Shock Wave and High Pressure Phenomena

Thermo-Gas Dynamics of Combustion and Explosion

Bearbeitet von Boris E. Gelfand, Mikhail V. Silnikov, Sergey P. Medvedev, Sergey V. Khomik

1. Auflage 2012. Buch. xxii, 326 S. Hardcover ISBN 978 3 642 25351 5 Format (B x L): 15,5 x 23,5 cm Gewicht: 684 g

Weitere Fachgebiete > Technik > Werkstoffkunde, Mechanische Technologie > Technische Thermodynamik

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents

1 Fundamental Combustion Characteristics of Hydrogenous Mixtures ...... 1 1.1 Laminar Flame Velocity ...... 1 1.2 Flame Stretch Rate (Stretch Effect) ...... 1 1.3 Markstein Length ...... 3 1.4 Lewis Number and Selective Diffusion ...... 4 1.5 Diffusion-Thermal and Hydrodynamic Flame Instability ...... 5 1.6 Turbulent Flame Velocity ...... 6 1.7 Mixture Composition ...... 7 1.8 Macroscopic Combustion Parameters of Hydrogenous Mixtures ...... 8 References ...... 11

2 Laminar and Cellular Combustion of Hydrogenous Gaseous Mixtures ...... 15 2.1 Measurement of Laminar Flame Velocity ...... 15 2.2 Results of Laminar Flame Velocity Measurements ...... 18 2.3 Development of Laminar Flame Velocity Measuring Techniques .. 20 2.4 Simulation of Flame Propagation ...... 23 2.5 Initial Temperature Effect on Laminar Flame Velocity ...... 24 2.6 Pressure Effect on Laminar Flame Velocity ...... 27 2.7 Mixture Composition Effect on Laminar Flame Velocity ...... 30 2.8 Effect of Noncombustible Gas Additives on Laminar Flame Velocity ...... 33 2.9 Carbon Dioxide Effect on Laminar Flame Velocity ...... 33 2.10 Steam Effect on Laminar Flame Velocity ...... 34 2.11 Laminar Flame Velocity in H2 þ CO þ Air Mixture ...... 38 2.12 Laminar Flame Velocity in H2 þ CH4 þ Air Mixture ...... 43 References ...... 47

xvii xviii Contents

3 Turbulent Combustion of Hydrogenous Gas Mixtures ...... 53 3.1 Measurement of Turbulent Flame Velocity ...... 53 3.2 Effect of Turbulent Intensity and Mixture Composition on Flame Velocity ...... 56 3.3 Pressure Effect on Turbulent Flame Velocity ...... 59 3.4 Carbon Dioxide Gas Effect on Turbulent Flame Velocity ...... 60 3.5 Water Steam Effect on Turbulent Flame Velocity ...... 61 3.6 CO Effect on Turbulent Flame Velocity ...... 61 3.7 Turbulent Flame Quenching ...... 63 3.8 Means of Combustion Suppression ...... 64 3.9 Measurement of Turbulent Combustion Suppression Efficiency in HydrogenþAirþWater Fog System ...... 65 3.10 Experimental Data on Suppression of Turbulent Combustion ..... 67 References ...... 71

4 Concentration Limits of Flame Propagation ...... 73 4.1 Measurement of Concentration Limits ...... 73 4.2 Concentration Limits of Hydrogenous Mixtures H2þO2þN2 ...... 74 4.3 Concentration Limits of Hydrogenous Mixtures with CO2 ...... 76 4.4 Concentration Limits of Hydrogenous Mixtures with Helium ...... 77 4.5 Concentration Limits of Combustion of Hydrogenous Mixtures with Water Steam ...... 77 4.6 Vessel Wall Temperature Effect on Combustion Concentration Limits ...... 79 4.7 Combustion Limits of H2þHydrocarbonþAir Mixtures ...... 82 4.8 Critical Energy Characteristics of Ignition Source ...... 86 4.9 Geometrical Limitations of Flame Propagation ...... 89 4.10 Combustion Limits of HydrogenþAmmonia Mixtures ...... 91 References ...... 92

5 Fast Deflagration and Quasi-Detonation ...... 95 5.1 Fast Deflagration and Quasi-Detonation in a Confined Volume ..... 95 5.2 Fast Deflagration in Open Spaces ...... 97 5.3 Flame Acceleration in Volume with Turbulence Promoters ...... 98 5.4 Quasi-Detonation in Tubes and Ducts ...... 99 5.5 Quasi-Detonation in Porous Medium ...... 102 5.6 Quasi-Detonation in Semi-Closed Encumbered Space ...... 107 5.7 Blast Processes in LiquidþCombustible Mixture Bubbles ...... 109 5.8 Scale Factors of Fast Explosion Processes ...... 111 5.9 General Properties of Processes ...... 113 5.10 Thermal and Pressure Loads at Deflagration-to-Detonation Transition ...... 115 References ...... 117 Contents xix

6 Self-Ignition of Hydrogenous Mixtures ...... 121 6.1 Preliminary Comments ...... 121 6.2 Self-Ignition of Pre-mixed HydrogenþAir/ Mixtures Under Real Initial Conditions ...... 122 6.3 Pressure and Temperature Effect on Hydrogenous Mixture Self-Ignition ...... 124 6.4 Self-Ignition Delay ...... 127 6.5 Spatial Characteristics of Generation of Self-Ignition Centers and Self-Ignition Regimes ...... 129 6.6 Special Cases of Self-Ignition ...... 134 6.7 Nitrogen Oxide Effect on Hydrogenous Mixture Self-Ignition .... 134 6.8 Self-Ignition of Hydrogenous Mixtures with Hydrocarbon Fuel Additives ...... 138 6.9 Self-Ignition of Heterogeneous Hydrogenous Combustible Mixtures ...... 139 6.10 Thermo-Gas Dynamic Phenomena Occurring at Homogenous Mixture Ignition and Combustion Near Non-Flat Surfaces ...... 140 6.11 Experimental Study of the Self-Ignition Process ...... 143 6.12 Simulation of Shock Wave Focusing in Combustible Mixture ... 149 6.13 Practical Application of Investigation Data for Self-Ignition Processes ...... 150 6.14 Water Steam Effect on Self-Ignition ...... 152 6.15 Carbon Dioxide Effect on Self-Ignition ...... 155 References ...... 158

7 Regimes of Supersonic Combustion: Detonation Waves ...... 165 7.1 Detonation Parameters of Hydrogenous Mixtures ...... 165 7.2 Reflected Detonation Wave Parameters ...... 167 7.3 Effects of Initial Temperature and Non-combustible Gases on Detonation Parameters ...... 169 7.4 Size of Detonation Cell ...... 172 7.5 Temperature Effect on Detonation Cell Size ...... 175 7.6 Effect of Hydrogenous Mixture Composition on Detonation Cell Size ...... 176 7.7 Concentration Limits of Detonation ...... 179 7.8 Geometrical Limitation for Detonation Propagation ...... 181 7.9 Critical Energy for Direct Initiation of Spherical Detonation ..... 185 7.10 Detonation in Hydrogenous Mixtures with Two-Component Combustible Gas Substances ...... 189 7.11 Detonation Limits of Triple Mixtures ...... 191 References ...... 193

8 Shock-Free and Spontaneous Initiation of Explosive Regimes ...... 197 8.1 Deflagration-to-Detonation Transition ...... 197 8.2 Processes of Flame Acceleration in Tubes with Obstacles ...... 199 xx Contents

8.3 Alternative Resources of Shock-Free (Mild) Initiation in Explosive Regimes ...... 202 8.4 Effect of Temperature and Concentration Non-uniformity on Shock-Free Detonation Initiation ...... 203 8.5 Critical Temperature and Concentration Gradients Causing Deflagration-to-Detonation Transition ...... 204 8.6 Occurrence of Regions with Temperature and Concentration Gradients (TCG) ...... 206 8.7 Conditions of Spontaneous Blast Processes Initiation ...... 208 8.8 Estimation of Minimum Distances for Spontaneous Detonation Development ...... 209 8.9 Geometric Constraint of Dangerous TCG Formation and the Pressure Effect of Accompanying Spontaneous Explosions ...... 210 8.10 Pressure Loads on Duct Wall for DDT Processes ...... 212 References ...... 214

9 Phenomenology of Hydrogenous Mixture Explosions ...... 219 9.1 Parameters of Spatial Fuel–Air Mixture Detonation ...... 219 9.2 Parameters of Fuel–Air Mixture Unconfined Deflagration Explosion ...... 222 9.3 Parameters of HAM Explosion Caused by One-Dimensional Combustion of Some Gassy Volume in a Duct ...... 226 9.4 Deflagration Explosion Parameters of Binary Fuel (H2þNatural Gas)þAir ...... 229 9.5 HAM Explosion in Unconstrained Spherical Volume ...... 231 9.6 HAM Explosion in Semi-confined Duct ...... 232 9.7 HAM Explosion Effects in a Volume Obstructed by Honeycomb Material ...... 234 9.8 Parameters of Binary Fuel (Combustible HydrogenþNatural Gas)þ AirMixtureExplosioninanObstructedVolume ...... 235 9.9 Attenuation of Demolition Loads from HAM Deflagration Explosion ...... 239 9.10 Attenuation and Transformation of Pressure Resulting from a HAM Detonation ...... 241 References ...... 243

10 Demolition Loads Resulting from an Hydrogenous Mixture Explosion ...... 245 10.1 Demolition Parameters of Blast Loads ...... 245 10.2 Parameters of Blast Waves Resulting from the Detonation of Combustible Hydrogenous Clouds ...... 247 10.3 Rarefaction Wave Parameters ...... 252 10.4 Diagrams of Damage Caused by Rarefaction Waves ...... 257 10.5 Reflected Blast Wave Parameters of a Gas Explosion ...... 260 Contents xxi

10.6 Effect of Gas Volume Geometry on Blast Wave Parameters .... 263 10.7 Pressure Load Parameters Resulting from Underwater Explosion of Gas-Filled Cavities ...... 265 10.8 Pressure Wave Parameters Resulting from Underwater Gas Explosions ...... 267 10.9 Pressure Load Characteristics Inside a Detonatable Fuel Mixture Cloud ...... 270 10.10 Summary Damage Diagram for Gas Fuel Mixture Explosions ...... 272 10.11 Preliminary Heuristic Estimate of the Damage Effect Caused by HAM Explosions ...... 272 References ...... 275

11 Combustion and Explosion Characteristics of Non-premixed and Partially Pre-mixed Mixtures ...... 279 11.1 Diffusion Flame Concept ...... 280 11.2 Triple and Edge Flames ...... 283 11.3 Diffusion Flame Propagation in the Presence of Large Vortices ...... 284 11.4 Stream Flame Lift-Off and Blow-Off Mechanism of Stabilization ...... 285 11.5 Experimental Data for the Characteristics of a Hydrogen Diffusion Flame ...... 286 11.6 Characteristic Geometrical and Physical Parameters of Stationary Diffusion Flames ...... 288 11.7 Boundaries and Parameters of Hydrogen Stationary Diffusion Flames in Air ...... 289 11.8 Effect of Additives on a Hydrogen Diffusion Flame ...... 294 11.9 Empirical Dependencies for Determination of Geometrical and Physical Parameters of Hydrogen Diffusion Flames ...... 296 11.10 Spontaneous Generation of Diffusion Flames (Diffusion Ignition) ...... 296 11.11 A Simplified Pattern of Spontaneous Diffusion Combustion Generation ...... 298 11.12 Pressure Loads for Diffusion Combustion ...... 307 References ...... 309

Terms and Definitions ...... 313

Index ...... 321