From the Lower Permian of Eastern Europe

Total Page:16

File Type:pdf, Size:1020Kb

From the Lower Permian of Eastern Europe Paleontological Research, vol. 9, no. 1, pp. 79–84, April 30, 2005 6 by the Palaeontological Society of Japan A new genus of the family Amblypteridae (Osteichthyes: Actinopterygii) from the Lower Permian of Eastern Europe ARTE´ M M. PROKOFIEV Department of Fishes and Fish-like Vertebrates, Paleontological Institute – PIN, Russian Academy of Sciences, Profsoyuznaya Street, 123, Moscow 117997, Russia (e-mail: [email protected]) Received February 14, 2002; Revised manuscript accepted February 22, 2005 Abstract. A new genus and species of the family Amblypteridae, Tchekardichthys sharovi,fromthe Lower Permian of Eastern Europe (Perm Region of Russia) is described. It can be distinguished from all the known members of the family in the position of the fins and number of fin rays, characters of scalation and cranial roofing bones ornamentation, etc. The newly described taxon apparently lived in estuarine or brackish-water habitats. Key words: actinopterygians, Amblypteridae, Eastern Europe, Lower Permian, new genus and species The elonichthyiform family Amblypteridae is rep- second is situated at the mouth of the Tchekarda resented by five genera and numerous species from River and immediately downstream of the latter, and the Carboniferous to Lower Permian of France, Ger- the third one is situated on the left bank of the Sylva many, Czech Republic, India (Kashmir) and South River 850 m downstream from the mouth of the America, and from the Upper Permian of the Ural Tchekarda River. The specimens described herein are region in Eastern Europe (Agassiz, 1833–1844; Berg, found in the second site. The Tchekarda layers belong 1940; Dunkle and Schaeffer, 1956; Berg et al., 1964; to the Koshelevskaya Formation of the Irenskian Re- Heyler, 1969, 1976, 1997; Beltan, 1978). From Eastern gional Division of the Kungurian Stage (uppermost Europe two genera (Amblypterus Agassiz and Am- Lower Permian) (Anonymous, 1993). This locality blypterina Berg) are known from the Upper Permian contains numerous remnants of plants and insects (Kazanian Regional Division, which is correlated with (Ponomareva et al., 1998), but the fishes are extremely Wordian-Capitanian), and no representatives of the rare. The Tchekardian deposits were formed in the family have been found hitherto in the Lower Permian initial stage of arid lithogenesis in shore-sea con- of this region. However, two undescribed specimens ditions; they represent the underwater and surface of Amblypteridae from the terminal Lower Permian cones of the source of a mountain river delta (Pono- Tchekarda Locality (Perm Region of Russia) were mareva et al., 1998). discovered recently in a collection of the Paleonto- logical Institute in Moscow (PIN). These specimens Systematic paleontology represent a new genus and species, which is described in the present paper. Order Elonichthyiformes (sensu Kazantseva- Selezneva, 1977) Notes on geography and stratigraphy Family Amblypteridae Romer, 1945 The Tchekarda locality is situated on the north- Diagnosis.—See Gardiner (1963: 290), with addi- western slope of Krasnaya Gora (¼ Red Mountain) tional remarks of Dietze (2000). on the left bank of the Sylva River, 800 m northwest Remarks.—Gardiner (1963) mentioned three gen- from Tchekarda Village (Figure 1). This locality is era (Amblypterus, Paramblypterus and Amblypterina) divided into three sites, one of them is situated 160 m in this family. However, the genus Paramblypterus upstream from the mouth of the Tchekarda River, the Sauvage sharply differs from the Amblypteridae by 80 Arte´m M. Prokofiev Figure 1. Maps of a part of the Western Ural region illustrating the location of the fossil site. Scale bars: a.50km;b.2km. the fragmentation of the cheek bones and belongs to Carboniferous of Uruguay and the Carboniferous- the family Paramblypteridae (Blot, 1966). However, Permian of Brazil to the Amblypteridae. According to recently Dietze (2000) united Paramblypterus and the original description (Dunkle and Schaeffer, 1956), Amblypterus into a single family again; according to the genus Tholonotus from the Lower Permian of her analysis (p. 954, text-fig. 20) these genera are Brazil also undoubtedly belongs to this family. The sister-groups, so their separate familial position can- taxonomic position of the genus Korutichthys,origi- not be excluded. Beltan (1978) has added two new nally referred to the Amblypteridae (Kazantseva- genera (Daphnaechelus and Tholonosteon)fromthe Selezneva, 1980), is uncertain (see discussion). New Lower Permian fish from Eastern Europe 81 Figure 2. Tchekardichthys sharovi g. et sp. nov., Lower Permian (Kungurian) of Tchekarda Locality (Perm Region, Russia): a. holo- type, PIN, nr. 1698-1 (natural size); b. paratype, PIN, nr. 1698-2 (natural size). Tchekardichthys gen. nov. Etymology.—Species named in honour of the col- lector, A.G. Sharov. Type species.—Tchekardichthys sharovi sp. nov.; Diagnosis.—Small fish of about 8 cm length. Parie- monotypic genus. tals approximately three times shorter than frontals. Etymology.—From Tchekarda locality, and -ichthys Dermosphenotic contacting the nasal. Suspensorium (Greek), for a fish; masculine. nearly vertical. Dermohyal present, but epipreopercle Diagnosis.—Same as that of the type species. absent. Opercle 1.5 times deeper than subopercle. Bones of skull and pectoral girdle ornamented with Tchekardichthys sharovi sp. nov. coarse ridges of ganoine. Trunk deeply fusiform. Cau- dal peduncle length equals to its least depth. Dorsal Holotype.—PIN, nr. 1698-1 (Figure 2,a), incomplete contour much arched in front of dorsal fin. Dorsal fin specimen lacking most parts of the skull and of the origin in front of the anal fin and partly above it. Both pectoral fins, with counterpart; left bank of the Sylva dorsal and anal fins large and triangular, deeper than River at the mouth of the Tchekarda River, Suksun long. Anal fin base slightly shorter than dorsal fin Division of Perm Region, Russia; upper part of Lower base. Pelvic fins of moderate size, placed slightly Permian (Kungurian); collector: A.G. Sharov, 1950th. nearer to pectorals than to anal. All fins with minute Paratype.—PIN, nr. 1698-2 (Figure 2,b), nearly fringing fulcra and with rays articulated and distally complete specimen, with incomplete counterpart, from bifurcating. Approximate numbers of fin-rays: dorsal the type locality. 25; anal 20; pelvic 16. Flank scales moderately large, 82 Arte´m M. Prokofiev approximately as deep as long, with thin but conspic- Range.—Known only from the type locality and uous longitudinal ridges. Distinctive patches of small horizon. scales under bases of dorsal and anal fins absent. Ridge scutes on dorsal contour of body before dorsal Discussion fin origin 15 in number. Description (Figure 3,a).—Besides the characters The characters of Tchekardichthys well agree with given in the diagnosis there are several additional Gardiner’s (1963) diagnosis of the Amblypteridae. features. The maximum body depth is contained ap- Unfortunately the skull is incompletely known in this proximately 3 times in the total length of the fish. The new genus so that most of the characters used by Di- caudal peduncle is moderately deep, being two times etze (2000) for definition of the family Amblypteridae smaller than the maximum body depth. The head is are unknown. However, Tchekardichthys agrees with moderately long, being approximately one-fifth of the Dietze’s diagnosis of the Amblypteridae in possession total length. The snout is rounded in dorsal view. The of a little ornamentation of the scales. The new genus orbit is relatively small. The jaws and a part of the differs from Amblypterus Agassiz 1833 in the anal fin rostral portion of the skull are missing. The roofing base being shorter than (vs. approximately equal to) bones of the skull are ornamented with coarse longi- the dorsal fin base, in the pelvic fins being positioned tudinal ridges of ganoine. The postrostral is rather slightly closer to the pectorals than to the anal fin broad at the contact with the frontals. The nasal bones (vs. the opposite condition in Amblypterus)andinthe are long, trapezoidal. The frontals are the longest scales being more distinctly ridged (vs. smooth or bones of the skull roof (Figure 3,b), subrectangular in nearly so). Tchekardichthys is distinguished from Am- shape, and slightly asymmetrical. The parietals are blypterina Berg, 1940 in the much shorter dorsal fin small and almost square, both of the same size and (twice longer than the anal fin and comprising ap- shape. The pineal foramen is absent. Both dermos- proximately 50 rays in Amblypterina), in the much phenotic and dermopterotic are large and diamond- more numerous ridge scutes before the dorsal fin (15 shaped. The dermopterotic is nearly 1.2 times longer vs. only 3 in Amblypterina), in the absence of patches than the dermosphenotic. The elongate subtriangular of small scales under the bases of the unpaired fins, posttemporals are preceded by a pair of the nearly and in the scales on the body sides nearly as deep as triangular, narrow extrascapulars. The presence or long (vs. deeper than long). The new genus differs absence of a medial extrascapular cannot be deter- from Tholonotus Dunkle et Schaeffer, 1956 in the mined owing to preservation of the specimens. The smaller number of dorsal and anal fin rays (25 and 20 bones of the suborbital series are not clearly seen. The vs. 37 and 27 in Tholonotus),intheanalfinoriginbe- upper branch of the preopercle is not fragmented into ing in front of the posterior extremity of the dorsal fin small separate elements. The subopercle is 1.5 times and in the smaller body size (up to 8 cm vs. 13 cm in lower than the opercle. Tholonotus). Tchekardichthys differs from Daphnae- The dorsal fin origin is remote. The anal fin is ori- chelus Beltan, 1978 in the large parietals and striated ginated under mid-base of the dorsal fin (holotype) (vs. tuberculated) ornamentation of the cranial bones. or slightly anteriorly (paratype). The pectoral fins are The new genus is distinguished from Tholonosteon incompletely preserved. The pelvic fins are deeper Beltan, 1978 in the shorter caudal peduncle (notice- than long.
Recommended publications
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
    Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently.
    [Show full text]
  • Sedimentology and Biostratigraphy of Bart Reef: a New Mud-Mound Discovered in the Northern Sverdrup Basin, West-Central Ellesmere Island
    Sedimentology and Biostratigraphy of Bart Reef: A New Mud-Mound Discovered in the Northern Sverdrup Basin, West-Central Ellesmere Island Michael Wamsteeker* University of Calgary, Calgary, AB [email protected] and Benoit Beauchamp and Charles Henderson University of Calgary, Calgary, AB Summary Lower Permian (Sakmarian-Kungurian) carbonate rocks of the Sverdrup Basin, Canadian Arctic Archipelago, record the initiation of a dramatic cooling of ocean temperature and regional climate.1 Asselian-Sakmarian tropical-like climate cooled episodically to subtropical, temperate and finally polar-like conditions by the Kungurian.2 Cooling is recognized by monitoring changes in fossils, lithology and sedimentary textures within Permian shallow marine strata. While initial cooling during the Sakmarian from tropical to subtropical conditions is undoubtably geologically rapid, the rate of change is currently unknown. Measurement of this rate is currently being investigated by monitoring habitation depth of temperature sensitive tropical fossils on the Asselian-Sakmarian carbonate shelf, while timing is determined using the conodont biostratigraphic zonation developed for the Sverdrup Basin in conjunction with absolute dates on the International Time Scale.3 Fieldwork carried out in Summer 2007 included the first description of a new tract of Asselian mud mounds on the northern margin of the Sverdrup Basin. Contained within the Nansen Formation, this tract has been informally named the Simpson reef tract. This study documents the sedimentology and conodont biostratigraphy of Bart reef; a member of this tract. Spectacular outcrop exposure of reef and off-reef strata has enabled a truely thorough characterization including the correlation of reef and off-reef facies. Conodont biostratigraphic dating of correlative off-reef facies indicate a middle to late Asselian age for Bart reef.
    [Show full text]
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian.
    [Show full text]
  • Wandrawandian Siltstone, New South Wales: Record of Glaciation?
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2007 Lithostratigraphy of the late Early Permian (Kungurian) Wandrawandian Siltstone, New South Wales: Record of glaciation? S. G. Thomas Southern Methodist University, [email protected] Christopher R. Fielding University of Nebraska-Lincoln, [email protected] Tracy D. Frank University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Thomas, S. G.; Fielding, Christopher R.; and Frank, Tracy D., "Lithostratigraphy of the late Early Permian (Kungurian) Wandrawandian Siltstone, New South Wales: Record of glaciation?" (2007). Papers in the Earth and Atmospheric Sciences. 105. https://digitalcommons.unl.edu/geosciencefacpub/105 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Australian Journal of Earth Sciences 54 (2007), pp. 1057–1071; doi: 10.1080/08120090701615717 Copyright © 2007 Geological Society of Australia; published by Taylor & Francis. Used by permission. Submitted March 22, 2006; accepted June 21, 2007. Lithostratigraphy of the late Early Permian (Kungurian) Wandrawandian
    [Show full text]
  • Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition
    Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate.
    [Show full text]
  • The Carboniferous Evolution of Nova Scotia
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 The Carboniferous evolution of Nova Scotia J. H. CALDER Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia, Canada B3J 2T9 Abstract: Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid- Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic.
    [Show full text]
  • Theagarten Lingham-Soliar Origin and Evolution
    Theagarten Lingham-Soliar The Vertebrate Integument Volume 1 Origin and Evolution The Vertebrate Integument Volume 1 The arid and barren landscape walled by plateaus, represents the hostile environment of the Cape Karoo in South Africa (a region pioneered by the author’s maternal family). The rocks of the Karoo System were deposited between the Carboniferous (360–286 million years ago) and Early Jurassic (208–187 million years ago) and are known for some of the most important finds of mammal-like reptiles in the world (Chap. 8). Photo, B Lingham (circa 1922, family archive) Theagarten Lingham-Soliar The Vertebrate Integument Volume 1 Origin and Evolution 123 Theagarten Lingham-Soliar Life Sciences University of KwaZulu-Natal Durban South Africa Present address Environmental Sciences Nelson Mandela Metropolitan University Port Elizabeth South Africa ISBN 978-3-642-53747-9 ISBN 978-3-642-53748-6 (eBook) DOI 10.1007/978-3-642-53748-6 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013957128 Ó Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • Paleozoic Stratigraphy and Petroleum Systems of the Western and Southwestern Deserts of Iraq
    GeoArabia, Vol. 3, No. 2, 1998 Paleozoic Stratigraphy and Petroleum Systems, Iraq Gulf PetroLink, Bahrain Paleozoic Stratigraphy and Petroleum Systems of the Western and Southwestern Deserts of Iraq Adnan A.M. Aqrawi Smedvig Technologies ABSTRACT A stratigraphic scheme for the Paleozoic of the Southwestern Desert of Iraq is proposed based upon the review of recently published data from several deep wells in the western part of the country and from outcrops in other regions in Iraq. The main formations are described in terms of facies distribution, probable age, regional thickness, and correlations with the well-reported Paleozoic successions of the adjacent countries (e.g. Jordan and Saudi Arabia), as well as with the Thrust Zone of North Iraq. The Paleozoic depositional and tectonic evolution of the Western and Southwestern Deserts of Iraq, particularly during Cambrian, Ordovician and Silurian, shows marked similarity to those of eastern Jordan and northern Saudi Arabia. However, local lithological variations, which are due to Late Paleozoic Hercynian tectonics, characterize the Upper Paleozoic sequences. The Lower Silurian marine “hot” shale, 65 meters thick in the Akkas-1 well in the Western Desert, is believed to be the main Paleozoic source rock in the Western and Southwestern Deserts. Additional potential source rocks in this region could be the black shales of the Ordovician Khabour Formation, the Upper Devonian to Lower Carboniferous Ora Shale Formation, and the lower shaly beds of the Upper Permian Chia Zairi Formation. The main target reservoirs are of Ordovician, Silurian, Carboniferous and Permian ages. Similar reservoirs have recently been reported for the Western Desert of Iraq, eastern Jordan and northern Saudi Arabia.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]