Genetic Diversity and Function in the Human Cytosolic Sulfotransferases

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity and Function in the Human Cytosolic Sulfotransferases The Pharmacogenomics Journal (2007) 7, 133–143 & 2007 Nature Publishing Group All rights reserved 1470-269X/07 $30.00 www.nature.com/tpj ORIGINAL ARTICLE Genetic diversity and function in the human cytosolic sulfotransferases MAT Hildebrandt1, Amino-acid substitutions, which result from common nonsynonymous (NS) 2 1 polymorphisms, may dramatically alter the function of the encoded protein. DP Carrington , BA Thomae , Gaining insight into how these substitutions alter function is a step toward 3 2 BW Eckloff , DJ Schaid , acquiring predictability. In this study, we incorporated gene resequencing, VC Yee4, RM Weinshilboum1 functional genomics, amino-acid characterization and crystal structure and ED Wieben3 analysis for the cytosolic sulfotransferases (SULTs) to attempt to gain predictability regarding the function of variant allozymes. Previously, four 1Division of Clinical Pharmacology, Department SULT genes were resequenced in 118 DNA samples. With additional of Molecular Pharmacology and Experimental resequencing of the remaining eight SULT family members in the same Therapeutics, Mayo Clinic College of Medicine, DNA samples, a total of 217 polymorphisms were revealed. Of 64 Mayo Foundation, Rochester, MN, USA; 2Department of Health Sciences Research, Mayo polymorphisms identified within 8785 bp of coding regions from SULT Clinic College of Medicine, Mayo Foundation, genes examined, 25 were synonymous and 39 were NS. Overall, the Rochester, MN, USA; 3Department of proportion of synonymous changes was greater than expected from a Biochemistry and Molecular Biology, Mayo Clinic random distribution of mutations, suggesting the presence of a selective College of Medicine, Mayo Foundation, Rochester, MN, USA; 4Department of pressure against amino-acid substitutions. Functional data for common Biochemistry, Case Western Reserve University variants of five SULT genes have been previously published. These data, School of Medicine, Cleveland, OH, USA together with the SULT1A1 variant allozyme data presented in this paper, showed that the major mechanism by which amino acid changes altered Correspondence: function in a transient expression system was through decreases in Dr ED Wieben, Department of Biochemistry and Molecular Biology, Mayo Clinic College of immunoreactive protein rather than changes in enzyme kinetics. Additional Medicine, Mayo Foundation, Rochester, MN insight with regard to mechanisms by which NS single nucleotide 55985, USA. E-mail: [email protected] polymorphisms alter function was sought by analysis of evolutionary conservation, physicochemical properties of the amino-acid substitutions and crystal structure analysis. Neither individual amino-acid characteristics nor structural models were able to accurately and reliably predict the function of variant allozymes. These results suggest that common amino-acid substitutions may not dramatically alter the protein structure, but affect interactions with the cellular environment that are currently not well understood. The Pharmacogenomics Journal (2007) 7, 133–143. doi:10.1038/sj.tpj.6500404; published online 27 June 2006 Keywords: amino-acid substitutions; functional genomics; single nucleotide polymorphisms Introduction The human genome contains an estimated 11 million common single nucleotide changes with allele frequencies greater than 1%.1 A vast majority of these sequence variations are believed to be functionally neutral, yet a subset alter the Received 5 January 2006; revised 28 April 2006; accepted 24 May 2006; published structure of a gene product. Such structural changes are often detrimental to online 27 June 2006 function, but some variant proteins have normal, or even increased, function. Predicting the function of amino-acid substitutions MAT Hildebrandt et al 134 With the goals of better understanding of how molecular 11 evolution influences the function of variant allozymes and 6 how specific substitutions affect protein function, we have et al. incorporated resequencing data, functional genomics, ami- et al. no-acid characterization and crystal structure analysis to Reference analyze structure–function relationships within the human cytosolic sulfotransferase (SULT) gene family. The members of the SULT gene family play an important D 1.331.06 Thomae Current study 0.043 Current study 0.303 Current1.16 study 0.214 Current study Current1.18 study Adjei À À À À À À À role in the biotransformation of a variety of substrates, Tajima’s including steroid hormones, neurotransmitters, drugs and other xenobiotics.2–4 To date, 12 human SULT genes have p been identified.5 The family members share a high degree of sequence identity and are found in clusters on chromo- somes.5 Because of the importance of sulfation in the metabolism of a wide variety of substrates, much work has y been carried out in characterizing the genetic variation and functional consequences of amino-acid substitutions in the SULT family6–13 and crystal structures have been solved for nine of the 12 members.14–22 Previously, four SULT genes – SULT1A3, 1A4, 1E1 and 2A1 Non-coding – were resequenced from 59 Caucasian-American (CA) and polymorphisms 59 African-American (AA) DNA samples.6,8,11,12 To deter- mine the nature and degree of sequence variation within the entire gene family for the analyses reported here, the S remaining members of SULT gene family – SULT1A1, 1A2, 1B1, 1C2, 1C4, 2B1, 4A1 and 6B1 – were resequenced in the polymorphisms same DNA samples (Table 1). In total, over 8.5 million base pairs of sequence were analyzed from regions on six chromosomes. Functional genomic studies have been completed for 14 NS nonsynonymous (NS) single nucleotide polymorphism (SNPs) as a step toward understanding how variation in polymorphisms nucleotide sequence translates into variation in enzyme function in the SULT gene family.6-9,11,12 These previous studies showed that alterations in amino-acid sequence can cause decreased enzyme activity owing to decreased levels of immunoreactive protein. In this study, additional functional Coding genomic studies were performed for three variant allozymes polymorphisms of SULT1A1 to determine the functional consequences of the amino-acid substitutions in a recombinant expression system. Previous genotype–phenotype correlation studies in both human liver and platelet samples showed that one common variant allele, SULT1A1*2 (Arg213His), was Frequency associated with low enzyme activity.9,10 The present work extends this analysis to additional SULT1A1 variants and (polymorphism/bp) presents new data on levels of immunoreactive proteins for all SULT1A1 variants. The SULT gene family is an ideal candidate for studying the relationship between sequence variation, structure and function by combining functional genomic data with amino-acid characterization and structural modeling. Un- polymorphisms derstanding of the consequences of amino-acid changes may aid in characterizing the mechanisms responsible for 2417313335585298 15 22 5 1/161.1 36 1/142.4 1/711.6 1/147.2 6 12 0 11 3 5 10 0 3 7 1 0 9 10 25 5 10.28 11.10 11.25 4.82 6.68 11.08 2.33 2.40 0.060 Current study decreases in enzyme function and ultimately gaining 2430401036084423 213734 363648 17 1/115.7 29 1/111.4 14 1/212.2 22 1/152.5 1/266.7 1/165.8 10 10 2 7 1 5 3 7 2 5 1 3 7 3 0 2 0 11 2 26 15 14.31 22 14.87 18.60 13 18.07 17 7.80 0.794 10.86 Current 0.613 study 6.88 6.21 Current 6.33 study 9.99 5.67 5.59 predictability regarding these effects. Our results suggest Summary of SULT gene sequence variation that commonly used methods for predicting the effect of amino-acid substitutions on protein function have only Table 1 SULT2A1 SULT2B1 SULT4A1 SULT6B1 NS, nonsynonymous; S, synonymous; SULT, sulfotransferase. limited utility when applied to SULT allozymes and better Gene Total bpSULT1A1 SULT1A2 SULT1B1 Total SULT1C2 SULT1C4 SULT1E1 The Pharmacogenomics Journal Predicting the function of amino-acid substitutions MAT Hildebrandt et al 135 ‘tools’ are needed in order to predict how variation at the polymorphisms – an average of one polymorphism every nucleotide level translates into altered function of variant 712 bp. All of SULT4A1 polymorphisms are located in allozymes within the cellular environment. intronic regions (Table 1). The extent of nucleotide variation found in members of the SULT gene family was similar to 23–27 Results that observed for other groups of human genes. Genetic variation in the SULT gene family Genetic diversity across gene regions All human SULT genes were resequenced in DNA samples Neutral theory predicts that nucleotide changes occur from AA and CA populations (236 alleles total) to catalog randomly throughout the genome with no selective pres- the genetic diversity within this gene family. A total of sure as to location.28,29 In general, this appeared to hold 36 259 bp were amplified from the human SULT genes in true for the regions of the SULT genes analyzed, with the each DNA sample, including 8785 bp (24%) of coding and proportion of base pairs sequenced roughly equaling the 27 474 bp (76%) of non-coding sequences (Table 2). Se- proportion of polymorphisms identified for the total quence analysis identified 212 SNPs and five insertion and population (Figure 1) (w2 ¼ 9.13, df ¼ 5, P ¼ 0.104). The deletions with an overall minor allele frequency (MAF) of notable deviation from this pattern was for nucleotide 0.102. Of the 217 polymorphisms identified, 64 (29.5%) changes within the coding region of the genes. Although were located in coding regions and 153 (70.5%) were non- 80% of the coding region nucleotides were NS sites where coding sequence variants (Table 2). On average, one nucleotide changes have the potential to change the protein polymorphism was identified every 167 bp of total se- sequence, only 61% of the observed polymorphisms in the quence. The most polymorphic SULT gene was SULT1A2, coding region actually did lead to a change in the encoded with an average of one nucleotide change per every 111 bp amino acid. This excess of synonymous (S) changes screened.
Recommended publications
  • Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078428.DC1 1521-009X/46/4/367–379$35.00 https://doi.org/10.1124/dmd.117.078428 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:367–379, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans s Timothy Wong, Zhican Wang, Brian D. Chapron, Mizuki Suzuki, Katrina G. Claw, Chunying Gao, Robert S. Foti, Bhagwat Prasad, Alenka Chapron, Justina Calamia, Amarjit Chaudhry, Erin G. Schuetz, Ronald L. Horst, Qingcheng Mao, Ian H. de Boer, Timothy A. Thornton, and Kenneth E. Thummel Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children’s Research Hospital, Memphis, Tennessee Downloaded from (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.) Received September 1, 2017; accepted January 10, 2018 ABSTRACT dmd.aspetjournals.org Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in with the rates of dehydroepiandrosterone sulfonation. Further analysis regulating the biologic effects of vitamin D in the body.
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • Chronic Exposure to Bisphenol a Reduces SULT1A1 Activity in the Human Placental Cell Line Bewo
    Chronic exposure to bisphenol A reduces SULT1A1 activity in the human placental cell line BeWo Pallabi Mitra Department of Pharmaceutical Chemistry University of Kansas October 27, 2006 Outline ▪ Placental structure and models ▪ Placental permeation ▪ Placental metabolism and regulation (induction/inhibition) ▪ Sulfotransferase enzymes in trophoblast ▪ Bisphenol A ▪ Effects of bisphenol A on SULT1A1 ▪ Conclusions The placental barrier The placental barrier Mother’s blood •Trophoblasts and syncytiotrophoblasts line the maternal villar surface in a monolayer- like fashion. •Constitute the rate limiting barrier to exchange between the maternal and fetal blood. Syme et al., Drug transfer and metabolism by the human placenta, Clin Pharmacokinet 2004: 43(8): 487-514 Models of the human placenta ▪ In vivo models – Anatomical and functional differences between mammalian placentas makes it difficult to extrapolate animal studies to humans. ▪ In vitro models ▪ Perfused placental cotyledon ▪ Isolated trophoblast plasma membrane ▪ Isolated transporters and receptors ▪ Villous explants ▪ Primary cultures (cytotrophoblasts) ▪ Immortalized cell lines (BeWo, JAr, JEG, HRP-1, etc.) Refn. Bode et al. In Vitro models for studying trophoblast transcellular transport, Methods Mol Med. 2006;122:225-39 Sastry, B.V., Adv Drug Deliv Rev., 1999 Jun 14. 38(1): p. 17-39. Placental permeation - Factors Efflux Carrier-mediated Passive diffusion transport Metabolism A A X A A Maternal side A X-OH A Fetal side Placental metabolism ▪ Though enzyme expression is much more restricted than hepatic metabolism, those that are functional metabolize xenobiotics as well as hormones. ▪ Placental enzymes CYP1A1/1A2, CYP19 (aromatase), GST, UGT, SULT ▪ Maternal blood-borne chemicals (drugs/polychlorinated biphenyls/pesticides) alter expression and activity. • Altered steroid metabolism.
    [Show full text]
  • Regulation of Xenobiotic and Bile Acid Metabolism by the Anti-Aging Intervention Calorie Restriction in Mice
    REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE By Zidong Fu Submitted to the Graduate Degree Program in Pharmacology, Toxicology, and Therapeutics and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Dissertation Committee ________________________________ Chairperson: Curtis Klaassen, Ph.D. ________________________________ Udayan Apte, Ph.D. ________________________________ Wen-Xing Ding, Ph.D. ________________________________ Thomas Pazdernik, Ph.D. ________________________________ Hao Zhu, Ph.D. Date Defended: 04-11-2013 The Dissertation Committee for Zidong Fu certifies that this is the approved version of the following dissertation: REGULATION OF XENOBIOTIC AND BILE ACID METABOLISM BY THE ANTI-AGING INTERVENTION CALORIE RESTRICTION IN MICE ________________________________ Chairperson: Curtis Klaassen, Ph.D. Date approved: 04-11-2013 ii ABSTRACT Calorie restriction (CR), defined as reduced calorie intake without causing malnutrition, is the best-known intervention to increase life span and slow aging-related diseases in various species. However, current knowledge on the exact mechanisms of aging and how CR exerts its anti-aging effects is still inadequate. The detoxification theory of aging proposes that the up-regulation of xenobiotic processing genes (XPGs) involved in phase-I and phase-II xenobiotic metabolism as well as transport, which renders a wide spectrum of detoxification, is a longevity mechanism. Interestingly, bile acids (BAs), the metabolites of cholesterol, have recently been connected with longevity. Thus, this dissertation aimed to determine the regulation of xenobiotic and BA metabolism by the well-known anti-aging intervention CR. First, the mRNA expression of XPGs in liver during aging was investigated.
    [Show full text]
  • Gene Expression Profiles in Testis of Pigs with Extreme High and Low
    BMC Genomics BioMed Central Research article Open Access Gene expression profiles in testis of pigs with extreme high and low levels of androstenone Maren Moe*1,2, Theo Meuwissen2,3, Sigbjørn Lien2,3, Christian Bendixen4, Xuefei Wang4, Lene Nagstrup Conley4, Ingunn Berget3,5, Håvard Tajet1,2 and Eli Grindflek1,3 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway., 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway., 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway., 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark. and 5MATFORSK, Osloveien 1, Ås, Norway. Email: Maren Moe* - [email protected]; Theo Meuwissen - [email protected]; Sigbjørn Lien - [email protected]; Christian Bendixen - [email protected]; Xuefei Wang - [email protected]; Lene Nagstrup Conley - [email protected]; Ingunn Berget - [email protected]; Håvard Tajet - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 7 November 2007 Received: 3 July 2007 Accepted: 7 November 2007 BMC Genomics 2007, 8:405 doi:10.1186/1471-2164-8-405 This article is available from: http://www.biomedcentral.com/1471-2164/8/405 © 2007 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis.
    [Show full text]
  • Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation
    1521-009X/44/4/570–575$25.00 http://dx.doi.org/10.1124/dmd.115.067397 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:570–575, April 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Identification of Human Sulfotransferases Involved in Lorcaserin N-Sulfamate Formation Abu J. M. Sadeque, Safet Palamar,1 Khawja A. Usmani, Chuan Chen, Matthew A. Cerny,2 and Weichao G. Chen3 Department of Drug Metabolism and Pharmacokinetics, Arena Pharmaceuticals, Inc., San Diego, California Received September 30, 2015; accepted January 7, 2016 ABSTRACT Lorcaserin [(R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benza- and among the SULT isoforms SULT1A1 was the most efficient. The zepine] hydrochloride hemihydrate, a selective serotonin 5-hydroxy- order of intrinsic clearance for lorcaserin N-sulfamate is SULT1A1 > Downloaded from tryptamine (5-HT) 5-HT2C receptor agonist, is approved by the U.S. SULT2A1 > SULT1A2 > SULT1E1. Inhibitory effects of lorcaserin Food and Drug Administration for chronic weight management. N-sulfamate on major human cytochrome P450 (P450) enzymes Lorcaserin is primarily cleared by metabolism, which involves were not observed or minimal. Lorcaserin N-sulfamate binds to multiple enzyme systems with various metabolic pathways in human plasma protein with high affinity (i.e., >99%). Thus, despite humans. The major circulating metabolite is lorcaserin N-sulfamate. being the major circulating metabolite, the level of free lorcaserin Both human liver and renal cytosols catalyze the formation of N-sulfamate would be minimal at a lorcaserin therapeutic dose and lorcaserin N-sulfamate, where the liver cytosol showed a higher unlikely be sufficient to cause drug-drug interactions.
    [Show full text]
  • 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 SULT2B1 Purified Mouse Monoclonal Antibody (Mab) Catalog # AM8716b Specification SULT2B1 - Product Information Application WB,E Primary Accession O00204 Reactivity Human Predicted Human Host Mouse Clonality monoclonal Isotype IgG1,κ Calculated MW 41308 SULT2B1 - Additional Information Gene ID 6820 Other Names Sulfotransferase family cytosolic 2B member 1, ST2B1, Sulfotransferase 2B1, All lanes : Anti-SULT2B1 at 1:2000 dilution 2.8.2.2, Alcohol sulfotransferase, Lane 1: MCF-7 whole cell lysate Lane 2: Hydroxysteroid sulfotransferase 2, MDA-MB-468 whole cell lysate SULT2B1, HSST2 Lysates/proteins at 20 µg per lane. Secondary Goat Anti-mouse IgG, (H+L), Target/Specificity Peroxidase conjugated at 1/10000 dilution. This antibody is generated from a mouse Predicted band size : 41 kDa immunized with a reconbinant protein from Blocking/Dilution buffer: 5% NFDM/TBST. human. Dilution WB~~1:8000 Format Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein G column, followed by dialysis against PBS. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions SULT2B1 is for research use only and not for use in diagnostic or therapeutic Anti-SULT2B1 at 1:8000 dilution + MCF-7 procedures. whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-mouse IgG, Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 (H+L), Peroxidase conjugated at 1/10000 SULT2B1 - Protein Information dilution.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Sulfation Through the Looking Glass—Recent Advances in Sulfotransferase Research for the Curious
    The Pharmacogenomics Journal (2002) 2, 297–308 & 2002 Nature Publishing Group All rights reserved 1470-269X/02 $25.00 www.nature.com/tpj REVIEW Sulfation through the looking glass—recent advances in sulfotransferase research for the curious MWH Coughtrie ABSTRACT Members of the cytosolic sulfotransferase (SULT) superfamily catalyse the Department of Molecular & Cellular Pathology, sulfation of a multitude of xenobiotics, hormones and neurotransmitters. University of Dundee, Ninewells Hospital & Humans have at least 10 functional SULT genes, and a number of recent Medical School, Dundee, Scotland, UK advances reviewed here have furthered our understanding of SULT function. Correspondence: Analysis of expression patterns has shown that sulfotransferases are highly MWH Coughtrie, Department of expressed in the fetus, and SULTs may in fact be a major detoxification Molecular & Cellular Pathology, University enzyme system in the developing human. The X-ray crystal structures of of Dundee, Ninewells Hospital and three SULTs have been solved and combined with mutagenesis experiments Medical School, Dundee DD1 9SY, Scotland, UK. and molecular modelling, they have provided the first clues as to the factors Tel: +44 (0)1382 632510 that govern the unique substrate specificities of some of these enzymes. In Fax: +44 (0)1382 640320 the future these and other studies will facilitate prediction of the fate of E-mail: [email protected] chemicals metabolised by sulfation. Variation in sulfation capacity may be important in determining an individual’s response to xenobiotics, and there has been an explosion in information on sulfotransferase polymorphisms and their functional consequences, including the influence of SULT1A1 genotype on susceptibility to colorectal and breast cancer.
    [Show full text]
  • Molecular Genetic Markers Associated with Boar Taint – Could Molecular Genetics Contribute to Its Reduction?
    RESEARCH IN PIG BREEDING, 13, 2019 (1) REVIEW: MOLECULAR GENETIC MARKERS ASSOCIATED WITH BOAR TAINT – COULD MOLECULAR GENETICS CONTRIBUTE TO ITS REDUCTION? Falková L. and Vrtková I. Laboratory of Agrogenomics, Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Czech Republic Abstract Boar taint is an unpleasant meat odour or taste occurring in uncastrated male pigs usually. Naturally occurring compounds – androstenone, skatole and indole – and their accumulation in the adipose tissue of entire boars cause the perceptible boar taint. Individual levels or combination of these compounds lead to perception of boar taint observed during culinary process and pork consumption. The ban on surgical castration based on EU legislation makes it necessary to find a solution that enables our producers to adapt to these new conditions and ensure their competitiveness. Alternative options include the use of molecular genetic markers that affect the levels of androstenone and skatole in pig adipose tissue by Marker Assisted Selection (MAS). The aim of this review is to provide overview in recent facts in the field of molecular genetics and possibility in boar taint reduction solution. Key Words: Boar taint, genomic markers, selection Boar taint degree while in the skatole level besides genetic Boar taint is an unpleasant odour or taste of and age factor the nutrition and environmental meat from entire male pigs. The occurrence in factors play key role (Zamartskaia and Squires, adult pig males is connected with the hormone 2009). Skatole occurs in both male and female changes during maturation (Duijvesteijn et al., pigs but in male ones three times more (Wesoly 2010).
    [Show full text]
  • SULT1A3 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science SULT1A3 Rabbit pAb Catalog No.: A12357 Basic Information Background Catalog No. Sulfotransferase enzymes catalyze the sulfate conjugation of many hormones, A12357 neurotransmitters, drugs, and xenobiotic compounds. These cytosolic enzymes are different in their tissue distributions and substrate specificities. The gene structure Observed MW (number and length of exons) is similar among family members. This gene encodes a 34kDa phenol sulfotransferase with thermolabile enzyme activity. Four sulfotransferase genes are located on the p arm of chromosome 16; this gene and SULT1A4 arose from a Calculated MW segmental duplication. This gene is the most centromeric of the four sulfotransferase 34kDa genes. Read-through transcription exists between this gene and the upstream SLX1A (SLX1 structure-specific endonuclease subunit homolog A) gene that encodes a protein Category containing GIY-YIG domains. Primary antibody Applications WB,IHC,IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 6818 P0DMM9 IHC 1:50 - 1:100 Immunogen 1:50 - 1:100 IF Recombinant fusion protein containing a sequence corresponding to amino acids 1-100 of human SULT1A3 (NP_808220.1). Synonyms SULT1A3;HAST;HAST3;M-PST;ST1A3;ST1A3/ST1A4;ST1A5;STM;TL-PST Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using SULT1A3 antibody (A12357) at 1:3000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution.
    [Show full text]