A Review of the Nuclear Testing by the Soviet Union at Novaya Zemlya
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novaya Zemlya Archipelago (Russian Arctic)
This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom. -
Foreign Minister Idrissov
Time to ban nuclear weapons testing forever BY ERLAN IDRISSOV, MINISTER FOR FOREIGN AFFAIRS OF KAZAKHSTAN The story of Kazakhstan's independence is intricately linked to the banning of nuclear testing and the renunciation of nuclear weapons. On 29 August 1991, Kazakhstan became the first country in the world to close a nuclear test site on its territory. The decision by President Nursultan Nazarbayev to close the Semipalatinsk nuclear test site where the Soviet Union carried out more than 450 nuclear weapon tests was welcomed by the people of Kazakhstan, and helped lead to the country's declaration of independence on 16 December 1991. OUR CLEAR CHOICE would damage, rather than bring, security It is no surprise that the Kazakh When the Soviet Union collapsed in and prestige. people were so strongly supportive of 1991, Kazakhstan inherited the fourth- the decision to shut the Semipalatinsk largest nuclear arsenal in the world: Since its independence, Kazakhstan site. The tests, which took place between more than 100 ballistic missiles and has been vigorously promoting 1949 and 1989, had the combined more than 1,000 nuclear warheads, the principles and ideals of nuclear explosive power of 2,500 atomic bombs capable of reaching any point on Earth. disarmament and working tirelessly to rid dropped on Hiroshima. The fall-out from What is less well known is that we also the world of the nuclear threat. We are a these tests – of which over 100 were found ourselves, if it had been our wish, founding member of the 2009 Nuclear- above ground – affected 1.5 million with the infrastructure and expertise to Weapon-Free Zone in Central Asia, which people and led to radioactive pollution maintain and deploy this arsenal. -
Semipalatinsk Revisited Radiological Evaluation of the Former Nuclear Test Site
Doc-03.qxd 1/21/99 9:34 AM Page 12 SEMIPALATINSK REVISITED RADIOLOGICAL EVALUATION OF THE FORMER NUCLEAR TEST SITE BY PETER STEGNAR AND TONY WRIXON arious locations around the world are Vaffected by residual radioactive material. Some of them are the result of past peaceful activities, while others result from military programmes, including the testing of nuclear weapons. In the 1990s, there has been growing international cooperation in assessing the radiological effects of past military nuclear activities. In many countries, attention has turned to assessing and, where necessary, remediating areas 12 affected by residual radioactive materials from military steppes of Kazakhstan became explosions were conducted activities. The IAEA has been the first centre for nuclear underground. Thirteen of the leading this effort of assessing weapons testing within the underground tests resulted in former nuclear-weapon test Soviet Union. The release of radioactive gases to the sites. This article reports on Semipalatinsk test site is a atmosphere. (See table, page 14.) preliminary radiological 19,000 km2 zone in the north- The only on-site inhabitants evaluations of the east of the country, 800 km during the testing programme Semipalatinsk site in north of the capital Almaty. were in the town of Kurchatov Kazakhstan, where the former The zone lies southwest of the whose purpose was to service Soviet Union conducted more Irtysh River which flows into the site, and in the small than 400 nuclear tests over a Kazakhstan from China and settlements of Akzhar and forty year period. which, for a short distance, Moldari along the northern forms part of the nuclear test edge of the site. -
Characterizing Explosive Effects on Underground Structures.” Electronic Scientific Notebook 1160E
NUREG/CR-7201 Characterizing Explosive Effects on Underground Structures Office of Nuclear Security and Incident Response AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as books, NRC’s Library at www.nrc.gov/reading-rm.html. Publicly journal articles, transactions, Federal Register notices, released records include, to name a few, NUREG-series Federal and State legislation, and congressional reports. publications; Federal Register notices; applicant, Such documents as theses, dissertations, foreign reports licensee, and vendor documents and correspondence; and translations, and non-NRC conference proceedings NRC correspondence and internal memoranda; bulletins may be purchased from their sponsoring organization. and information notices; inspection and investigative reports; licensee event reports; and Commission papers Copies of industry codes and standards used in a and their attachments. substantive manner in the NRC regulatory process are maintained at— NRC publications in the NUREG series, NRC regulations, The NRC Technical Library and Title 10, “Energy,” in the Code of Federal Regulations Two White Flint North may also be purchased from one of these two sources. 11545 Rockville Pike Rockville, MD 20852-2738 1. The Superintendent of Documents U.S. Government Publishing Office These standards are available in the library for reference Mail Stop IDCC use by the public. Codes and standards are usually Washington, DC 20402-0001 copyrighted and may be purchased from the originating Internet: bookstore.gpo.gov organization or, if they are American National Standards, Telephone: (202) 512-1800 from— Fax: (202) 512-2104 American National Standards Institute 11 West 42nd Street 2. -
Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period. -
Exceptional Retreat of Novaya Zemlya's Marine
The Cryosphere, 11, 2149–2174, 2017 https://doi.org/10.5194/tc-11-2149-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013 J. Rachel Carr1, Heather Bell2, Rebecca Killick3, and Tom Holt4 1School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK 2Department of Geography, Durham University, Durham, DH13TQ, UK 3Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK 4Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 4RQ, UK Correspondence to: J. Rachel Carr ([email protected]) Received: 7 March 2017 – Discussion started: 15 May 2017 Revised: 20 July 2017 – Accepted: 24 July 2017 – Published: 8 September 2017 Abstract. Novaya Zemlya (NVZ) has experienced rapid ice al., 2013). This ice loss is predicted to continue during loss and accelerated marine-terminating glacier retreat dur- the 21st century (Meier et al., 2007; Radic´ et al., 2014), ing the past 2 decades. However, it is unknown whether and changes are expected to be particularly marked in the this retreat is exceptional longer term and/or whether it has Arctic, where warming of up to 8 ◦C is forecast (IPCC, persisted since 2010. Investigating this is vital, as dynamic 2013). Outside of the Greenland Ice Sheet, the Russian high thinning may contribute substantially to ice loss from NVZ, Arctic (RHA) accounts for approximately 20 % of Arctic but is not currently included in sea level rise predictions. glacier ice (Dowdeswell and Williams, 1997; Radic´ et al., Here, we use remotely sensed data to assess controls on NVZ 2014) and is, therefore, a major ice reservoir. -
Radioactivity in the Arctic Seas
IAEA-TECDOC-1075 XA9949696 Radioactivity in the Arctic Seas Report for the International Arctic Seas Assessment Project (IASAP) ffl INTERNATIONAL ATOMIC ENERGY AGENCA / Y / 1JrrziZr^AA 30-16 The originating Section of this publication in the IAEA was: Radiometrics Section International Atomic Energy Agency Marine Environment Laboratory B.P. 800 MC 98012 Monaco Cedex RADIOACTIVITY IN THE ARCTIC SEAS IAEA, VIENNA, 1999 IAEA-TECDOC-1075 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a April 1999 FOREWORD From 199 o 1993t e Internationa6th l Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL s engage IAEA'e wa ) th n di s International Arctic Seas Assessment Project (IASAP whicn i ) h emphasi bees ha sn place criticaa n do l revie f environmentawo l conditions in the Arctic Seas. IAEA-MEe Th L programme, organize framewore th n dIASAi e th f ko P included: (i) an oceanographic and an ecological description of the Arctic Seas; provisioe th (ii )centra a f no l database facilitIASAe th r yfo P programm collectione th r efo , synthesi interpretatiod san datf nmarino n ao e radioactivit Arctie th n yi c Seas; (iii) participation in official expeditions to the Kara Sea organized by the joint Russian- Norwegian Experts Group (1992, 1993 and 1994), the Russian Academy of Sciences (1994), and the Naval Research Laboratory and Norwegian Defence Research Establishment (1995); (iv) assistance wit d n laboratorsiti han u y based radiometric measurement f curreno s t radionuclide concentrations in the Kara Sea; (v) organization of analytical quality assurance intercalibration exercises among the participating laboratories; (vi) computer modellin e potentiath f o g l dispersa f radionuclideo l s released froe mth dumped f assessmeno wast d associatee ean th f o t d radiological consequencee th f o s disposals on local, regional and global scales; (vii) in situ and laboratory based assessment of distribution coefficients (Kd) and concentration factor sArctie (CFth r c)fo environment. -
Operation Dominic I
OPERATION DOMINIC I United States Atmospheric Nuclear Weapons Tests Nuclear Test Personnel Review Prepared by the Defense Nuclear Agency as Executive Agency for the Department of Defense HRE- 0 4 3 6 . .% I.., -., 5. ooument. Tbe t k oorreotsd oontraofor that tad oa the book aw ra-ready c I I i I 1 1 I 1 I 1 i I I i I I I i i t I REPORT NUMBER 2. GOVT ACCESSION NC I NA6OccOF 1 i Technical Report 7. AUTHOR(.) i L. Berkhouse, S.E. Davis, F.R. Gladeck, J.H. Hallowell, C.B. Jones, E.J. Martin, DNAOO1-79-C-0472 R.A. Miller, F.W. McMullan, M.J. Osborne I I 9. PERFORMING ORGAMIIATION NWE AN0 AODRCSS ID. PROGRAM ELEMENT PROJECT. TASU Kamn Tempo AREA & WOW UNIT'NUMSERS P.O. Drawer (816 State St.) QQ . Subtask U99QAXMK506-09 ; Santa Barbara, CA 93102 11. CONTROLLING OFClCC MAME AM0 ADDRESS 12. REPORT DATE 1 nirpctor- . - - - Defense Nuclear Agency Washington, DC 20305 71, MONITORING AGENCY NAME AODRCSs(rfdIfI*mI ka CamlIlIU Olllc.) IS. SECURITY CLASS. (-1 ah -*) J Unclassified SCHCDULC 1 i 1 I 1 IO. SUPPLEMENTARY NOTES This work was sponsored by the Defense Nuclear Agency under RDT&E RMSS 1 Code 6350079464 U99QAXMK506-09 H2590D. For sale by the National Technical Information Service, Springfield, VA 22161 19. KEY WOROS (Cmlmm a nm.. mid. I1 n.c...-7 .nd Id.nllh 4 bled nlrmk) I Nuclear Testing Polaris KINGFISH Nuclear Test Personnel Review (NTPR) FISHBOWL TIGHTROPE DOMINIC Phase I Christmas Island CHECKMATE 1 Johnston Island STARFISH SWORDFISH ASROC BLUEGILL (Continued) D. -
US5212343.Pdf
|||||I|||||| USOO5212343A United States Patent (19) 11 Patent Number: 5,212,343 Brupbacher et al. 45) Date of Patent: May 18, 1993 54 WATER REACTIVE METHOD WITH 3,377,955 4/1968 Hodgson ............................. 102/102 DELAYED EXPLOSION 3,388,554 6/1968 Hodgson ............................... 60/217 3,986,909 10/1976 Macri....... ... 149/19.9 75) Inventors: John M. Brupbacher, Catonsville; 4,034,497 7/1977 Yanda ........... ... 42/1 G Leontios Christodoulou, Baltimore, 4,188,884 2/1980 White et al. 102/54 both of Md.; James M. Patton, 4,280,409 7/1981 Rozner et al. ... 02/364 Annandale, Va.; Russell N. Bennett, 4,331,080 5/1982 West et al..... ... 102/301 Baltimore, Md.; Alvin F. Bopp; Larry 4,432,818 2/1984 Givens .................................. 149/22 G. Boxall, both of Catonsville, Md.; Primary Examiner-Peter A. Nelson William M. Buchta, Ellicott City, Attorney, Agent, or Firm-Gay Chin; Bruce M. Md. Winchell; Alan G. Towner 73) Assignee: Martin Marietta Corporation, 57 ABSTRACT Bethesda, Md. Devices and methods are disclosed for contacting a hot (21) Appl. No.: 573,960 reaction mass with water to initiate an explosive reac ar. tion. The reaction mass comprises a ceramic or interme (22 Filed: Aug. 27, 1990 tallic material that is produced by exothermically react 51) Int. Cl........................... F42B3/00; F42B 13/14 ing a mixture of reactive elements. Suitable reaction 52 U.S. C. .................................... 102/323; 102/302; masses include borides and/or carbides that are formed 102/364; 149/22; 149/108.2; 42/1.14 by reacting a mixture comprising B and/or C in combi 58) Field of Search ............... -
Radionuclide Contamination at Kazakhstan's Semipalatinsk Test Site
Preprint UCRL-JC-143920 Radionuclide Contamination at Kazakhstan’s Semipalatinsk Test Site: Implications on Human and Ecological Health T.M. Carlsen, L.E. Peterson, B.A. Ulsh, C.A. Werner, K.L. Purvis, A.C. Sharber This article was submitted to Human and Ecological Risk Assessment (HERA) June 2001 Approved for public release; further dissemination unlimited DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. Radionuclide Contamination at Kazakhstan’s Semipalatinsk Test Site: Implications on Human and Ecological Health Tina M. -
Accelerated Glacier Mass Loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H
https://doi.org/10.5194/tc-2020-358 Preprint. Discussion started: 28 December 2020 c Author(s) 2020. CC BY 4.0 License. Brief communication: Accelerated glacier mass loss in the Russian Arctic (2010-2017) Christian Sommer1, Thorsten Seehaus1, Andrey Glazovsky2, Matthias H. Braun1 1Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany 5 2Institute of Geography RAS, Moscow, 119017, Russia Correspondence to: Christian Sommer ([email protected]) Abstract. Glaciers in the Russian High Arctic have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measure- ments and geodetic mass balances of 93% of all glacierized areas of Novaya Zemlya, Severnaya Zemlya and Franz Josef Land 10 using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss rate of -23±5 Gt a-1, corresponding to a sea level rise contribution of 0.06±0.01 mm a-1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years. 1 Introduction The Arctic has undergone large environmental changes due to increases in temperature and humidity (Box et al., 2019) and an 15 increase in glacier mass loss has been observed in many polar regions (Morris et al., 2020). The Russian Arctic, including the archipelagos Novaya Zemlya, Severnaya Zemlya and Franz Josef Land, is one of these regions. Despite a glacierized area of ~52,000 km², in-situ observations of glacier mass change are sparse. -
Novaya Zemlya - Wikipedia
3/3/2020 Novaya Zemlya - Wikipedia Coordinates: 74 "N 56"E WIKIPEDIA Tabled Document Novay~ Zemlya 2G2-s(2) tvih 3 /io Novaya Zemlya (/,nouv:;ij:;i 'zi::mlfa/, also UK: f,nuv-, -a1.a -/, US: [:_ Novaya Zemlya zi::m'lG)a:/;[1l[2l Russian: Ho' BM 3eMJUI', IPA: ['nov:;ij:;i z.iim'lia], li!. "New Land"), also known as Nova Zembla_(especially in Dutch), is an H6ea~ 3eMnsi archipelago in the Arctic Ocean in northern Russia and the extreme northeast of Europe, the easternmost point of Europe lying at Cape Arctic Ocean . Flissingsky on the Northern island. West of Novaya Zemlya is the Barents Sea, and to the east is the Kara Sea. ~ ·, -Kara sea i '::it :.;,,., 1:. Novaya Zemlya is composed of two main islands, the northern Severny Island and the southern Yuzhny Island, which are separated by the emiya Matochkin Strait. Administratively, it is incorporated as Novaya Zemlya District, one of the twenty-one in Arkhangelsk Oblast, Russia.[3] Municipally, it is incorporated as Novaya Zemlya Urban Okrug.[41 The population of Novaya Zemlya, as of the 2010 Census, was about 2,429, of which 1,972 resided in Belushya Guba,[sl an urban settlement that is the administrative center of Novaya Zemlya District. The indigenous population (from 1872[6][7] to the 1950s when it was resettled to the mainland) consisted of about 50-300 Nenetses[S] who subsisted mainly on fis~iJ[g, trapping, 10 reindeer herding, polar bear hunting and seal hunting. 9 ) Natural resources include copper, lead, and zinc.[9] Novaya Zemlya was a sensitive military area during the Cold War years, and parts of it are still used for airfields today.