homeworks will be 6 (hopefully 7) • Midterm feedback form results: Course outline Founda6ons (1-2 weeks) • Earth history • HZ concept, atmospheric science essenEals • Post-Hadean Earth system Principles – how are habitable planets ini6ated and sustained? (4-5 weeks) • Volale supply, volale escape TODAY • Runaway greenhouse, moist greenhouse • Long-term climate evoluEon • Specifics (2.5 weeks) • Hyperthermals on Earth Earth science • Early Mars • Oceans within ice-covered moons • Exoplanetary systems e.g. TRAPPIST-1 system planetary science Lecture 7 wrap-up • Energy-limit: XUV driven escape more-likely- than-not sculpts the exoplanet radius-period distribuEon (‘photo-evaporaon valley’) • Diffusion limit: what regulates H loss from Venus, Earth and Mars today • Impact erosion – giant impacts and planetesimal impacts Wrap-up: impact erosion Nuclear tests Hydrocode Terrestrial impact craters Two-stage gas gun Formaon of Earth-sized planets involves giant (oligarchic) impacts. Masses of resulEng planets (Earths) * = giant impacts The output underlying this plot was generated by C. Cossou. The Moon-forming Simula8on intended to impact was not reproduce “typical” the last big impact Kepler system of short-period, on Earth, but it was 8ghtly-packed inner planets the last Eme that Earth hit another planet. The atmosphere-loss escape efficiency of giant impacts is set by the ground-moEon speed Schlichng & Mukhopadhay 2018 Ocean removal by giant impacts? (Ocean vaporizaon != ocean removal) Simulaons suggest that the Moon- forming impact was marginally able to remove any pre-exisEng Earth ocean 2 Qs ~ ve for oligarchic impact Stewart et al.
    [Show full text]
  • Water Loss from Terrestrial Planets with CO2-Rich Atmospheres
    Water loss from terrestrial planets with CO2-rich atmospheres R. D. Wordsworth Department of the Geophysical Sciences, University of Chicago, 60637 IL, USA [email protected] and R. T. Pierrehumbert Department of the Geophysical Sciences, University of Chicago, 60637 IL, USA ABSTRACT Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause sig- nificant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottle- neck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1 to 1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but XUV/UV luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a func- arXiv:1306.3266v2 [astro-ph.EP] 12 Oct 2013 tion of orbital distance, with planets that absorb less flux than ∼ 270 W m−2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • The Peaks of Eternal Light
    The Peaks of Eternal Light: a Near-term Property Issue on the Moon Martin Elvis a,1, Tony Milligan b, Alanna Krolikowskic a Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA; [email protected]; b Department of Theology and Religious Studies, King’s College London, Virginia Wolf Building, 22 Kingsway, London WC2B 6NR. c Georg-August Universität Göttingen, Heinrich-Düker-Weg 14, 37073, Göttingen, Germany; [email protected] ABSTRACT The Outer Space Treaty makes it clear that the Moon is the ‘province of all mankind’, with the latter ordinarily understood to exclude state or private appropriation of any portion of its surface. However, there are indeterminacies in the Treaty and in space law generally over the issue of appropriation. These indeterminacies might permit a close approximation to a property claim or some manner of ‘quasi-property’. The recently revealed highly inhomogeneous distribution of lunar resources changes the context of these issues. We illustrate this altered situation by considering the Peaks of Eternal Light. They occupy about one square kilometer of the lunar surface. We consider a thought experiment in which a Solar telescope is placed on one of the Peaks of Eternal Light at the lunar South pole for scientific research. Its operation would require non- disturbance, and hence that the Peak remain unvisited by others, effectively establishing a claim of protective exclusion and de facto appropriation. Such a telescope would be relatively easy to emplace with today’s technology and so poses a near-term property issue on the Moon. While effective appropriation of a Peak might proceed without raising some of the familiar problems associated with commercial development (especially lunar mining), the possibility of such appropriation nonetheless raises some significant issues concerning justice and the safeguarding of scientific practice on the lunar surface.
    [Show full text]