<<

Carbon and strontium isotope stratigraphy of the from Nevada and China: Implications from an icehouse to greenhouse transition

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

Kate E. Tierney, M.S.

Graduate Program in the School of Sciences

The Ohio State University

2010

Dissertation Committee:

Matthew R. Saltzman, Advisor

William I. Ausich

Loren Babcock

Stig M. Bergström

Ola Ahlqvist

Copyright by

Kate Elizabeth Tierney

2010

Abstract

The Permian is one of the most important intervals of earth history to help us

understand the way our climate works. It is an analog to modern climate

because during this interval climate transitioned from an icehouse state (when

glaciers existed extending to middle latitudes), to a greenhouse state (when there

were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and

the presence of plants thriving in the terrestrial system. This analog to the modern

system allows us to investigate the mechanisms that cause global warming.

Scientist have learned that the distribution of carbon between the ,

atmosphere and lithosphere plays a large role in determining climate and changes

in this distribution can be studied by chemical proxies preserved in the rock

record. There are two main ways to change the distribution of carbon between

these reservoirs. Organic carbon can be buried or silicate minerals in the

terrestrial realm can be weathered. These two mechanisms account for the long

term changes in carbon concentrations in the atmosphere, particularly important

to climate. In order to study these changes, this study investigates chemical

proxies that reflect the operation of these mechanisms.

ii Marine limestones preserve the two proxies that we use to investigate changes

13 87 86 13 to carbon, δ Ccarb and Sr/ Sr. δ Ccarb primarily records changes to the amount

of organic carbon that is being buried (added to the lithospheric reservoir).

87Sr/86Sr records the weathering of silicate weathering. By examining these

proxies, a better understanding of what was happening to the carbon system

during this pivotal interval.

Three lithologic sections have been examined and samples collected for

analysis, two sections in Nevada and one in Southern China. These sections are

long ranging in time and thick, implying that they are a detailed record of the -atmosphere system through the Permian System. Analysis from samples collected at these localities give a detailed record of changes, previously unreported in the literature. This dissertation describes these records and begins to

interpret their climatic interpretations.

iii

Dedication

To my son, Norman

iv

Acknowledgments

My thanks go to Matt Saltzman, my long-time adviser. Also, Brad Cramer, your patience is the stuff of legend, and you can have your couch back now. The faculty of our school, thank you for you time and sincere interest in my stream of questions. And my peers and friends in the Orton Sauna, I’ll clean up my station now.

v

Vita

June 1991 …………………………………….…Roosevelt High School, Seattle WA

March, 2002………………..….B.A. Geological Sciences, The Ohio State University

March, 2002………………...……..….B.A. Anthropology, The Ohio State University

March, 2005……………………M.S. Geological Sciences, The Ohio State University

2009-present...... Graduate Teaching Associate, The Ohio State University

2009 ...... Summer Quarter Lecturer, The Ohio State University

2008-2009 ...... Graduate Teaching Associate, The Ohio State University

2007-2008 ...... National Science Foundation GK-12 Fellow

2002-2007 ...... Graduate Teaching Associate at The Ohio State University

2005...... Appalachian Basin Industrial Association Fellow

2003-2006...... Summer Quarter Lecturer at The Ohio State University, Marion

2000-2007 ...... Undergraduate Teaching Associate at The Ohio State University

2000-2001 ...... Undergraduate Research Assistant at the Microscopic and Analytical

Research Center, Department of Geological Sciences at The Ohio

State University

Major interest: Geological Sciences

vi

Table of Contents

Abstract…………………………………...………………………………..…..……...ii

Dedication……………………………………………………………….……..……..iv

Acknowledgments……………………………………………………….……..……...v

Vita……………………………………………………………………..…..….……...vi

List of Tables……………………………………………………………..………....viii

List of Figures…………………………………………………………………...…....ix

Chapter 1: Introduction……………………………………………………...... 1

Chapter 2: Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada, USA and Tieqaio section, Laibin, Province, P. R. China: a high resolution record sheds light on climatic event timing, level change, and flux variation through an interval of systemic reorganization...... 11

Chapter 3: High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate...... 39

Chapter 4: An early Permian (-) carbon isotope excursion from Nevada...... 65

Combined References..…………………………....…………………………………90

Appendix A...... 107

vii

List of Tables

Table 1. data from Nine Mile Canyon, Nevada, USA...... 108

Table 2. data from Rockland Ridge, Nevada, USA...... 124

Table 3. data from Tieqiao, Guanxi Province, China...... 137

viii

List of Figures

Introduction

Figure 1.1 Model of CO2 through the ...... 1

Figure 2.1 Phanerozoic 87Sr/86Sr curve (Veizer, 1999)...... 12

Figure 2.2 Paleogeographic map in the early Permian showing localities...... 14

Figure 2.3 Locality map showing the Pequop Mountians, Nevada...... 15

Figure 2.4 Locality map showing Tieqiao Section, Guangxi, China...... 16

13 87 86 Figure 2.5 Stratigraphy and δ Ccarb and Sr/ Sr data in Nevada...... 18

13 87 86 Figure 2.6 Stratigraphy and δ Ccarb and Sr/ Sr data in China...... 19

Figure 2.7 Permian Tectonic events and 87Sr/86Sr data...... 21

Figure 2.8 87Sr/86Sr data changes in slope...... 23

Figure 2.9 87Sr/86Sr plotted against Sr ppm from Nevada...... 25

Figure 2.10 87Sr/86Sr plotted against Sr ppm from China...... 26

Figure 2.11 87Sr/86Sr plotted with data from Korte et al., 2006...... 28

Figure 3.1 Paleogeographic map in the early Permian showing localities...... 41

Figure 3.2 Locality map showing the Pequop Mountians, Nevada...... 42

Figure 3.3 Locality map showing Tieqiao Section, Guangxi, China...... 43

Figure 3.4 Permian timescale with regional zonation...... 45

13 18 Figure 3.5 Cross plot of δ Ccarb and δ O data from Nevada and China...... 48

ix 13 Figure 3.6 Permian δ Ccarb data plotted in stratigraphic order against time...... 50

13 Figure 3.7 δ Ccarb data from Pequop Mountains plotted against stratigraphy...... 53

13 Figure 3.8 δ Ccarb data from Tieqiao plotted against stratigraphy...... 55

13 13 Figure 3.9 Korte et al., 2005 δ Ccarb data plotted again time and composite δ Ccarb

data (this study) plotted against time...... 58

Figure 4.1 Paleogeographic map in the early Permian showing localities...... 66

Figure 4.2 Locality map showing the Pequop Mountians, Nevada...... 67

Figure 4.3 Asselian- timescale with regional conodont zonations...... 69

Figure 4.4 δ13Ccarb data from Asselian-Sakmarian of Nevada with lithologic

column, defined glacial intervals, regional sea-level curves and pCO2 curve...... 71

13 18 Figure 4.5 δ Ccarb plotted against δ O data from Nine Mile Canyon...... 73

13 Figure 4.6 Model of potential causes of δ Ccarb excursions...... 75

x

Chapter 1 Introduction

Global climate change is one of the greatest challenges of modern science.

In order to constrain models that seek to predict the path of future climate changes, it is necessary to fully document and interpret ancient analogs. The

interval of geologic time that

is considered to be most

similar to the modern

() ice is the

early Permian Period (~300-

270 million ago). Both

the early Permian and recent

times share similarities in

low atmospheric carbon

dioxide (CO2) levels, low

sea-level, and widespread

glaciation (Crowell, 1995;

Kovalevich et al., 1998;

Berner, 2004; Lowenstein et

1

al., 2005). Atmospheric CO2 levels ~ 300 million years ago decreased to near

modern levels before rising again later in the Permian (Figure 1, Royer et al.,

2004; Berner, 2005). Glaciers existed in the of

Gondwana, which was later assembled into part of the , Pangea, Berner, 2004 and extended to the mid-latitudes (e.g., Isbell et al., 2003). Glacial conditions

continued through the early Permian, although the timing of deglaciation based on

physical evidence remains controversial (Veevers and Powell, 1987; Veevers et

al., 1994; Isbell et al., 2003; Fielding et al., 2006; Frank et al., 2006). My

dissertation documents geochemical proxy evidence for the global carbon cycling

during the Permian icehouse to greenhouse (ice free) transition. This evidence

helps constrain the timing and cause(s) of deglaciation.

Processes

There are two geologic processes that remove CO2 from the ocean-

atmosphere system and store it in rock reservoirs (lithosphere): 1) burial of

photosynthetically produced organic carbon; and 2) burial of inorganic carbon as

limestone during silicate weathering (Berner, 2004). If a decrease in organic

carbon burial played a role in the Permian icehouse-greenhouse transition, this

would be recorded in changes in the carbon isotopic composition of seawater

13 (δ Ccarb). Similarly, a change in the rate of weathering of silicate rocks should

have left a record in the strontium isotopic composition (87Sr/86Sr) of seawater.

2

Carbon Isotopes

13 Time periods of globally elevated δ Ccarb values are commonly associated with episodes of enhanced Corg burial (Arthur et al., 1987; Derry et al., 1992;

Berner, 2006). The net effect of organic carbon burial should be the drawdown of atmospheric pCO2 (Kump and Arthur, 1999). Previously published work on

13 13 δ Ccarb values shows consistently elevated δ Ccarb values preserved in Permian carbonates. This indicates large amounts of organic carbon burial and generally reduced pCO2. However, fluctuations may indicate relative decreases in organic carbon burial that contributed to rising pCO2 that has been associated with

13 deglacial transitions (e.g., Montañez et al., 2007). By coupling theδ Ccarb record with trends in 87Sr/86Sr that can be used to infer transient changes (steady-state perturbations) in rates of silicate weathering, the documented curves will be used in box models of the geochemical carbon cycle to examine potential factors that could change pCO2 during the icehouse greenhouse climate transition.

Furthermore, it is critical that these trends be compared with geologic indicators of climate change such as palynology and sedimentology (e.g., Ziegler et al.,

2002).

Strontium Isotopes

The Permian seawater 87Sr/86Sr shift to less radiogenic values has been interpreted by Martin and Macdougall (1995) to reflect increased aridity in the

Pangean super-continental interior, which is thought to have occurred at some early of the Permian based on sedimentologic, palynologic, and pedogenic

3

evidence (e.g., Tabor and Montañez, 2002; 2004; Ziegler et al., 2002; Tramp et

al., 2004; Montañez et al., 2007). The reduction in net precipitation could have

decreased silicate weathering, thereby acting to increase atmospheric pCO2,

triggering the end of the Permo- glaciation (cf. Berner, 2006).

Although recent advances have been made in the stratigraphic resolution

of both the evidence for increased aridity in the Permian and the temporal extent

of glaciation (e.g., Tabor and Montañez, 2002; Isbell et al. 2003; Jones and

Fielding, 2004), additional work is needed to resolve cause-and-effect

relationships (Montañez et al., 2007). If the 87Sr/86Sr decrease in the Permian can

be interpreted to reflect changes in the hydrologic cycle (Martin and Macdougall,

1995), the most significant changes occurred in the late early to middle Permian, however, a growing amount of literature indicates that a major atmospheric reorganization over the Pangean interior (Parrish and Peterson, 1988; Parrish,

1993; Gibbs et al., 2002) was already well-established by the late - early Permian (Tabor and Montañez, 2002; 2004; 2005; Tramp et al., 2004;

Montañez et al., 2007). Similarly, there is increasing evidence that the youngest global advance of glaciers during the Late (glacial stage III of

Isbell et al., 2003) has an upper stratigraphic limit of the Artinskian (early

Permian; Isbell et al., 2003; Jones and Fielding, 2004; Montañez et al., 2007), which is substantially earlier than previous interpretations depicting a more protracted glaciation ending in the middle to late Permian (Veevers and Powell,

1987; Crowell, 1995). These stratigraphic uncertainties may account for the

4

discrepancies among numerical climate models for the early-middle Permian

(e.g., Hyde et al., 2006).

An hypothesis for global deglaciation in the Permian may involve

increased aridity and a transient reduction in silicate weathering that produced a

steady-state perturbation towards higher pCO2; this scenario predicts that the

icehouse-greenhouse transition have a close chronostratigraphic link with the

onset of the decline in 87Sr/86Sr values (Martin and Macdougall, 1995). However,

the need to address multiple working hypotheses for linkages among the carbon

cycle, climate, and 87Sr/86Sr is critical. Although a decrease in continental

weathering could produce a reduced flux of radiogenic Sr entering the global

ocean and account for the 87Sr/86Sr drop seen in the Permian, there are other

possible interpretations of these data that I will explore by comparing my

biostratigraphically-calibrated Sr isotope curve to geologic evidence of tectonic

events in various . For example, the Sr flux may have remained essentially

constant, while a reduction in the 87Sr/86Sr ratio of the dominant source rocks being weathered (volcanic versus non-volcanic terrestrial silicates) could account for the observed trend. Alternatively, an increase in hydrothermally derived Sr to the global ocean from mid-ocean ridges would have a similar effect (Faure and

Mensing, 2004).

The need to address multiple working hypotheses for linkages among the carbon cycle, climate, and 87Sr/86Sr is further underscored by the fact that the

turnaround towards increasing 87Sr/86Sr values later in the Permian is not

5

apparently accompanied by a return to glacial conditions. Therefore this rise in

87 86 Sr/ Sr has not been linked to enhanced silicate weathering that reduced pCO2.

In this instance, a more plausible scenario involves a lowering of the ratio of volcanic to non-volcanic weathering (e.g., Berner, 2006b). Because the onset of declining 87Sr/86Sr values is poorly constrained by comparison to the later parts of the Permian record that include the turnaround to more radiogenic values, the proposed investigation to more precisely define the timing of this older inflection point will allow for more detailed comparisons between the two events.

Part I

This chapter covers the 87Sr/86Sr data produced from three sections in two localities, the Pequop Mountains in Nevada and the Tieqiao Section in Laibin,

China. These data give insight into the timing of the change in silicate weathering and related CO2 drawdown.

Part II 13 This chapter shows the composite δ Ccarb data from Nevada and China from the Ghzelian (upper Pennsylvanian) through the lower (uppermost

Permian). This curve is high resolution and biostratigraphically constrained.

Here I outline the changes that happen to the carbon cycle through this volatile interval in earth’s climate history.

Part III

6

This chapter examines in detail the lower Permian interval in detail. This interval is the peak of the LPIA, however is poorly constrained in time and the cause of this extreme climate event is not well defined.

References

Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The - oceanic anoxic event II: Palaeoceanographic controls on organic matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publication, v. 26, pp. 401-420.

Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. American Journal of Science, v. 304, pp. 438-453.

Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p.

Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 over Phanerozoic time. Geochimica et Cosmochimica Acta, v. 70, pp. 5653-5664.

Berner, R.A., 2006b. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295- 302.

Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74.

Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and environmental change in the late : Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 1317- 1329.

Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley, 928 p.

Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern discloses multiple alternating 7

glacial and non-glacial intervals. Geological Society of America, Abstracts with Programs, v. 38, p. 317.

Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia provides a framework for examining far-field stable isotope records. Geological Society of America, Abstracts with Programs, v. 38, pp. 318.

Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B., 2002. Simulations of Permian climate and comparisons with climate sensitive sediments. Journal of , v. 110, pp. 33-55.

Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006. Siberian glaciation as constraint on Permian-Carboniferous CO2 levels. Geology, v. 34, pp. 421-424.

Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in : Was glaciation responsible for the development of cyclothems? In: Chan, M.A. and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End- Members in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24.

Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153- 156.

Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, v. 106, pp. 695-712.

Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.

Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, v. 69, pp. 1701-1719.

Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the Permian/ Boundary: A record of climate change. Chemical Geology, v. 125, pp. 73-99.

8

Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2- forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91.

Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the – A comparison. Sedimentary Geology, v. 56, pp. 261-282.

Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v. 101, pp. 215-233.

Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. Geological Society of America, Today, v. 14, pp. 4-10.

Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions. Geology, v. 30, pp. 1127-1130.

Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of soils in the Permo Pennsylvanian Wichita and Bowie Groups, north-central , USA: Implications for western equatorial Pangean paleoclimate during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851- 884.

Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 127- 146.

Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences from paleopedology and magnetism of the Permian loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116, pp. 671-686.

Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487.

Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C., 9

(Eds.), Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoir, v. 184, pp. 11-171.

Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras of Prince Edward Island, Canada: Differentiating global from local effects of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238.

10

Chapter 2

Permian 87Sr/86Sr from carbonates of the Pequop Mountains, Nevada, USA and

Tieqaio section, Laibin, Guangxi Province, China: Implications for climate, sea

level change, and

Abstract

One of the largest drops in the Phanerozoic 87Sr/86Sr curve occurred during the

Permian. A new curve has been developed spanning this interval, including more than 100 new data points, from thick carbonate-rich sections in two localities.

Most of the was collected from two sections in the Pequop Mountains,

Nevada. The upper Cisuralian, , and a large part of the were collected in southern China at the Tieqiao section. These sections have been collected in conjunction with new and fusulinid studies of these sections. Through this nearly 49 million years of Earth history, there is a first order trend that descends from high values near 0.7084 in the base of the Permian to low values below 0.7070 in the (mid-Guadalupian). This first order curve can be subdivided into eight legs, each defined by an inflection point in the curve. If they represent primary seawater values and are not an artifact of local sedimentation rates, these changes in the slope indicate geologic events that reflect global changes in the balance of the fluxes that determine the sea-water

11

87Sr/86Sr ratio. Continental Sr fluxes could be affected by variation in climate or sea level, a switch in the dominant rock that was being weathered, or a variation in spreading rates at mid-ocean ridges.

Introduction

The Permian is known to be a time of systemic reorganization of the Earth system, including multiple large extinction events, a long-term change in climate state and major chemical events that have been preserved in the rock record

(Isbell et al., 2003; Isbell et al., 2006; Korte et al., 2006; Fielding et al., 2008;

Wignall et al., 2009; Tierney et al., in prep. a, in prep. b). The Permian climate

12

transition from an ice covered to an ice free world is the most complete deep-time

analogy that exists for modern climate change because it is the only other time

that such an icehouse to greenhouse transition occurred on a fully vegetated planet

(Montañez et al., 2007). Examining the 87Sr/86Sr curve may provide a proxy for

atmospheric carbon dioxide (by way of changes in silicate weathering) (Berner,

2006) as well as a tool for stratigraphic correlation through a pivotal interval in

Earth history.

Phanerozoic seawater 87Sr/86Sr variation has been investigated by

numerous groups (Peterman et al., 1970; Veizer and Compston, 1974; Faure et al.,

1978; Burke et al., 1982, Veizer et al., 1999). Studies of specific time intervals

have also been published (e.g., Korte et al., 2005), providing detailed information

on particular events in the 87Sr/86Sr record and offering explanations for what geologic events were driving the trends. The riverine input of Sr to seawater is several times larger than the hydrothermal flux at mid-ocean ridges, which provides mantle-derived strontium (Davis et al., 2003; Kump and Arthur, 1997).

The continental flux has several factors that contribute to the 87Sr/86Sr value

(Palmer and Edmond, 1989), including the lithology of the rocks being weathered

( has less radiogenic Sr compared to granite) and the rates of physical and

chemical weathering (Shields et al., 2003; Dessert et al., 2003). Tectonic uplift increases exposure of weatherable material and together with climate controls chemical weathering rates and solute transport (Stallard, 1995).

13

Published strontium isotope studies on the Permian have thus far focused on measurements from low-Mg biogenic calcite, particularly brachiopods (e.g.,

Korte et al., 2006) as well as conodont apatite (Martin and Macdougall, 1995) .

These were screened to avoid diagenetic alteration and overprinting of the

87Sr/86Sr value. This study uses non-biogenic carbonate from limestones in order to overcome the stratigraphic limitations of using fossils as the sample medium and will allow a meter-by-meter evaluation of stratigraphic relationships between

87Sr/86Sr values and all other stratigraphic indicators. With existing screened biogenic calcite measurements as a baseline for comparison (e.g., Korte et al.

2006), the stratigraphic intervals not previously covered by biogenic samples can be measured on samples taken from the matrix of carbonate rocks, allowing a continuity of high-resolution analysis that has previously not been achieved.

14

Geologic Setting

During the Permian most tectonic plates were assembled into the supercontinent Pangea (Scotese, 1998; Figure 2). Samples were collected from two localities on opposite sides of the supercontinent. The sections encompassing the latest Pennsylvanian Stage through the lowest Stage

(Permian) come from the Pequop Mountains in Nevada, USA, which is on the

Laurentian Plate and was located on the western margin of the continent during this time (Wardlaw et al.,

1998; Snyder and Sweet,

2002). This was a shallow epeiric sea with open access to the oceans.

Sediment accumulated in dropdown basins resulting in thick sections (almost a kilometer each) in close proximity to each other containing continuous faunal successions (Sweet and Snyder, 2002; Figure

3).

The second

15

locality, encompassing the upper Artinskian through Changhsingian stages

(Permian), is the Tieqaio section, Laibin, Guangxi Province, China. This section

was located on the eastern margin of the supercontinent in the Jiangnan Basin on

the South China block, between the Cathaysian and Yangtze cratons (Wang et al.,

2004). This section also had open communication with the ocean and since it was

continuously subsiding, accumulated a thick sediment wedge (Shen et al., 2007;

Figure 4).

Globally, at the base of the Kungurian Stage conodont faunas show

regional endemicity at the species level, and at the base of the Guadalupian

16

conodonts show endemicity at the genus level (Behnken, 1975; Mei and

Henderson, 2001). The endemic nature of conodonts and other fauna during this interval indicates that the ocean was not mixing as completely as at other times.

Understanding why these biologic differences occurred probably relates to climate change, and in particular, changes in glacial extent and volume and and their resulting effects on circulation in the oceans and atmosphere.

Previous work

The evolution of atmospheric carbon dioxide and long term climate change has been linked to plate tectonics (e.g., Berner, 2004). Glaciation in the

Permian was originally thought to have occurred as a single massive episode that ended during the Sakmarian (e.g., Veevers and Powell, 1987). Much early work on Permian glacial history was based on low-latitude cyclothems, which have been interpreted to reflect changes in glacial volume in the southern hemisphere

(Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and Powell,

1987; Heckel, 1994). Work on glacially proximal localities in regions such as

Antarctica and Australia has advanced our understanding of the timing of southern hemisphere glaciations (Isbell, 2008) and provides evidence for discrete post-Sakmarian episodes in which ice sheets returned (Fielding et al., 2008).

Climate

17

Estimation of the extent and timing of glaciation in the late Paleozoic has been an ongoing discussion that was initially focused primarily on low latitude cyclothemic deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979;

Veevers and Powell, 1987; Heckel, 1994) but has been reformed in recent years (

18

e.g., Jones and Fielding, 2004; Montañez et al., 2007; Fielding et al., 2008).

Fielding et al. (2008) redefined the Late Paleozoic Ice Age (LPIA) to include 4 discrete episodes of southern hemisphere continental glaciation within the

Permian, rather than a single episode (Glacial III) as proposed by Isbell et al.

(2003). The first two of these episodes (P1 lower Asselian, 299 Ma to middle

Sakmarian, 291 Ma and P2 upper Sakmarian, 287 Ma – mid-Artinskian, 280 Ma) 19

are considered major continental glaciations with large lateral extent. The second

two of these glacial episodes are considered relatively small (P3 upper Kungurian,

273 Ma – upper , 268 Ma and P4 Wordian, 267 Ma – lowest most

Wuchiapingian, 260 Ma), possibly not even of continental scale, as there is no

evidence of bedrock displacement along coastlines in periglacial environments.

Biostratigraphic evidence that distinguishes these episodes is largely terrestrial, making it difficult to fit these events into the marine biostratigraphic framework that is used to correlate Paleozoic strata (Figure 5 and 6).

Other climate indicators, such as widespread coals (indicating high

humidity) in the early Permian yield to redbeds and evaporites (indicating

increasing aridity) around the middle of the Artinskian. These arid conditions

persisted until the latest Lopingian. Increased continental aridity causing

decreased delivery of radiogenic strontium to the oceans has been thought to play

a major role in the overall decline in strontium isotope values that occurs through

the Permian (Figure 7).

Strontium Isotope Stratigraphy

The Phanerozoic marine 87Sr/86Sr curve first published by Peterman

(1970) and later refined (Burke et al., 1982; Koepnick et al., 1985; Denison et al.,

1994; Veizer et al., 1999; McArthur et al., 2001; Gradstein et al., 2004) does not

provide a detailed enough biostratigraphic framework within which to relate

trends in the curve to global climatic events. Two groups have produced 87Sr/86Sr

20

curves through the Permian that are tied to biostratigraphic zones (Martin and

Macdougall, 1995; Korte et al., 2006). These papers better define

the timing of the previously recognized trend towards less radiogenic values that started near the base of the Permian and continued until the Guadalupian before returning to higher values across the Permian-Triassic boundary. These papers use meticulously screened low-Mg calcite from brachiopods and conodonts to 21

create global composites. These studies are the foundation upon which this work

is based, but because the samples were collected from such disparate localities,

correlation is at times questionable. The approach taken in my work is to

minimize stratigraphic uncertainty by measuring strontium isotopes in continuous

measured sections for which good biostratigraphic control is generally available.

Methods

For this study, rock samples were collected in tandem with conodont

samples allowing correlation in the relationship between 87Sr/86Sr values, stratigraphic, order and . Rock samples were first cut using a water-based diamond-bladed saw to produce thin-section billets, then cleaned using ultrapure water (deionized, 18 MΩ) in an ultrasonic bath to remove excess sediment. Fine-grained micritic components were preferentially microdrilled for analysis. Powders were analyzed for 87Sr/86Sr and Sr

concentration ([Sr]) in the Radiogenic Isotope Laboratory (RIL) at The Ohio State

University using Sr purification and mass spectrometry procedures described in

detail by Foland and Allen (1991). Sr was extracted from powders using

ultrapure reagents; powder aliquots of ~25 mg were pretreated with 1M

ammonium acetate (pH 8) and then leached in 4% acetic acid (Montañez et al.,

1996). The leachate solution was separated from residue and then spiked with an

84Sr tracer. Samples were purified for Sr using a cation exchange resin and a 2N

HCl based ion-exchange. Purified Sr was then loaded with HCl on a Re double-

22

filament configuration. Isotopic compositions were measured using dynamic multicollection with a MAT-261A thermal ionization mass spectrometer. The

RIL laboratory value for the SRM 987 standard is (87Sr/86Sr) = 0.710242 ±

0.000010 (one-sigma external reproducibility). For the 87Sr/86Sr values the associated uncertainties given are for two-sigma mean internal reproducibilities, typically based upon 100 measured ratios. The 87Sr/86Sr reported ratios are

normalized for instrumental fractionation using a normal Sr ratio of

86Sr/88Sr=0.119400.

A critical issue in analyzing trends in 87Sr/86Sr is the potential for secondary influences to alter the primary seawater values. In general, in samples

23

that are diagenetically altered or in which non-marine strontium is present in Rb

or Sr-rich siliciclastic phases (e.g., clays), the 87Sr/86Sr is shifted to more radiogenic values. Thus a line drawn along the least radiogenic values is considered the most dependable. We attempted to minimize leaching of Sr from non-carbonate phases by pretreatment with 1M ammonium acetate as described above (after Montañez et al., 1996). In order to address diagenesis in this study, the [Sr] of the analyzed rock was plotted against the 87Sr/86Sr isotopic ratio.

When the rock is diagenetically altered, Sr concentrations are in most cases

reduced (Montañez et al., 1996). However, since initial ocean [Sr] can differ, as

well as the original mineralogy (calcite vs. aragonite), there is no set standard for

rejecting 87Sr/86Sr values based on Sr concentrations and evaluation must be made

on a case-by-case basis. Based upon the range of [Sr] in samples from the

Permian samples, a threshold of 100 ppm was used to exclude data points from

the plotted 87Sr/86Sr curve. Most samples had Sr concentrations well above this

threshold, ranging to well above 1000 ppm in some parts of the section and

averaging ~ 500 ppm in others.

Results

While 87Sr/86Sr values peak in the upper Gzhelian at 0.7085, a line through

the least radiogenic values changes little (~ 0.7081 to 0.7082) from the late

Ghzelian into the early Asselian. This interval is the first leg of the 87Sr/86Sr

curve. A substantial drop from the upper-most Asselian to just below the

24

Sakmarian, defines leg 2 of the curve. This sharp drop constitutes a change of

0.002 in approximately a million years. Leg 3 encompasses approximately the

same change in the strontium ratios as leg 2, but spread out over approximately 10 million years. The least radiogenic values achieved at Ninemile Canyon are

0.7077. At Rockland Ridge values continue the overall downward trend and define leg 4 of the curve.

The base of the Tieqaio section shows quickly descending 87Sr/86Sr values from 0.7077 to just above 0.7074 within the first ~30 meters. At the base of the

Kungurian values have fallen to define leg 5. Leg 6 is defined by a gentler slope, though values are still declining. Values shift from just above 0.7074 down to

0.7070 in the Roadian. In the next 5 million years values descend only very 25

slightly to just below 0.7070. This slight decrease constitutes leg 7 of the

87Sr/86Sr curve. The low of just below 0.7070 defines the base of leg 8, which then begins the upward trend to just above 0.7070 in the lowest most

Changhsingian. This slight increase precedes the major increase that occurs at the

Permian-Triassic boundary.

Discussion

The high resolution, stratigraphically ordered 87Sr/86Sr values produced in this study through the Permian have at least two potential uses. First and most simply, these values can be used as a stratigraphic tool for correlation. This usage

26

is based on the fact that dissolved Sr has a very long residence time of millions of

years in the oceans but is well mixed in the oceans and thus consistent globally at

any single time horizon (DePaolo and Ingram, 1985; Andersson et al., 1992;

Paytan et al., 1993). Sr isotope stratigraphy is particularly useful in an interval

like the Cisuralian and lower Guadalupian where the rate of change in the curve is

marked.

A LOWESS curve (LOcally Weighted Scatterplot Smoother of Cleveland,

1979,1981; Chambers et al., 1983; Thisted, 1988; Cleveland et al.,1992) has been

fitted to the Phanerozoic 87Sr/86Sr curve creating a two-sided 95% confidence interval (CI) from which the age of any individual sample can be estimated. This

95% CI is very narrow in intervals with many chronostratigraphic tie points and a high density of data (for the time period from 0-7 Ma the half-width is

±0.000003), but diminishes back in time intervals with less data (McArthur and

Howarth, 2004). For most of the Paleozoic, precision aims at ±0.000015, but the

Permian CI exceeds this half-width because of a paucity of data.

Figure 10 shows a comparison of the data from this study with the results of Korte et al. (2006). The new dataset can be used as a correlation tool (e.g.,,

Korte sample ru 25 from the Usolka section in the has an 87Sr/86Sr

value of 0.707964 for the Asselian constrictus conodont Zone;

range for entire zone is 0.707964-0.708005, n = 4. In Nevada, the samples that

record this approximate value begin at Similarly, the overlying St. barskovi Zone

has a range of values between 0.707897 and 0.708058 in Korte et al. (2006). The

27

base of the Sakmarian is at the base of the Sw. merrilli Zone, which has values

that range from 0.707643 up to 0.707830 in Korte et al. (2006). In the Ninemile

Canyon section, the base of the Sakmarian is constrained by this same conodont zone at approximately 900 meters in the section where similar Sr values occur

(0.707939). The Sakmarian-Artinskian boundary is 0.707776 in the Ninemile

Canyon section, which is biostratigraphically constrained ( whitei

Zone). This can be compared with positions from samples in the dataset of Korte et al. (2006), where the lowest Artinskian value in sample sb12 from Tempelet

Svalbard is 0.707702, but is not yet assigned to a conodont zone. This difference of 0.000074 is significant, and may reflect that the boundary can be defined using

28

fusulinids or conodont identification. In Korte et al. (2006), no Kungurian

samples are constrained by biostratigraphy, and therefore cannot be compared

with the Chinese dataset. In the Tieqiao Section, basal Kungurian data shows

values of 0.707421. This compares favorably with the 0.707470 value in sample

sbNor3 from Akselova West Svalbard, which provides generally good agreement

with a difference of 0.000049. Basal Guadalupian samples in China have values

of ~0.7071, consistent with samples in Korte et al. (2006) from the type section in

the . In the lowest Korte et al. (2006), show a

value of 0.706854 in sample GM 8 from Road cut 46.5 miles from Carlsbad. The

stratigraphically lowest Capitanian sample is also the lowest value in the Tieqiao

dataset, giving a value of 0.706954, a difference of 0.0001. Although this is a

substantially different value, also it is the same as the second lowest value in the

Korte et al. (2006) dataset. Additional work is therefore needed to verify the

magnitude of this difference and determine its origin.

Kani et al. (2008) examine the 87Sr/86Sr values from a mid-Panthalasssic

paleoatoll. At this locality the Permian minimum value was defined (0.706914±

0.000012) in the fusulinid Yabeina Zone with a second minimum in a biostratigraphically barren interval between the Lepidolina and Codonofusiella-

Reichelina Zone. At Tieqiao, minimum values of 0.706954 occur in the bed

H116 in the middle of the Capitanian (Yabeina Zone; Shen et al., 2007). In the partly time-equivalent Neoschwagerina Zone above this, values are approximately 0.707216 and then drop to 0.707006 before the Codonofusiella

29

Zone. This is likely the second minimum. It has been suggested that this is a low stand in sea level in the Tieqiao section during this interval (Wignall et al., 2009).

This may account for a partial truncation of the second minimum. The second minimum occurs just before the Guadalupian-Lopingian Boundary, with a rapid increase to values of 0.707230 at the boundary in Japan and China.

Sr isotope data can also be used is as a proxy indicator of changes in atmospheric CO2 and potentially indicate a driving mechanism for long-term climate change. This connection is based on the silicate weathering mechanism of removing CO2 from the atmosphere and depositing it as carbonate in the oceans (Berner, 2005).

The Sr drop through much of the Permian is consistent with progressively less continental weathering of radiogenic (granitic) silicates. This decreasing rate of silicate weathering may reflect the large scale tectonic-scale events that were diminishing in the early half of the Permian, including the waning of the

Hercynian and Uralian orogenies that had peaked in the Late Pennsylvanian (e.g.,

Scotese and McKerrow, 1990, Zeigler, 1989). Another factor that may relate to decreased silicate weathering is the increasing aridification of the Pangean continental interior (e.g. Stephenson and Osterloff, 2002, Tabor et al., 2008).

Other factors contributing to the Sr decline through much of the early to middle

Permian may have included the initiation of the opening of the Neotethys Ocean

(Stampfli, 2000; Stampfli et al., 2001) and the cessation of basaltic magmatism in

30

the Paleotethys (Béchennec, 1988; Blendinger, 1988; Béchennec et al., 1993;

Pillevuit et al., 1997).

The Permian Sr curve shows the previously well-defined descent, but by looking at the inflection points defined in our high-resolution curve, it becomes possible to link these to shorter term glacial events that should have affected delivery of strontium to the oceans. The most prominent and likely shorter-term

climate events to affect delivery of strontium to the oceans are the episodic glacial

events that extend through much of the Cisuralian and Guadalupian. As

glaciations occur, they enhance silicate weathering, potentially affecting Sr

delivery to the oceans. For example, in the , Zachos et al. (1999) point

to the exhumation and erosion of the Antarctic Shield as having created smaller

scale features on the overall increase in 87Sr/86Sr values. However, because we

cannot say with much confidence precisely when the glacial events happened

biostratigraphically, declaring a coincidence or causal relationship here represents

an untested hypothesis only.

At the base of the Permian boundary, the onset of a marked decrease in

87Sr/86Sr values of more than 0.0003 may correspond to the initiation of the P1

episode of glaciation (299-291 Ma) of Fielding et al. (2008). Another inflection

point occurs in the mid-Sakmarian, smaller in magnitude but longer lasting than the previous one. This inflection point may correspond to the onset of the P2

episode (287-280 Ma), estimated to be the largest of the Late Paleozoic Ice Age

events. The next inflection in the curve is in the upper Artinskian (a drop of

31

0.0002 in just less than 30 meters of rock). This relatively extreme variation may

be in part an artifact of sediment condensation. The samples could actually be

older than published reports suggest. This is a possibility, as the lithologies are

more fissile and thinner bedded than any of the subsequent sections. A flooding

event following deglaciation could produce sediment starvation at the end of the

P2 glacial.

Conclusion

The overall decrease in Permian strontium isotope values is attributed to a

combination of tectonic-scale factors. Deglaciation of the massive southern

hemisphere glaciers has also been called upon to have contributed to the

downward trend that persists through the Permian (Korte, 2006). New

understanding of Permian glacial volume and duration, however, changes the way

glaciation plays into the shape of the curve. This study fills in the blanks in the

strontium record of the Permian, reduces stratigraphic uncertainty in regard biostratigraphic correlation and most importantly, may constrain the timing of climatic events within the Permian. This high resolution record shows evidence of changes in strontium fluxes which may be directly caused by the fluctuations in

the glacial state.

32

References

Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport of Sr and Nd isotopes in the . Earth and Planetary Science Letters, v. 113, pp. 459-472.

Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315.

Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p.

Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295- 302.

Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, v. 10, pp. 516-519.

Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont.

Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, v. 74, pp. 829-836.

Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistical Association, v. 74, p. 45.

Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In: Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376.

Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372.

Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173- 187.

33

Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher, A., 1994. Construction of the , Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167.

DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium isotopes. Science, v. 227, pp. 938-941.

Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, v. 202, pp. 257-273.

Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition of marine carbonates of to Early age, Lombardic Alps, Italy. Sedimentology, v. 25, pp. 523-538.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57.

Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310 p.

Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A 2004. Cambridge University Press, Cambridge, United Kingdom, 589 p.

Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles, Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87.

Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End- Members in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24.

Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age 34

in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70.

Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South : Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 71- 82.

Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153- 156.

Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of 87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic. Journal of Asian Earth Sciences, v. 32, pp. 22-33.

Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and : Supporting data. Chemical Geology, Isotope Geoscience Section, v. 58, pp. 55-81.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 89-107.

Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.), Tectonic uplift and climate change, New York, Plenum Press, pp. 399- 425.

Martin, E., and Macdougall, J., 1995. Sr and Nd isotopes at the Permian/Triassic boundary: A record of climate change. Chemical Geology, v. 125, pp. 73- 99.

McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve

35

for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, v. 109, pp. 155-170. McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In: Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, pp. 96-125.

Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp. 237-260.

Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920.

Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2- forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91.

Morante, R., 1996. Permian and isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, v. 11, pp. 289-310.

Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26.

Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, v. 366, pp. 445-449.

Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochimica et Cosmochimica Acta, v. 34, pp. 105-120.

Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and isotopic variations among constituents in Middle limestones, North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727.

Scotese, C., 2002. PALEOMAP Project. www.scotese.com

Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction. In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography 36

and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 1- 21.

Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.

Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr, C, and O isotope geochemistry of brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, v. 67, pp. 2005-2025.

Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L. (Ed.), Reviews in Mineralogy, v. 31, pp. 543-564.

Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado.

Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall, New York, 427 p.

Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate.

Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon isotope excursion from Nevada.

Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487.

Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905- 915.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek

37

F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88.

Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67.

Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp. 1177-1206.

Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference sections for the Upper Carboniferous and Lower Permian in Northeast Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8.

Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and Jiang, H.S., 2009. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, south China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society of London, v. 166, pp. 655-666.

Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999. Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is there a link? Chemical Geology, v. 161, pp. 165-180.

38

Chapter 3

High-resolution carbon isotope composite curve for the Permian System:

implications for organic carbon burial and global climate

Abstract 13 More than 1,000 marine carbonate carbon isotope (δ Ccarb) samples from two

sections in the Pequop Mountains, Nevada, USA, and the Tieqiao section, near

Laibin, Guangxi Province, China were analyzed to create a stratigraphically-

13 ordered, biostratigraphically well-constrained, high-resolution composite δ Ccarb

curve for the Permian System. Samples were collected in conjunction with

conodont biostratigraphic sampling and from sections with well-established

foraminiferal biostratigraphic control. Previously published Permian composite

13 13 δ Ccarb curves indicate elevated δ Ccarb values >+4.0‰ for most of the Permian

but are relatively low in sample resolution. The high-resolution data presented

13 here demonstrate that there is significant structure to the Permian δ Ccarb curve,

13 including both discrete positive and negative δ Ccarb excursions.

13 Because there is a paucity of Permian δ Ccarb data, particularly for the

Cisuralian and Guadalupian series, many of the events from these intervals

identified by this study remain to be identified elsewhere, and require verification

39

before they can be demonstrated to be global events. In contrast, considerable data exists from the Lopingian Series. Some of the events from the uppermost

Guadalupian and Lopingian identified here have been documented from other localities, which allows comparisons between data sets and discussion of the global nature of these events. For example, our study can verify that the Kamura event and the negative excursion at the Guadalupian-Lopingian boundary are truly

13 global geochemical features of the Permian δ Ccarb record.

Introduction

The Permian was a time of transition from the glacial interval that dominated the Pennsylvanian and early Permian to the Triassic which was ice- free and considered to be an interval of global climate amelioration (Frakes and

Francis, 1988; Crowley and Baum, 1991, 1992; Crowell, 1999; Mei and

Henderson, 2001; Isbell, 2003; Fielding et al., 2008). The nature of the icehouse- greenhouse transition and timing of global events that may have driven this change remains controversial due to the lack of good biostratigraphic indicators

(Isbell, 2003a, 2003b; Isbell et al., 2006; Rygel et al., 2007; Fielding et al., 2008).

Although chemostratigraphic investigations have been carried out in recent years

(Korte et al., 2005; Grossman et al., 2008), the limited time resolution of these studies (1-3 samples per million years) makes it difficult to identify global excursions that may improve Permian chronostratigraphy. Furthermore, considering the evidence for a highly variable climate during the Permian icehouse-greenhouse transition, as observed in the terrestrial (tillites, periglacial 40

lake deposits, coals, evaporites, redbeds) and marine (ocean circulation, faunal turnover) records, it seems likely that the carbon isotopic composition of the oceans was undergoing fluctuations as well (Mei and Henderson, 2001; Davydov et al, 1999).

13 Here, a biostratigraphically constrained carbon isotope (δ Ccarb) curve is reported from the sampling of marine limestones in measured sections of Nevada,

USA (Asselian-Artinskian) and South China (Kungurian-Changhsingian). This

13 investigation has shown that there is structure to the δ Ccarb curve, including possible excursions throughout the Permian. These excursions can serve as important chemostratigraphic horizons (or tie points). Further, when the carbon isotope fluctuations are considered in conjunction with the rock record, it may

41

become possible to address the causes of deglaciation as Earth experienced the first icehouse-to-greenhouse transition with fully vegetated (Montañez

et al., 2007). The first reporting for many of the events noted, this is a preliminary study that needs to be ground tested for repeatability to discern which of these events are truly global in nature and which could be locally influenced.

Geologic Background

In the Permian, the Pangean supercontinent was fully assembled with the

Panthalassic Ocean

surrounding the continent

and the

shaping the eastern

boundary (Figure 1,

Ziegler et al., 1997;

Scotese, 2002). The

Cisuralian interval was

collected from two

sections 20 km apart in the

Pequop Mountains in

northeastern Nevada, USA

(Ninemile Canyon and

Rockland Ridge; Figure

42

2). The carbonates present in these mountains were originally deposited in basins with open communication to the Panthalassic Ocean on the western margin of the

North American plate (Robinson,1961; Sweet and Snyder, 2002).

The Guadalupian and Lopingian samples were collected at the Tieqiao Section,

near Laibin, in Guangxi Province, China. This section records sedimentation

from the Jiangnan Basin on the South China block, between the Cathaysian and

Yangtze cratons (Wang et al., 2004; Figure 3). The strata were deposited on a

continuously subsiding platform creating a thick sediment wedge that had open

communication to the Tethys Ocean.

43

In the early Permian, conodont faunas were cosmopolitan but by the

beginning of the Kungurian Age conodont faunas become regionally endemic at the species level (Behnken, 1975; Mei and Henderson, 2001). Near the beginning

of the Guadalupian species became endemic at the genus level. The endemic nature of conodonts and other fauna during this interval indicates that the global ocean was not mixing as completely as at other times (Figure 4).

Previous work

Carbon Isotopes

The Permian has not yet been subject to the intense and systematic

isotopic treatment as other Paleozoic time periods (e.g. Saltzman, 2005). The

interval that is best studied is the Permian-Triassic boundary interval. The end-

Permian biotic event is associated with a negative carbon isotope excursion and, as is the case throughout the Phanerozoic, debate continues about the driving

13 mechanism for changes in δ Ccarb (ocean anoxia: Wignall and Twitchett, 1996;

Isozaki, 1997; outgassing of oceanic H2S: Kump et al., 2005; methane clathrate release due to global warming: Krull and Retallack, 2000; Siberian Trap volcanism: Renne and Basu, 1991; Bolide impact: Becker and Poreda, 2001;

Kaiho et al., 2001; Becker et al., 2004; Kerr, 2004; Koeberl et al., 2004; chemocline upward event: Riccardi et al., 2007; Kershaw, 2008). It is also instructive to note that the end-Permian event has been documented in multiple

44

sections worldwide (Iran: Korte et al., 2004; Slovenia: Dolenec et al., 2004;

Schwab and Spangenberg, 2004; Japan; Musashi et al., 2001; Austria: Magaritz et al., 1992; Wolbach et al., 1994; China: Krull et al., 2004), which suggests that events documented elsewhere in the Permian section may also be recognizable globally.

13 Previously, there were two major δ Ccarb composite curves published for the Permian (Korte et al., 2005; Grossman et al., 2008). The samples in the

13 δ Ccarb curve produced by Korte et al., (2005) are differentiated into two

45

categories depending on how reliable each sample is shown to be, and considering

factors such as cathodoluminescence, trace element concentration, and

stratigraphic certainty. Although the curve includes samples tied to

biostratigraphic zones within stages, the sampling density is still low and makes it

difficult to identify true excursions.

The curve produced by Grossman et al. (2008) is based on low- magnesium calcite from screened brachiopod shells and extends up from the

Pennsylvanian through the Cisuralian and Guadalupian (Permian). This curve has stage-level biostratigraphic control on individual samples, which limits the ability to correlate trends globally and to identify excursions. Both the Korte et al.

(2005) and Grossman et al. (2008) curves confirm that values in the Permian are generally elevated relative to typical Paleozoic levels.

Climate

Estimation of the extent and timing of glaciation in the Late Paleozoic has been an ongoing discussion focused primarily on low latitude cyclothemic deposits (Wanless and Shepard, 1936; Crowell, 1978; Frakes, 1979; Veevers and

Powell, 1987; Heckel, 1994). The extent and timing of the Late Paleozoic Ice

Age has been redefined by Fielding et al. (2008) to include four episodes of southern hemisphere continental glaciation in the Permian. The first two of these episodes (P1: lower Asselian, 299 Ma - middle Sakmarian, 291 Ma and P2: upper

Sakmarian, 287 Ma – mid-Artinskian, 280 Ma) are considered major continental

46

glaciations with relatively large lateral extent, though a single large ice dome is questioned (Isbell, 2003a). The second two of these glacial episodes are considered relatively small (P3: upper Kungurian, 273 Ma – upper Roadian, 268

Ma and P4: Wordian, 267 Ma – lowest most , 260 Ma), possibly not of continental scale, as there is no evidence of bedrock displacement along coastline in periglacial environments common to the first to events.

Biostratigraphic evidence that distinguishes these episodes is largely terrestrial, making it difficult to fit these events into the marine biostratigraphic framework.

Methods

Samples were collected in measured sections in conjunction with conodont samples starting in the Gzhelian (latest Pennsylvanian) at Ninemile

Canyon in the Pequop Mountains, Nevada. Sampling continued upward through the lower Artinskian before switching over to Rockland Ridge approximately 20 km north starting in the upper Sakmarian through the lower most Kungurian.

Samples were collected at the Tieqiao section in China starting in the uppermost

Artinskian through the lowermost Changhsingian. These sections in Nevada and

China contain enough biostratigraphic overlap to ensure continuity in the composite section.

47

All samples were drilled on a clean carbonate surface for approximately

500 μg of powder. For each sample, 75-95 μg was analyzed for δ18O relative to

13 Vienna Peedee Belemnite Limestone standard (V-PDB) and δ Ccarb. Asselian and Sakmarian samples from Ninemile Canyon, Nevada, were measured by Yohei

48

Matsui in Andrea Grottoli’s Stable Isotope Biogeochemistry Laboratory at The

Ohio State University using a Kiel device coupled to a Finnigan Delta IV Plus

stable isotope ratio mass spectrometer. Samples were acidified under vacuum

with 100% ortho-phosphoric acid. The resulting CO2 was cryogenically

purified and delivered to the mass spectrometer. Approximately 10% of samples

were run in duplicate. The standard deviation of repeated measurements of an

internal standard was ±0.03‰ for δ13C and ±0.09‰ for δ18O

Artinskian samples from Rockland Ridge, Nevada were measured by Greg

Cane at the University of Kansas Keck Paleoenvironmental and Environmental

Stable Isotope Laboratory under the direction of Luis Gonzalez. Samples here were processed using a Kiel Carbonate Device III and a Finnigan MAT253

Isotope Ratio Mass Spectrometer. Samples were roasted under vacuum at 200o

o for one hour then acidified using 100% prepared phosphoric acid at 75 . CO2 is

trapped cryogenically, then transferred online to an IRMS instrument where it is

measured 8 times versus a calibrated CO2 reference tank for δ. Standards used for calibration were NBS-18 Carbonatite and NBS-19 Limestone giving a precision better than ±0.02‰ for δ13C and better than ±0.05‰ for δ18O.

Samples from the Artinskian through the Changhsingian from Tieqaio,

China were measured by Michael Joakimski at Erlangen University, Germany.

Carbonate powders were reacted with 100% phosphoric acid at 70 o C using a

Gasbench II connected to a Finnigan Five Plus mass spectrometer. All values are

reported in per mil concentration relative to V-PDB using NBS 19 as the standard.

49

50 R

Reproducibility was checked by replicate analysis of laboratory standards and

10% of samples were run in duplicate. Values can be considered dependable to

with in ±0.02‰.

Results 13 Values of δ Ccarb at the base of the Cisuralian are ~2.0‰. The basal

Asselian low point is followed by a stepwise increase through the Asselian culminating in an excursion in the Sakmarian with peaks of +4.4‰ and +4.8‰ V-

PDB. Through the remainder of the Sakmarian and the Artinskian there is a steady decrease, reaching the lowest point in the Cisuralian at ~0.3‰ just above the base of the Artinskian (Figure 7).

Values in the lower Artinskian are the lowest in the Cisuralian reaching almost 0.0‰. From this point there is an increasing trend to approximately

+3.8‰ over an estimated 4 million years. Above this, there is some short-term oscillation, but it is at a low amplitude through the remainder of the Artinskian.

Most of the Kungurian shows oscillations between ~+2‰ and ~+4‰. A short term rise to +5.4‰ and return to values of 1.0‰ occurs just above the Kungurian-

Roadian boundary (Figure 8).

The Guadalupian shows three distinct isotopic intervals corresponding closely to stage boundaries. The curve in the Roadian begins with low values of ~

1‰ and then reaches higher values averaging +3.5‰. The Wordian is characterized by lower values averaging +1.6‰. Values in the Capitanian shift positively to average +2.4‰. 51

13 The Capitanian interval of more positive δ Ccarb values ends sharply in

the upper Capitanian negative excursion. The negative shift reaches a low of -2.8.

In the uppermost Capitanian, starting in conodont granti Zone,

values are elevated to ~+3‰. These heavy values extend across the Guadalupian-

Lopingian boundary to C. postbitteri and end in the C. dukouensis Zone, where

values descend to a low of -3.2‰. The Wuchiapingian starts with these relatively

low values near -3.2‰, but quickly recovers to a distinctly elevated interval

where values average +3.7‰ before reaching a high of +6.3‰. The top of the

Wuchiapingian shows a negative shift back to values ~ +2.0‰. The age of this

negative shift is not clearly defined, however, because the highest reported

conodont, C. leveni, is more than 120 m below. Furthermore, the shift is 286 m

below the first appearance of Palaeofusulina, which marks the middle

Wuchiapingian.

Discussion

13 The Permian δ Ccarb curve documented in this study shows features that

may have been obscured in previous studies because of poor chronostratigraphic

control and low sample resolution. Many of the events documented in this here

(Figure 9) therefore require confirmation from high-resolution studies elsewhere

in the world where biostratigraphic control is adequate.

The basal Asselian through mid-Sakmarian are dominated by an increasing trend that culminates in an excursion to values almost +5‰. The 52

δ13

Foram Series Conodont Stage Unit Ccarb

P. leonardensis Neostrop P. deltoides pnevi Pr. guembeli

ung.

K

R. stanislavi Ch. haxkinsi

Neostrep pequopensis

1850

1825

1800

1775

1750

1725

kland Ridge kland 1700 tinskian

1675

Roc Ar

1650

1625 is

1600 ina solita ina

1575 ager Grainstone

1550 afusulina liear afusulina

1525 Wackestone eetognathus

1500

Eopar

Ch.nelsoni Chalaroschw whitei Sw Mounds 1475 1450 Covered 1425

1400

Cisuralian Sand 100 meters 100 1375 Silt 1350

1325 Chert

1300 = ppm Sr less than 100 1275 1100

1075

eet. Sch. cribroseptata binodosus Sw Sch. tersa- Ps. lineonada 1050

1025

illi Sch. aff. moelleri- alensis 1000 P. gigantea-

merr Eo. allisonensis 975

eet. Sakmarian

Sw Neogond 950

925 St. barskovi Strep.

postfusus 900 on

Strep. y fusus 875 Strep. constrictus 850

Asselian Strep. isolatus 825 Strep P. kansanensis 800

wabaunsensis Sch. campa-Pseudo Can Ninemile fus. longissimoidea- Strep. Lep. koschmanni- 775 brownvillensis Tr. ventricosus 750

725

700 Strep.

virgilicus (s.l.) 675 Gzhellian 650

625 Late Pennsylvanian 600 0 1 2 3 4 5 6

Figure 3.7. δ13Ccarb data from Ninemile Canyon and Rockland Ridge Nevada plotted against stratigraphy.

53 steady increase in values over millions of years indicates enhanced organic carbon

burial in the global oceans related to glacial conditions that likely caused

vigorous circulation and upwelling (see Chapter 4 in this thesis; and Tierney et

al., in prep.)

Values through most of the Kungurian oscillate between +2‰ and +4‰,

similar to the curve from the Pennsylvanian icehouse world (Saltzman, 2005). In

the upper Kungurian in the interval that bears the fusulinid Schwagerina

chihsiaensis, low values of ~ 2‰ suggest relatively low rates of organic carbon production and burial in a post-glacial world with less vigorous upwelling. The rapid increase in values in the interval bearing the fusulinids Neomisellina,

Neoschwagerina, and Minojapanella pulchra reaches peak values of +5.4‰.This shift back to heavier values may be related to the return of vigorous ocean circulation as indicated by the presence of phosphates and organic-rich shales such as the (Carol et al., 1998; Stephens and Caroll, 1999).

13 The next interval of positive δ Ccarb values observed across the

Guadalupian-Lopingian boundary was named the Kamura Event by Isozaki et al.,

(2006), based on original documentation in the study of a paleo-atoll that has

accreted to become part of modern southern Japan. This event, including a

13 plateau of δ Ccarb values of ~+5‰ in the Lepidolina fusulinid Zone followed by a

decline by 4‰ in the Codonofusulina-Reichelina Zone, is attributed to a collapse

in primary productivity related to the end of the Guadalupian cool period (e.g.,

Tong et al., 1999; Hallam and Wignall, 1999; Beauchamp and Baud, 2002). The

54

negative shift that ends the Kamura event (Wignall et al., 2009) shares much in common with the negative shift at the Permian-Triassic boundary (P-TB), most 55

importantly its association with a major biotic crisis. This biotic event eliminated approximately 50% of species. The cause of both events may have been flushing

12 of organically-derived CO2 enriched anoxic bottom waters (Kershaw, 1999).

To the west of Tieqiao at Xiong Jia Chang Section, Wignall et al., (2009) relate the negative excursion in the Prexuanhanensis Conodont Zone and the concurrent foraminifer extinction to the emplacement of volcanics associated with the Emeishan Large Igneous Province (LIP). At Gouchang, about 50 km away from the eastern margin of the LIP shows the extinction interval and the following negative excursion by approximately 20 meters of strata. The association of the

13 emplacement of the LIP, the extinction and the negative δ Ccarb excursion they conclude is likely a result of cooling and emission of SO2 and sulfate aerosol formation in the atmosphere and consequent environmental changes.

The single negative shift noted in this study is followed by subsequent negative shifts identified in this study that may be related to further activity in this and other LIPs around the world. However, the negative excursion and discussed by Wignall et al. is also associated with changes in base level, so the changes attributed to the onset of volcanic influence may be acting in combination with other factors already at work at the start of the extinction event, such as changes in glacial mass and ocean-circulation changes.

This is testable by looking for precipitated micritic mud and microbialite crust associated with this boundary event. Although the Kamura event is clearly

13 recorded in our section, there is evidence for regional variability in δ Ccarb. Just

56

before the Guadalupian-Lopingian Boundary our data shows values of ~3‰ associated with the fusulinids Neomisellina, Neoschwagerina, and Minojapanella pulchra. Values rapidly decline to exhibit a negative excursion to values as low as -3.2‰ with the first appearance of Codonofusulina-Reichelina and the conodont postbitteri. These values are consistent with the findings of earlier studies form this section and the GSSP at Meishan (Wang et al., 2004;

Kaiho et al., 2005) but absolute values are different than those shown at Kamura.

13 Offset of δ Ccarb values from are not unheard of between sections representing

the Panthalassic and Tethys Oceans. This has been shown before by Mii et al.

(2006) in the Pennsylvanian values. However, in that case the Tethian values

were more elevated compared to the Panthalassic Ocean values possibly due to

upwelling in Panthalassic Ocean. This is opposite of what is observed here in the

Permian, suggesting that upwelling may have characterized the Tethys at this

time.

Above the negative excursion at the Guadalupian-Lopingian Boundary,

values recover to average ~3.7‰ but reach highs above +6‰. This suggests that

significant burial of organic matter may have been occurring in a stagnant ocean

related to enhanced preservation rather than high primary production (Saltzman,

2005).

57

58

Conclusion

I present a new biostratigraphically well-constrained, stratigraphically

13 ordered high-resolution δ Ccarb composite for the Permian System. Trends

identified here are in some cases well known in other regions, but in other time

intervals the trends must be documented elsewhere to determine whether they

were global in scope. The best known event occurs near the Guadalupian-

Lopingian boundary and may be useful for intercontinental correlation. The

13 structure of the δ Ccarb curve will allow it to be used as a stratigraphic tool and

perhaps contribute to untangling the complicated climate story that is so relevant

to our modern climate change.

References

Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, pp. 37- 63.

Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic record. Meteoritic and Planetary Sciences, v. 36, p. A17.

Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C., and Iasky, R., 2004. Bedout: A possible end-Permian impact crater offshore of northwestern Australia. Science, v. 304, pp. 1469-1477.

Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315.

Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation: Implications for marine upwelling. Geology, v. 26, pp. 1023-1026.

Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372. 59

Crowell, J.C., 1999. Pre- ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1- 106.

Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977.

Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510.

Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower Triassic carbon isotopic signature in carbonate rocks of the western Tethys (Slovenia). Geologica Carpathica, v. 54, pp. 217-228.

Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope variability and sedimentology of the upper Permian carbonate rocks and changes across the Permian-Triassic boundary in the Masore section (western Slovenia). Facies, v. 50, pp. 287-299.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A.T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57.

Frakes, L.A., 1979. Climates through Geologic Time: Amsterdam, Elsevier, 310 p.

Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547- 549.

Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233.

Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes. Earth-Science Reviews, v. 48, pp. 217-250.

60

Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles. Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87.

Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme depositional environments: Mega end members in geologic time. Geological Society of America, Special Paper, v. 370, pp. 5-24.

Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70.

Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238.

Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record across the Guadalupian-Lopingian (middle-upper Permian) boundary in mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura Event” and its collapse in . Global and Planetary Change, v. 55, pp. 21-38.

Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, v. 29, pp. 815-818.

Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S., 2005. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180.

Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian coast? Science, v. 304, pp. 941.

Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental

61

significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146, pp. 1-18.

Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056.

Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark, L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351.

Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across the Permian –Triassic boundary: Evidence for methane release. Geological Society of America Bulletin, v. 112, pp. 1459-1472.

Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315.

Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, v. 33, pp. 397-400.

Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian-Triassic boundary. American Journal of Science, v. 292, p. 727-739.

Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237–260.

Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001. Isotopic records of brachiopod shells from the Russian Platform— evidence for the onset of mid-Carboniferous Glaciation. Chemical Geology, v. 175, pp. 133-147.

62

Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo- Triassic boundary: evidence for 13C-depleted superocean. Earth and Planetary Science Letters, v. 191, pp. 9-20.

Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood at the Permo-Triassic boundary. Science, v. 253, pp. 176-179.

Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81.

Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis. Journal of Sedimentary Research, v. 78, pp. 500-511.

Saltzman, M.R., 2005. Phosphorus, nitrogen, and the redox eveolution of the Paleozoic Oceans. Geology, v. 33, pp. 573-576.

Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the Permian-Triassic transition at the Idrijca Valley, western Slovenia. Applied Geochemistry, v. 19, p. 55-72.

Scotese, C., 2002. PALEOMAP Project. www.scotese.com

Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.

Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp. 899-902.

Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado.

Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate.

63

Veevers, J.J., and Powell, M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin, v. 98, pp. 475-487.

Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94.

Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian Boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67.

Wanless, H.R., and Shepard F.P., 1936. Sea level and climate change related to the late Paleozoic cycles. Geological Society of America, Bulletin, v. 47, pp. 1177-1206.

Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, v. 272, pp. 1155-1158.

Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition 13 in Spitsbergen: δ Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62.

Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S., Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, v. 324, pp. 1179-1182.

Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope variation. Conference on New Developments Regarding the K/T Event and Other Catastrophes in Earth History, Lunar and Planetary Institute, Houston, pp. 133-134.

Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146.

64

Chapter 4

An early Permian (Asselian-Sakmarian) carbon isotope excursion documented

from Nevada

13 Abstract: A δ Ccarb curve starting just below the base of the Permian and

continuing through the basal Artinskian Stage shows a previously unrecognized

carbon isotope excursion. The excursion starts just below the Asselian-Sakmarian

boundary, peaking in the mid-Sakmarian, with values of +4.8‰ and returning to

baseline values of ~+1.0‰ in the upper Sakmarian. While previous studies have

suggested that values remain high through the entire Permian (~+4‰) and

13 excursions cannot be identified, the δ Ccarb curve noted here indicates that

excursions can potentially be identified with increased sample resolution. The

13 δ Ccarb excursion shown here correlates closely to the main phase of the Late

Paleozoic Ice Age (LPIA), which reaches its climax in the Asselian and

Sakmarian. The excursion is here linked to high oceanic primary productivity

caused by the glaciation and added nutrient delivery to the photic zone driven by

eolian transport and active circulation in the oceans.

65

Introduction

The Cisuralian (early Permian) is a time thought to be the acme of the Late

Paleozoic Ice Age (LPIA) (Frakes and Francis, 1988; Crowley and Baum, 1991,

1992; Crowell and Peryt, 1995: Crowell, 1999; Isbell, 2003; Fielding et al., 2008).

The timing and extent of glacial episodes and their relation to climate change and global carbon cycling, however, are still debated (Dickins, 1996; Isbell et al.,

2003; Montañez et al., 2007). One approach to a better understanding of the causes and consequences of Permian glacial episodes is to compare biostratigraphically well constrained carbon isotope stratigraphy with the episodic

66

physical record of glaciation during this interval.

The early Permian has been characterized in a previous study by

consistently high carbon isotope values averaging around ~+4‰ (Korte et al.,

2005). Grossman et al. (2008) showed greater variability than this, but several of

the major fluctuations in the curve do not correlate globally, so they may reflect

local controls on carbon cycling or stratigraphic uncertainty in correlations. These

previously published composite curves use brachiopod calcite and although they

may include a large number of samples for a single time horizon, the stratigraphic

resolution can be as low as

to ~1-2 samples per million

years in certain time

intervals (e.g., the ‘good’

brachiopods of Korte et al.,

2005 in the Cisuralian).

Here we develop a new,

relatively high resolution

13 δ Ccarb curve for the

Permian (Cisuralian) using

micritic limestones collected

from measured sections in

northeast Nevada. We then

examine the relationship

67

13 between events in the δ Ccarb record, glaciations, and global climate.

Geological settings

During the latest Pennsylvanian and early Permian the supercontinent

Pangea was fully assembled, with Nevada located along the western margin of the

North American plate, a few degrees north of the equator (Sweet and Snyder,2002

Figure 1). Tectonic changes in the area created relatively short-lived dropdown basins that collected sediment to form thick strata for the life of that basin

(Hodgkinson, 1961; Wardlaw et al., 1998; Sweet and Snyder, 2002). The

Ninemile Canyon section is located in the Pequop Mountains in northeast Nevada

(Figure 2). During the late Paleozoic this area was covered with a shallow epeiric sea that had open communication with the open ocean.

The Ninemile Canyon section includes strata spanning the

Stage (upper middle Pennsylvanian) through the Kungurian Stage (Permian).

These strata contain both fusulinids and conodonts that are correlable to other sections globally (Behnken, 1975; Stevens, 1979; Wardlaw et al., 1998; Mei and

Henderson, 2001; Figure 3). In this study, samples were collected from the

Ghzelian (upper Pennsylvanian) across the Pennsylvanian-Permian boundary up through to the Artinskian Stage. This interval of time is represented in two formations, the Riepe Spring Limestone and the Rib Hill Formation (Wardlaw et al., 1998). Both of these formations are dominated by a wide range of fine and coarser grained limestone lithologies (for a detailed discussion of the region see

68

Robinson et al., 1961). The Riepe Spring Limestone was interrupted by

occasional chert-rich intervals and conglomeratic channelizations.

Glacial Events

Episodes of the Late Paleozoic Ice Age (LPIA) have been based in part on

low latitude cyclic strata in North America and (Veevers and Powell,

1987; Frakes and Francis, 1988; Crowley and Baum, 1991, 1992; Frakes et al.,

1992; Gastaldo et al., 1996 Crowell, 1999; Crowell and Peryt, 1995; Hyde et al.,

1999, Heckel, 2008). More recently, Southern Hemisphere ice-proximal and glaciogenic deposits been re-evaluated (e.g. Isbell, 2008: Fielding et al., 2008).

Isbell et al. (2006) examined evidence for glaciation from the major basins around Gondwana, including the Paraná Basin of Brazil, Paraguay, and Uruguay,

the Karoo Basin of South Africa, the Kalahari Basin of Namibia, Botswana and

69

South Africa, the Transantarctic Basin of the central Transantarctic Mountains,

the Officer and Canning Basins of Western Australia, and the Gondwana Master

Basins of Peninsular India. Three glacial events were defined, including two that were local and alpine in nature in the Carboniferous (Glacial I and II) and a third

more extensive episode extending from the upper most Carboniferous or basal

Permian (Asselian) through the middle Sakmarian (Permian) (Glacial III). In eastern Australia, eight major glacial events were defined through this same interval (Fielding et al., 2008). Four of the events were identified from the

Carboniferous (C1-C4) and four more events were identified from the Permian

(P1-P4). The focus of this study is the isotopic proxy of glaciation in the period corresponding to the P1 episode (basal Asselian to middle Sakmarian), and the P2 episode, (late Sakmarian through middle Artinskian). These events were dated using SHRIMP analysis of tuffs that are interbedded with glacial and periglacial deposits (Fielding et al., 2008). Additionally, the glacial episodes are constrained biostratigraphically using palynostratigraphic and brachiopod zones, but these are difficult to correlate with standard marine zonations from sections in Nevada.

Methods and Results

Methods

One of the main goals of this project was to increase stratigraphic resolution of carbon isotope stratigraphy through the lower Permian. This could only be accomplished if the sample medium used is micrite. Brachiopods, while commonly assumed to return the most reliable values in chemostratigraphic

70

investigations (e.g. Mii et al., 1999), limit sampling resolution because analysis

can take place only on intervals yielding appropriate specimens. Carbonate

powders containing an admixture of select carbonate grains (i.e. crinoids,

brachiopods, etc.) and primary marine micrite have been shown repeatedly to

faithfully record the original isotopic signature of Paleozoic marine waters (e.g.,

Saltzman, 2005; Banner and Hansen, 1990). The dependability of micrite as a

sample medium has been demonstrated in every other system in the Paleozoic

(Cambrian: Ripperdan et al., 1992; Saltzman et al., 1998; 2000; Ordovician:

Finney et al., 1999; Kump et al., 1999, : Cramer et al., in press, Devonian:

Joachimski and Buggisch 1993; Wang et al., 1996, and Carboniferous: Saltzman,

2002). A particularly useful demonstration of the comparability of the two

71

methods is shown in the Silurian of Gotland where micrite and brachiopods were

processed from the same strata and show nearly identical results (compare results

of Munnecke et al., 1997 and Bickert et al., 1997, as well as Cramer et al., in

press).

The Ninemile Canyon section was collected from below the basal Permian

boundary through the top of the Sakmarian stage. The lithologies are largely

micritic mud to packstone with occasional chert and rare siliciclastic-rich

13 intervals. Forty carbonate samples were processed for δ Ccarb through the

Asselian and Sakmarian interval with a preference for fine grained carbonate. All

samples were processed in by Yohei Matsui in Andrea Grottoli’s Stable Isotope

Biogeochemistry Laboratory at The Ohio State University. Each sample was drilled on a clean carbonate surface for approximately 500μg of powder. For each

18 13 sample, 75-95μg was analyzed for δ O and δ Ccarb relative to Vienna Peedee

Belemnite Limestone standard (V-PDB). A Kiel device coupled to a Finnigan

Delta IV Plus stable isotope ratio mass spectrometer was used for analysis.

Samples were acidified under vacuum with 100% ortho-phosphoric acid. The resulting CO2 was cryogenically purified and delivered to the mass spectrometer.

Approximately 10% of samples were run in duplicate. The standard deviation of

repeated measurements of an internal standard was ±0.03‰ for δ13C and ±0.09‰

for δ18O

72

Results

13 The lowest sample in the Gzhelian measured δ Ccarb of +3.4 ‰ (VPDB).

From this point, there is a decrease to +1.5‰ at 27.5 m above the Pennsylvanian-

Permian boundary. A stepwise increase is observed through the Asselian, reaching an initial peak at 4.4‰ at 117 meters above the base of the Permian, followed by a second peak reaching +4.8‰ in the mid-Sakmarian. Values decline to +1.7‰ just below the Sakmarian-Artinskian boundary (Figure 4). When the

13 δ Ccarb values produced in study were plotted against

δ18O values no covariant trend was observed that would indicate alteration of primary values

(Figure 5).

Discussion

13 The Asselian through mid-Sakmarian δ Ccarb excursion is unlike many other positive carbon isotope excursions in the Paleozoic (Buggisch and

Joachimski, 2006; Cramer et al., in press) in that the change (+3.3‰) occurs over a relatively long interval of time (~8 Ma). However, as with the shorter duration

73

(< 2 myr) excursions that are common during the Paleozoic (e.g., Brenchley et al.,

2003; Cramer and Saltzman, 2005; Saltzman, 2005), this Asselian-Sakmarian

excursion is likely related to changes in nutrient cycling, organic matter

13 preservation and burial. The early Permian δ Ccarb curve is discussed here in the

context of the early Permian stratigraphic record of climate change and biotic turnover.

13 Causes of the δ Ccarb excursion

13 Positive shifts in marine δ Ccarb such as that observed here are commonly

interpreted to reflect increased burial of isotopically light organic carbon (e.g.,

Kump and Arthur, 1999; Arthur et al., 1987 Berner, 2004; Figure 6). This

enhanced organic burial can result from an increase in primary production or in

the fraction of organic carbon that is preserved upon reaching the seafloor.

Increased preservation of organic carbon can be caused by stagnation of oceanic

bottom waters, possibly associated with downwelling of warm, saline bottom

waters (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991; Cramer and

Saltzman, 2005). In addition, anoxic bottom waters will promote regeneration of

nutrient phosphorus, which may promote primary production (Van Cappellen and

Ingall, 1996; Lenton and Watson, 2000).

74

75

13 Positive δ Ccarb excursions that relate to anoxic events may be associated with

episodes of high sea level and extensive black shale deposition in deep ocean

basins (Scholle and Arthur, 1980; Arthur et al., 1987; Pedersen and Calvert, 1990;

Cramer and Saltzman, 2005, 2007; Cramer et al., 2006). According to this

model, in order to maintain anoxic conditions, climatic warming must be

sustained through the entire interval and would likely be preserved lithologically as black shales in the deep basins. This is not what is present through this interval

in the major deep cratonic basins (Norwegian -Svalbard- North

Greenland area: Stemmerik and Worsley; 2005; Northwest China: Chen et al.,

2003; South Africa; Bangert et al., 1999; eastern Australia: Rygel et al., 2008;

Western Australia: James et al., 2009). It is possible that significant quantities of organic matter were buried in nearshore siliciclastic environments with high sedimentation rates. However, Permian nearshore siliciclastic deposits remain

13 poorly dated, and difficult to relate to changes in marine carbonate δ Ccarb.

In addition to high organic carbon burial, which is the most plausible

scenario, enhanced carbonate weathering during sea level fall may also increase

13 δ Ccarb (Kump and Arthur, 1999). Enhanced carbonate weathering may also have

been promoted by the major mountain building event occurring in the Urals

(Chuvashov, 1990). In this scenario, the weathering products of ancient

limestones that are isotopically heavy are added to the ocean carbon reservoir,

13 shifting the overall values to higher δ Ccarb. This mechanism would fit the

13 pattern of a long-term, low amplitude δ Ccarb event. However, the timing of

76

erosive episodes during the mountain building event is difficult to match with the

13 timing of δ Ccarb changes.

13 It seems plausible that the Asselian through mid-Sakmarian δ Ccarb

excursion described here has resulted from a combination of both enhanced

organic carbon burial and carbonate weathering. In order to change the rate of

primary production (Arthur et al., 1987), which is the most likely mechanism for

increasing organic carbon burial, a change must occur in the availability of

nutrients to the surface waters.

Changing the rate of primary production can be done in several ways, all

of which are consistent with the timing of the Asselian through mid-Sakmarian

13 δ Ccarb excursion during one of the largest glaciations of the Late Paleozoic Ice

Age (Isbell, 2003; Fielding, 2007). There was likely an increase in the equator-to-

pole thermal gradient, which would have increased ocean ventilation and

delivered relatively nutrient-rich bottom waters to the surface in regions of upwelling (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991). By

creating stronger zones of upwelling and stimulating productivity, more carbon could be delivered to the sea floor in the form of organic matter to be added to the lithospheric reservoir. Additionally, in a time of glaciation there is likely to be a stronger atmospheric circulation, delivering more nutrients to the oceans by means of eolian transport (e.g., Falkowski, 1997). Evidence for enhanced

atmospheric dust can be seen in massive siliciclastic sequences such as the Earp

and Scherrer Formations represent eolian deposited sediment in the marine realm

77

(Soreghan, 1992). Through the Permian there is also evidence that the interior of

Pangea becoming increasingly arid (Francis, 1994; Ziegler et al., 1997). These two factors could combine to enhance nutrient delivery and already enhanced primary productivity.

Sequence stratigraphic evidence from the Kansas-Oklahoma region and regional sea level curves from western Pangea reveal evidence of sea level fall

13 during the Asselian through mid-Sakmarian δ Ccarb excursion, and this is

consistent with the notion of both enhanced weathering of carbonates and higher

organic carbon burial. A highstand is recognized at the base of the Permian and a

major sequence boundary occurs in the mid-Sakmarian (Henderson and Mei,

2000; Boardman et al., 2009). Specifically, in the midcontinent region, the

Council Grove-Chase Supersequence begins in the upper Ghzelian

(Pennsylvanian), indicating a long-term highstand before the beginning of the

Permian; it ends in the mid-Sakmarian in a major regression (Mazzullo et al.,

2007; Boardman et al., 2009). Additionally, Permian localities around western

Pangea such as , the Phosphoria Basin, and the Sverdrup Basin

show a highstand of sea level at the base of the Asselian; it drops to a lowstand in

the mid-Sakmarian (Beauchamp et al., 1989; Beauchamp and Henderson, 1994;

Ross and Ross, 1995; Henderson and Mei, 2000).

This pattern of long term sea-level fall during the Asselian through mid-

Sakmarian excursion is reflected in the lithologies at the Ninemile Canyon section in Nevada. The latest Carboniferous Gzhelian interval is cyclic, showing short-

78

term (likely glacio-eustatic) sea level change. In the Carboniferous-Permian

boundary interval, a massive cliff-forming packstone is followed by more cyclothems that give way to grainstones with conglomeratic channelizations by the middle of the Sakmarian. These lithologic changes could be interpreted as a

long term decline in sea-level in this region. It is difficult to independently

identify eustatic sea level as the ultimate driver of these changes in relative sea

level in Nevada, however, because the region experienced tectonic activity that

caused basin subsidence (Snyder and Sweet, 2002).

Climatic implications

Sequestration and burial of organic matter, as shown by the gradual

13 increase in δ Ccarb values, would have led to a reduction in atmospheric CO2

(Berner, 2005). This in turn would have increased the likelihood of glaciation.

Sedimentologic evidence of early Permian glaciation has been identified in this interval by both Isbell et al. (Glacial III 2006) and Fielding et al. (2007). There is no evidence of glaciation in the equatorial region of Nevada during the Permian.

Geologic evidence of climate changes are found in the southern hemisphere, including western Australia, , and Antarctica (e.g., Isbell, 2003;

Isbell et al., 2008a; 2008b; Rygel et al., 2007). For example, based on

sedimentologic evidence including tillites, periglacial sediments, and evidence of

regional isostatic loading, a glacial interval apparently started in the basal

79

Asselian and ended in the mid-Sakmarian, which is consistent with our

13 interpretation of the δ Ccarb curve as recording a reduction in atmospheric CO2.

13 Grossman et al. (2008) show elevated δ Ccarb values (4.6‰) that cross the

Pennsylvanian-Permian boundary and drop in the mid-Sakmarian to 3.6‰. These

values were derived from Composita brachiopods, which have been shown to be

1‰ higher than other components at the same horizon in the Pennsylvanian but

Grossman et al. (2008) proposed that this offset in values does not continue in to

13 the Permian. The δ Ccarb trends shown by Grossman et al. (2008) indicate an

early Permian shift in which samples from the Russian Platform have increasing values similar to the findings from this study. This trend contrasts with their

values derived from samples in the U.S. Midcontinent (Grossman et al., 2008).

This disagreement in the isotopic trends in different regions could be related to

correlation problems. The appearance of the conodont Sw. merrilli has recently

come into question as the delineator of the boundary because it seems to have

appeared significantly earlier in Bolivia (Henderson, 2009). This diachroneity

may account for the poor correlation between the different regions studied for

13 δ Ccarb.

13 Values for δ Ccarb reported by Korte et al. (2005) are similar to those

reported by Grossman et al. (2007). Korte et al. (2005) showed values for the

Asselian and Sakmarian that range between ~+3.0‰ and ~+5.5‰, averaging

+4.3‰. However, the Asselian and Sakmarian, which span 14.6 million years

(Wardlaw et al., 2008) is one of the most sparsely sampled intervals in this study

80

with only 17 reliable data points (‘good brachiopods’ of Korte et al., 2005) that

are used to calculate the running average.

While these studies have not identified clear trends within the early

Permian, they have shown that the interval is different from other times in the geologic timescale. The early Permian was the first interval of a well forested

planet experiencing a glaciation and associated changes in carbon cycling.

Proxy evidence for atmospheric CO2 produced from fossil organic matter and pedogenic carbonate nodules (Montañez et al., 2007) shows a trend that declines from the lowest Permian reaching low values in the mid-Asselian and remaining low until the mid-Sakmarian, where values rise rapidly. These data agree with the interpretation that burial of organic matter occurred during the

13 time of the Asselian through mid-Sakmarian δ Ccarb excursion.

Conclusion

High resolution sampling reveals a δ13C excursion in the mid-Sakmarian.

In this interval, glaciation occurred globally and sea level fell. Atmospheric

carbon dioxide was low when glaciation occurred, which can be explained by

high organic matter burial and the observed δ13C excursion. It is likely that oceanographic and atmospheric conditions through this long glacial interval increased nutrient delivery to the surface oceans to increase the burial of organic

matter.

81

References

Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C. 1987. The Cenomanian- Turonian Oceanic Anoxic Event II: Palaeoceanographic controls on organic matter production and preservation. In: Brook J., and Fleet, A.J, (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publications, v. 26, pp. 401-420.

Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variation during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp. 3123-3137.

Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian of Namibia and South Africa. Journal of African Earth Sciences, v. 29, pp. 33-49.

Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Archipelago, Part 1: Time frame and tectonic evolution. Current Research, Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113.

Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove Formations, Sverdrup Basin, Canadian Arctic, conodont zonation. Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597.

Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p.

Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, v. 61, pp. 2717-2730.

Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and lower Permian from the North American Midcontinent. Kansas Geological Survey, Bulletin, v. 255, pp. 1-41.

Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618.

82

Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104.

Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the Devonian of central and . Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88.

Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim Basin, Northwest China: An integration of biostratigraphic and lithostratigraphic constraints. American Association of Petroleum Geologists, Bulletin, v. 87, pp.1323-1354.

Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Key- sections of the Upper Carboniferous and Lower Permian of the western slope of the Urals and Preurals. Ural Branch Academic Science of Russia, Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367.

Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349.

Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal variability in organic carbon burial during global positive carbon isotope 13 excursions: New insight from high resolution δ Ccarb stratigraphy from the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2, pp. 327-340.

13 Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ Ccarb and 13 δ Corg analyses from the midcontinent of North America: Implications for Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, pp. 195-203.

Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik, P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A., Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press. Testing the limits of Paleozoic chronostratigraphic correlation via high- resolution (<500kyr) integrated conodont, graptolite and carbon isotope 13 (δ Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic timescale achievable? (In press with Geological Society of America Bulletin.)

83

Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea, Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74.

Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1- 106.

Crowley, T.J. and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, p. 975-977.

Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510.

Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, pp. 185-197.

Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57.

Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C., Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, v. 27, pp. 215-218.

Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp. 547- 549.

Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge University Press, Cambridge, 274 p.

84

Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry, A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, v. 17, pp. 265-274.

Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the ice- house into the greenhouse: A late Paleozoic analogue for modern global vegetational change. Geological Society of America, Today, v. 10, pp. 1- 7.

Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233.

Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 275-289.

Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont zonation in Northern Pangea: A review. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 36, pp. 16-23.

Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution and Geochronology of Sweetognathus lineage from Bolivia and the Urals of Russia: Biostratigraphic problems and implications for Global Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21.

Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and oxygenation: Limits on the formation of warm saline bottom water over the past 91 m.y. Geology, v. 19, pp. 702-705.

Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and northwestern Utah. Brigham Young University Geology Studies, v. 8, pp. 167-196.

Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v. 15, pp. 619-629. 85

Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End- Members in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24.

Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 71- 82. Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70.

James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. Journal of Sedimentary Research, v. 79, pp.125-143.

Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late — Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675- 678.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v, 224, pp. 333-351.

Kump, L.R., and Arthur, M.A.,1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.

Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14, pp. 225-248.

Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K., 2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE

86

Oklahoma): Implications for seawater chemistry and depositional cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72.

Mei, S., and Henderson, C.M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237-260.

Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America, Bulletin, v. 111, p. 960-973.

Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2- forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91.

Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar development during early marine burial diagenesis: A comparison of carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, v. 44, pp. 977-990.

Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454- 466.

Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sea level, and conodont within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, v. 20, pp. 1039-1042.

Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in Central Pequop Mountains, Elko County, Nevada. Brigham Young University, Geology Studies, v. 8, pp. 93-145.

Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 98-123.

Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye, S.C., 2008. The Early Permian Wasp Head Formation, : 87

High-latitude, shallow marine sedimentation following the late Asselian- early Sakmarian glacial event in eastern Australia. Sedimentology, v. 55, pp. 1517-1540.

Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern : Record of a global oceanographic event. Geological Society of America, Bulletin, v. 110, pp. 285-297.

Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223.

Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), Western United States: Implications for seawater chemistry and glaciation. Geological Society of America, Bulletin, v. 114, pp. 96-108.

Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the Paleozoic oceans. Geology, v. 33, pp. 573-576.

Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87.

Scotese, C., 2002. PALEOMAP Project. www.scotese.com

Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area. In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Sedimentary basins and economic resources, Springer- Verlag, Berlin, v. 2, pp. 81-97.

Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid biostratigraphy, Central Cordilleran Miogeosyncline. Journal of Paleontology, v. 53, pp. 29-36.

Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado. 88

VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, v. 271, pp. 493-496.

Veevers, J.J., Powell, M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487.

Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94.

Wardlaw, B.R., Davydov, V., Mei,S., and Henderson, C., 1998. New Reference Section for the Upper Carboniferous and Lower Permian in northeastern Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8.

Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In: Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249- 270.

Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146.

89

Combined References

Andersson, P.S., Wasserburg, G.J., and Ingri, J., 1992. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, v. 113, pp. 459-472.

Arthur, M.A., Schlanger, S.O., and Jenkyns, H.C., 1987. The Cenomanian- Turonian oceanic anoxic event II: Palaeoceanographic controls on organic matter production and preservation. In: Brooks, J., and Fleet, A.J., (Eds.), Marine Petroleum Source Rocks. Geological Society of London Special Publication, v. 26, pp. 401-420.

Banner, J.L., and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variation during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, v. 54, pp. 3123-3137.

Bangert, B., Stollhofen, H., and Lorenz, V., 1999. The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa. Journal of African Earth Sciences, v. 29, pp. 33-49.

Beauchamp, B., Harrison, J.C., and Henderson, C.M., 1989. Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago, Part 1: Time frame and tectonic evolution. Current Research, Part G, Geological Survey of Canada, Paper, v. 89-1G, pp. 105-113.

Beauchamp, B., and Henderson, C.M., 1994. Great Bear Cape and Trappers Cove Formations, Sverdrup Basin, Canadian Arctic, conodont zonation. Bulletin of Canadian Petroleum Geology, v. 42, pp. 562-597.

Beauchamp, B., and Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, pp. 37- 63.

Becker, L., and Poreda, R.J., 2001. Fullerene and mass extinction in the geologic record. Meteoritic and Planetary Sciences, v. 36, p. A17.

Becker, L., Poreda, R.J., Basu, A.R., Pope, K.O., Harison, T.M., Nicholson, C., and Iasky, R., 2004. Bedout: A possible end-Permian impact crater offshore of northwestern Australia. Science, v. 304, pp. 1469-1477.

90

Behnken, F.H., 1975. Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States. Journal of Paleontology, v. 49, pp. 284-315. Berner, R.A., 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. American Journal of Science, v. 304, pp. 438-453.

Berner, R.A., 2004. The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, 150 p.

Berner, R.A., 2006a. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 over Phanerozoic time. Geochimica et Cosmochimica Acta, v. 70, pp. 5653-5664.

Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, v. 306, pp. 295- 302.

Bickert, T., Paetold, J., Samtleben, C., and Munnecke, A., 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, v. 61, pp. 2717-2730.

Boardman, D.R., II, Wardlaw, B.R., and Nestell, M.K., 2009. Stratigraphy and conodont biostratigraphy of the uppermost Carboniferous and lower Permian from the North American Midcontinent. Kansas Geological Survey, Bulletin, v. 255, pp. 1-41.

Bralower, T.J., and Thierstien, H.R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, v. 12, pp. 614-618.

Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America, Bulletin, v. 115, pp. 89-104.

Buggisch, W., and Joachimski, M.M., 2006. Carbon isotope stratigraphy of the Devonian of central and southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 68-88.

Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, v. 10, pp. 516-519.

91

Caroll A., Stephens, N.P., Hendrix, M.S., Glenn, and G.R., 1998. Eolian-derived siltstone in the Upper Permian Phosphoria Formation: Implications for marine upwelling. Geology, v. 26, pp. 1023-1026.

Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, T.A., 1983. Graphical methods for data analysis. Pacific Grove, CA: Wadsworth and Belmont.

Chen, Z.Q., and Shi, G.R., 2003. Late Paleozoic depositional history of the Tarim Basin, Northwest China: An integration of biostratigraphic and lithostratigraphic constraints. American Association of Petroleum Geologists, Bulletin, v. 87, pp.1323-1354.

Chuvashov, B.I., Dyupina, G.V., Mizens, G.A., and Chernych, V.V., 1990. Key- sections of the Upper Carboniferous and Lower Permian of the western slope of the Urals and Preurals. Ural Branch Academic Science of Russia, Sverdlovsk: Uralian Branch of Russian Academy of Sciences, pp.3-367.

Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, v. 74, pp. 829-836.

Cleveland, W.S., 1981. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistical Association, v. 74, p. 45.

Cleveland W.S., Grosse, E., and Shyu, W.M., 1992. Local regression models. In: Chambers, J.M., and Hastie, T., (Eds.), Statistical Models in South Pacific Grove, CA. Wadsworth and Brooks/Cole, pp. 309-376.

Cramer, B.D., and Saltzman, M.R. 2005. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 219, pp. 333-349.

Cramer, B.D., Saltzman, M.R., and Kleffner, M.A., 2006. Spatial and temporal variability in organic carbon burial during global positive carbon isotope 13 excursions: New insight from high resolution δ Ccarb stratigraphy from the type area of the Niagran (Silurian) Provincial Series. Stratigraphy, v. 2, pp. 327-340.

13 Cramer, B.D., and Saltzman, M.R., 2007. Early Silurian paired δ Ccarb and 13 δ Corg analyses from the midcontinent of North America: Implications for Paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 256, pp. 195-203.

92

Cramer, B.D., Loydell, D.K., Samtleben, C., Munnecke, A., Kaljo, D., Mӓnnik, P., Martma, T., Jeppsson, L., Kleffner, M.A. Barrick, J.E., Johnson, C.A., Emsbo, P., Bickert, T., Joachimski, M.M., Saltzman, M.R., in press. Testing the limits of Paleozoic chronostratigraphic correlation via high- resolution (<500kyr) integrated conodont, graptolite and carbon isotope 13 (δ Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: Is a unified Phanerozoic timescale achievable? (In press with Geological Society of America Bulletin.) Crowell, J.C., 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, v. 278, pp. 1345-1372.

Crowell, J.C., 1995. The ending of the late Paleozoic ice age during the Permian period. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 62-74.

Crowell, J.C., 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Geological Society of America, Memoir, v. 192, pp. 1- 106.

Crowley, T.J., and Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwana ice extent. Geology, v. 19, pp. 975-977.

Crowley, T.J., and Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, v. 20, pp. 507-510.

Davis, A.C., Bickle, M.J., and Teagle, D.A.H., 2003. Imbalance in the oceanic strontium budget. Earth and Planetary Science Letters, v. 211, pp. 173- 187.

Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A., and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chemical Geology, v. 112, pp. 145-167.

DePaolo, D.J., and Ingram, B., 1985. High-resolution stratigraphy with strontium isotopes. Science, v. 227, pp. 938-941.

Derry, L.A., Jacobsen, S.B., and Kauffman, A.J., 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, v. 56, pp. 1317- 1329.

93

Dessert, C., Dupré, B. Gaillardet, J., Franҫois, L.M., and Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, v. 202, pp. 257-273.

Dickins, J.M., 1996. Problems of a Late Paleozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, pp. 185-197.

Dolenec, M., Ogorelec, B., and Lojen, S., 2003. Upper Carboniferous to lower Triassic carbon isotopic signature in carbonate rocks of the western Tethys (Slovenia). Geologica Carpathica, v. 54, pp. 217-228.

Dolenec, T., Orgorelec, B., Dolenec, M., and Lojen, S., 2004. Carbon isotope variability and sedimentology of the upper Permian carbonate rocks and changes across the Permian-Triassic boundary in the Masore section (western Slovenia). Facies, v. 50, pp. 287-299.

Falkowski, P.G., 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, v. 387, pp. 272-275.

Faure, G., Assereto, R., and Tremba, E.L., 1978. Strontium isotope composition of marine carbonates of Middle Triassic to age, Lombardic Alps, Italy. Sedimentology, v. 25, pp. 523-538.

Faure, G., and Mensing, T.M., 2004. Isotopes: Principles and Application. Wiley, 928 p.

Fielding, C.R., Rygel, M.C, Frank, T.D., Birgenheier, L.P., Jones, A.T., and Roberts, J., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia discloses multiple alternating glacial and non-glacial intervals. Geological Society of America, Abstracts with Programs, v. 38, p. 317.

Fielding, C.R., Frank, T.D., Birgenheier, L.P., Prgel, M.C., Jones, A,T., and Roberts, J., 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding, C.R., Frank, T.D., and Isbell, J. L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 41-57.

Finney, S.C., Berry, W.B.N., Cooper, J.D., Ripperdan, R. L., Sweet, W.C., Jacobson, S. R., Soufiane, A., Achab, A., and Noble, P.J., 1999. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, v. 27, pp. 215-218. 94

Frakes, L.A., 1979. Climates through Geologic Time. Elsevier, Amsterdam, 310 p.

Frakes, L.A., and Francis, J.E., 1988. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature, v. 333, pp.547- 549.

Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge University Press, Cambridge, 274 p.

Francis, J.E., 1994. Palaeoclimates of Pangea—Geologic evidence. In: Embry, A.F., Beauchamp, B., and Glass, D.J., (Eds.), Pangea Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, v. 17, pp. 265-274.

Frank, T.D., Birgenheier, L.P., Fielding, C.R., and Rygel, M.C., 2006. Near-field stratigraphic record of the late Paleozoic Gondwanan Ice Age from eastern Australia provides a framework for examining far-field stable isotope records. Geological Society of America, Abstracts with Programs, v. 38, pp. 318.

Gastaldo, R.A., DiMichele, W.A., and Pfefferkorn, H.W., 1996. Out of the ice- house into the greenhouse: A late Paleozoic analogue for modern global vegetational change. Geological Society of America, Today, v. 10, pp. 1- 7.

Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B., 2002. Simulations of Permian climate and comparisons with climate sensitive sediments. Journal of Geology, v. 110, pp. 33-55.

Gradstein, F.M., Ogg, J.G., and Smith, A.G., (Eds.), 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, 589 p.

Grossman, E.L., Yancey, T.E., Jones, T.E., Bruckschen, Chuvashov, B., Mazzullo, S.J., Mii, H.-S., 2008. Glaciation, aridification and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, pp. 222-233.

Hallam, A., and Wignall, P.B., 1999. Mass extinction and sea-level changes. Earth-Science Reviews, v. 48, pp. 217-250.

95

Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic events. In: Dennison, J.M., and Ettensohn, F.R., (Ed.), Tectonic and eustatic controls on sedimentary cycles, Concepts in Sedimentology and Paleontology, v. 4, pp. 65-87.

Heckel, P., 2008. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 275-289.

Henderson, C.M., and Mei, S., 2000. Preliminary cool water Permian conodont zonation in Northern Pangea: A review. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 36, pp. 16-23.

Henderson, C.M., Schmitz, M., Crowley, J., and Davydov, V., 2009. Evolution and Geochronology of Sweetognathus lineage from Bolivia and the Urals of Russia: Biostratigraphic problems and implications for Global Stratotype Section and Point (GSSP) definition. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 53, pp. 20-21.

Herbert, T.D., and Sarmiento, J.L., 1991. Ocean nutrient distribution and oxygenation: Limits on the formation of warm saline bottom water over the past 91 m.y. Geology, v. 19, pp. 702-705.

Hodgkinson, K.A., 1961. Pemian stratigraphy of northeastern Nevada and northwestern Utah. Brigham Young University Geology Studies, v. 8, pp. 167-196.

Hyde, W.T., Crowley, T.J., Tarasov, L., and Paltier, W.R., 1999. The Pangean ice age: Studies with a coupled climate-ice sheet model. Climate Dynamics, v. 15, pp. 619-629.

Hyde, W.T., Grossman, E.L., Crowley, T.J., Pollard, D., and Scotese, C.R., 2006. Siberian glaciation as constraint on Permian-Carboniferous CO2 levels. Geology, v. 34, pp. 421-424.

Isbell, J.L., Miller, M.F., Wolfe, K.L., and Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In: Chan, M.A., and Archer, A.A., (Eds.), Extreme Depositional Environments: Mega End-

96

Members in Geologic Time. Geological Society of America, Special Paper, v. 370, pp. 5-24.

Isbell, J.L., Cole, D.I., and Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In: Fielding, C.R., Frank, T.D., and Isbell, J.L. (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 71- 82.

Isbell, J.L., Koch, K.J., Szablewski, and Lenaker, P.A., 2008. Permian glaciogenic deposits in the Transantarctic Mountains, Antarctica. In: Fielding, C.R., Frank, T.D., and Isbell, J.L., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, Special Paper, v. 441, pp. 59-70.

Isozaki,Y., 1997. Permo-Triassic boundary Superanoxia and stratified superocean: Records from lost deep-sea. Science, v. 276, pp. 235-238.

Isozaki, Y., Kawahata, H., and Ota, A., 2006. A unique carbon isotope record across the Guadalupian-Lopingian (middle-upper Permian) boundary in mid-oceanic paleo-atoll carbonates: The high-productivity “Kamura Event” and its collapse in Panthalassa. Global and Planetary Change, v. 55, pp. 21-38.

James, N.P., Frank, T.D., Fielding, C.R., 2009. Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. Journal of Sedimentary Research, v. 79, pp.125-143.

Joachimski, M.M., and Buggisch, W., 1993. Anoxic events in the late Frasnian— Causes of the Frasnian-Fammenian faunal crisis? Geology, v. 21, pp. 675- 678.

Jones, A.T., and Fielding, C.R., 2004. Sedimentological record of the late Paleozoic glaciation in Queensland, Australia. Geology, v. 32, pp. 153- 156.

Kaiho, K., Kajiwara, Y., Nakano, T., Miura, Y., Kawahata, H., Tazaki, K., Ueshima, M., Chen, Z., and Shi, G. R., 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, v. 29, pp. 815-818.

Kaiho, K., Chen, Z.Q., Ohashi, T., Arinobu, T., Sawada, K., and Cramer, B.S., 2005. A negative carbon isotope anomaly associated with the earliest

97

Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 172-180.

Kani, T., Fukui, M., Isozaki, Y., and Nohda, S., 2008. The Paleozoic minimum of 87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: A critical turning point in the Late Paleozoic. Journal of Asian Earth Sciences, v. 32, pp. 22-33.

Kerr, R.A., 2004. Evidence of a huge, deadly impact found off the Australian coast? Science, v. 304, pp. 941.

Kershaw, S., Zhang, T., and Lan, G., 2008. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 146, pp. 1-18.

Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, AB., Sephton, M.A., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology, v. 32, pp. 1053-1056.

Koepnick, R.B., Burke, W.H., Denison, R.E., Hetherington, E.A., Nelson, H.F., Otto, J.B., and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data. Chemical Geology, Isotope Geoscience Section, v. 58, pp. 55-81.

Korte, C., Kozur, H.W., Joachimski, M.M., Strauss, H., Veizer, J., and Schwark, L., 2004. Carbon, sulfer, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Science, v. 93, pp. 565-581.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, pp. 333-351.

Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, pp. 89-107.

Kovalevich, V.M., Peryt, T.M., and Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, v. 106, pp. 695-712.

98

Krull, E.S., and Retallack, G.J., 2000. δ13C depth profiles from paleosols across the Permian –Triassic boundary: Evidence for methane release. Geological Society of America Bulletin, v. 112, pp. 1459-1472.

Krull, E.S., Lehrmann, D.J., Druke, D., Kessel, B., Yu, Y.Y., and Li, R., 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 204, pp. 297-315.

Kump, L.R., and Arthur, M.A., 1997. Global chemical erosion during the Cenozoic weatherability balances the budgets. In: Ruddiman, W.F., (Ed.), Tectonic uplift and climate change, New York, Plenum Press, pp. 399- 425.

Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, v. 161, pp. 181-198.

Kump, L.R., Pavlov, A., Arthur, M.A., 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, v. 33, pp. 397-400.

Lenton, T.M., and Watson, A.J., 2000. Redfield revisited: 1. Regulation of nitrate phosphate and oxygen in the ocean. Global Biogeochemical Cycles, v. 14, pp. 225-248.

Lowenstein, T.K., Horita, J., Kovalevych, V.M., and Timofeef, M.N., 2005. The major-ion composition of Permian seawater. Geochimica et Cosmochimica Acta, v. 69, pp. 1701-1719.

Magaritz, M., Krishnamurty, R.V., Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian-Triassic boundary. American Journal of Science, v. 292, p. 727-739.

Martin, E.E., and MacDougall, J.D., 1995. Sr and Nd isotopes at the Permian/Triassic Boundary: A record of climate change. Chemical Geology, v. 125, pp. 73-99.

Mazzullo, S.J., Boardman, D.R., II, Grossman, E.L., and Dimmick-Wells, K., 2007. Oxygen-carbon isotope stratigraphy of Upper Carboniferous to Lower Permian marine deposits in Midcontinent U.S.A. (Kansas and NE Oklahoma): Implications for seawater chemistry and depositional cyclicity. Carbonates and Evaporaites, v. 22, pp. 55-72.

99

McArthur, J.M, Howarth, R.J., and Bailey, T.R., 2001. Strontium isotope stratigraphy, LOWESS Version 3: Best fit to the barine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, v. 109, pp. 155-170.

McArthur, J.M., and Howarth, R.J., 2004. Stronitum isotope stratigraphy. In: Gradstein, J.G., Ogg, J.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, pp. 96-125.

Mei, S., and Henderson, C. M., 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, pp.237–260.

Mii, H.S., Grossman, E.L., and Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America, Bulletin, v. 111, p. 960-973.

Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001. Isotopic records of brachiopod shells from the Russian Platform— evidence for the onset of mid-Carboniferous Glaciation. Chemical Geology, v. 175, pp. 133-147.

Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., Bosserman, P.J., 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, v. 24, pp. 917-920.

Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007. CO2- forced climate and vegetation instability during Late Paleozoic deglaciation. Science, v. 315, pp. 87-91.

Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, v. 11, pp. 289-310.

Munnecke, A., Westphal, H., Reijmer, J.J.G, and Samtleben, C., 1997. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, v. 44, pp. 977-990.

100

Musashi, M. Isozaki, Y., Koike, T., and Kreulen, R., 2001. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo- Triassic boundary: evidence for 13C-depleted superocean. Earth and Planetary Science Letters, v. 191, pp. 9-20.

Palmer, M.R., and Edmond, J.M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, v. 92, pp. 11-26.

Parrish, J.T., and Peterson, F., 1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States – A comparison. Sedimentary Geology, v. 56, pp. 261-282.

Parrish, J.T., 1993. Climate of the supercontinent Pangea. Journal of Geology, v. 101, pp. 215-233.

Paytan, A, Kastner, M., Martin, E.E., Macdougall, J.D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, v. 366, pp. 445-449.

Pedersen, T.F., and Calvert, S.E., 1990. Anoxia vs. Productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists, Bulletin, v. 74, pp. 454- 466.

Peterman, Z.E., Hedge, C.E., and Tourtelot, H.A., 1970. Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochimica et Cosmochimica Acta, v. 34, pp. 105-120.

Popp, B.N., Anderson, T.F., and Sandberg, P.A., 1986. Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America. Journal of Sedimentary Petrology, v. 56, pp. 715-727.

Renne, P.R, and Basu, A.R., 1991. Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science, v. 253, pp. 176-179.

Riccardi, A., Kump, L.R., Arthur, M.A., and D’Hondt, S., 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, pp. 73-81.

Ripperdan, R.L., Magaritz, M., Nicoll, R.S., and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, v. 20, pp. 1039-1042. 101

Robinson, G.B., Jr., 1961. Stratigraphy and Leonardian fusilinid paleontology in Central Pequop Mountains, Elko County, Nevada. Brigham Young University, Geology Studies, v. 8, pp. 93-145.

Ross, C.A., and Ross, J.R., 1995. Permian sequence stratigraphy. In: Scholle, P.A., Peryt, T.M, and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Paleogeography, paleoclimates, stratigraphy. Springer-Verlag, Berlin, v. 1, pp. 98-123.

Royer, D.L., Berner, R.A., Montañez, Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. Geological Society of America, Today, v. 14, pp. 4-10.

Rygel, M.C., Fielding, C.R., Bann, K.L., Frank, T.D., Birgenheier, L.P., and Tye, S.C., 2008. The Early Permian Wasp Head Formation, Sydney Basin: High-latitude, shallow marine sedimentation following the late Asselian- early Sakmarian glacial event in eastern Australia. Sedimentology, v. 55, pp. 1517-1540.

Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008. The magnitude of late Paleozoic glacio-eustatic fluctuations: A synthesis. Journal of Sedimentary Research, v. 78, pp. 500-511.

Saltzman, M.R., Runneggar, B., and Lohmann, K.C., 1998. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event. Geological Society of America, Bulletin, v. 110, pp. 285-297.

Saltzman, M.R., Ripperdan, R.L., Brasier, M.D., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S., Ergaliev, E.K., and Runnegar, B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 162, pp. 211-223.

Saltzman, M.R., 2002. Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), Western United States: Implications for seawater chemistry and glaciation. Geological Society of America, Bulletin, v. 114, pp. 96-108.

Saltzman, M.R., 2005. Phosphorus, nitrogen and the redox evolution of the Paleozoic oceans. Geology, v. 33, pp. 573-576.

102

Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists, Bulletin, v. 64, pp. 67-87.

Schwab, V., and Spangenberg, J.E., 2004. Organic geochemistry across the Permian-Triassic transition at the Idrijca Valley, western Slovenia. Applied Geochemistry, v. 19, p. 55-72.

Scotese, C., 2002. PALEOMAP Project. www.scotese.com

Scotese, C.R., and McKerrow, W.S., 1990. Revised world maps and introduction. In: McKerrow, W.S. and Scotese, C.R., (Eds.), Paleozoic Paleogeography and Biogeography. Geological Society of London, Memoirs, v. 12, pp. 1- 21.

Shen, S.Z., Wang, Y., Henderson, C.M., Cao, C.Q., and Wang, W., 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Hshan area of Guangxi, South China. Palaeoworld, v. 16, pp. 120-139.

Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J., and Li, R., 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, v. 67, pp. 2005-2025.

Stallard, R.F., 1995. Relating chemical and physical erosion. In: Brantley, S.L. (Ed.), Reviews in Mineralogy, v. 31, pp. 543-564.

Stemmerik, L., and Worsley, D., 1995. Permian history of the Barents shelf area. In: Scholle, P.A., Peryt, T.M., and Ulmer-Scholle, D.S., (Eds.), Permian of northern Pangea: Sedimentary basins and economic resources, Springer- Verlag, Berlin, v. 2, pp. 81-97.

Stephens, N.P., and Caroll, A.R., 1999. Salinity stratification in the Permian Phosphoria sea: A proposed paleoceanographic model. Geology, v. 27, pp. 899-902.

Stevens, C.H., Wagner, D.B., and Sumsion, R.S., 1979. Permian fusilinid biostratigraphy, Central Cordilleran Miogeosyncline. Journal of Paleontology, v. 53, pp. 29-36.

Sweet, D., and Snyder, W.S., 2002. Middle Pennsylvanian through early Permian tectonically controlled basins: Evidence from the central Pequop Mountains, Northeast Nevada. AAPG Hedberg Conference: Late Paleozoic Tectonics and Hydrocarbon Systems of Western North 103

America—The Greater Ancestral Rocky Mountains. July 21-26, 2002. Vail, Colorado.

Tabor, N.J., and Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions. Geology, v. 30, pp. 1127-1130.

Tabor, N.J., and Montañez, I.P., 2004. Morphology and distribution of fossil soils in the Permo Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean paleoclimate during icehouse- greenhouse transition. Sedimentology, v. 51, pp. 851- 884.

Tabor, N.J., and Montañez, I.P., 2005. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 223, pp. 127- 146.

Thisted, R.A., 1988. Elements of Statistical Computing. Chapmand and Hall, New York, 427 p.

Tierney, K.E., and others. in prep. High-resolution carbon isotope composite curve for the Permian System: Implications for organic carbon burial and global climate.

Tierney, K.E., and others. in prep. An early Permian (Asselian-Sakmarian) carbon isotope excursion from Nevada.

Tramp, K.L., Elmore, R.D., and Soreghan, G.S., 2004. Paleoclimatic inferences from paleopedology and magnetism of the Permian Maroon Formation loessite, Colorado, USA. Geological Society of America, Bulletin, v. 116, pp. 671-686.

VanCappellen, P., and Ingall, E.D., 1996. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, v. 271, pp. 493-496.

Veevers, J.J., and Powell, C.M., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America, Bulletin, v. 98, pp. 475-487.

104

Veevers, J.J., Conaghan, P.J., Powell, C., Cowan, E.J., McDonnell, K.L., and Shaw, S.E., 1994. Eastern Australia. In: Veevers, J.J. and Powell, C., (Eds.), Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoir, v. 184, pp. 11-171.

Veizer, J., and Compston W., 1974. 87Sr/86Sr in Precabrian carbonates as an index of crustal evolution. Geochimica et Cosmochimica Acta, v. 40, pp. 905- 915.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, v. 161, pp. 59-88.

Wang, X., Li, S., Wang, Y., and Shi, X., 1996. Upper Devonian and Lower Carboniferous sequence stratigraphy of South China. Journal of China University of Geosciences, v. 7, pp. 87-94.

Wang, W., Cao, C., and Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, v. 220, pp. 57-67.

Wanless, H.R., and Shepard, F.P., 1936. Sea level and climatic changes related to late Paleozoic cycles. Geological Society of America Bulletin, v. 47, pp. 1177-1206.

Wardlaw, B.R., Davydov, V., Mei, S., and Henderson, C., 1998. New reference sections for the Upper Carboniferous and Lower Permian in Northeast Nevada. Permophiles: Newsletter of the Subcommission on Permian Stratigraphy, v. 31, pp. 5-8.

Wardlaw, B.R., Davydov, V., and Gradstien, F.M., 2004. The Permian Period. In: Gradstein, F.M., Ogg, F.G., and Smith, A.G., (Eds.), A geologic time scale 2004. Cambridge University Press, Cambridge, United Kingdom, pp. 249- 270.

Wignall, P.B., and Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, v. 272, pp. 1155-1158.

Wignall, P.B., Morante, R., and Newton, R., 1998. The Permo-Triassic transition 13 in Spitsbergen: δ Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine, v. 135, pp. 47-62.

105

Wignall, P.B., Bedrine, S. Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and Jiang, H.S., 2009. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, south China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society of London, v. 166, pp. 655-666.

Wignall, P.B., Sun, Y., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S., Widdowson, M., Ali, J.R., Lai, X., Jiang, H., Cope, H., and Bottrell, S.H., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, v. 324, pp. 1179-1182.

Wolbach, W.S., Roegge, D.R., and Gilmour, I., 1994. The Permian-Triassic of the Gartnerkofel-1Core (Carnic Alps, Austria): Organic carbon isotope variation. Conference on New Developments Regarding the K/T Event and Other Catastrophes in Earth History, Lunar and Planetary Institute, Houston, pp. 133-134.

Zachos, J.C., Opdyke, B.N., Quinn, T.M., Jones, C.E., Halliday, A.N., 1999. Early Cenozoic glaciation, Antarctic weathering and seawater 87Sr/86Sr: Is there a link? Chemical Geology, v. 161, pp. 165-180.

Ziegler, A.M., Hulver, M.L., and Rowley, D.B. 1997. Permian world topography and climate. In: Martini, I.P., (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford, pp. 111-146.

Ziegler, A.M., Rees, P.M., and Naugolnykh, S.V., 2002. The Early Permian floras of Prince Edward Island, Canada: Differentiating global from local effects of climate change. Canadian Journal of Earth Sciences, v. 39, pp. 223-238.

106

Appendix A: Data Tables

107

Table 1 Nine Mile Canyon Section, Nevada, USA Permian Composite Section 1 Starting #: 5466027 (2nd Roll Starting #: 5153159) 87 86 13 18 Ticket # age Meter Sr ppm Sr/ Sr unc δ Ccarb δ O Stage Series Notes 5466027 302.000 625 226.629 0.708254 0.000008 0.006 -13.710 Ghzelian Penn 5466028 301.901 631.5 Ghzelian Penn 5466029 301.859 634.25 Ghzelian Penn 5466030 301.848 635 Ghzelian Penn 5466031 301.833 636 Ghzelian Penn 5466032 301.818 637 Ghzelian Penn 5466033 301.803 638 Ghzelian Penn 5466034 301.787 639 Ghzelian Penn 5466035 301.772 640 Ghzelian Penn 108 5466036 301.757 641 Ghzelian Penn

5466037 301.749 641.5 Ghzelian Penn 5466038 301.734 642.5 Ghzelian Penn 5466039 301.719 643.5 Ghzelian Penn 5466040 301.704 644.5 Ghzelian Penn 5466041 301.689 645.5 Ghzelian Penn 5466042 301.673 646.5 Ghzelian Penn 5466043 301.666 647 Ghzelian Penn 5466044 301.651 648 Ghzelian Penn 5466045 301.635 649 Ghzelian Penn 5466046 301.620 650 Ghzelian Penn 5466047 301.605 651 Ghzelian Penn 5466048 301.590 652 Ghzelian Penn 5466049 301.575 653 Ghzelian Penn 5466050 301.567 653.5 Ghzelian Penn 5466051 301.552 654.5 Ghzelian Penn continued

Table 1 continued

5466052 301.537 655.5 Ghzelian Penn 5466053 301.522 656.5 Ghzelian Penn 5466054 301.506 657.5 Ghzelian Penn 5466055 301.491 658.5 634.459 0.708128 0.000007 2.355 -7.470 Ghzelian Penn 5466056 301.476 659.5 Ghzelian Penn 5466057 301.468 660 Ghzelian Penn 5466058 301.453 661 Ghzelian Penn 5466059 301.438 662 Ghzelian Penn 5466060 301.423 663 Ghzelian Penn 5466061 301.408 664 Ghzelian Penn 5466062 301.392 665 Ghzelian Penn 109 5466063 301.377 666 391.781 0.708181 0.000009 2.757 -5.542 Ghzelian Penn

5466064 301.362 667 Ghzelian Penn 5466065 301.354 667.5 Ghzelian Penn 5466066 301.339 668.5 Ghzelian Penn 5466067 301.324 669.5 Ghzelian Penn 5466068 301.309 670.5 Ghzelian Penn 5466069 301.294 671.5 352.092 0.708102 0.000009 1.876 -9.154 Ghzelian Penn 5466070 301.278 672.5 Ghzelian Penn 5466071 301.263 673.5 Ghzelian Penn 5466072 301.256 674 Ghzelian Penn 5466073 301.241 675 Ghzelian Penn 5466074 301.225 676 Ghzelian Penn 5466075 301.210 677 Ghzelian Penn 5466076 301.195 678 258.624 0.708364 0.000007 1.107 -8.457 Ghzelian Penn 5466077 301.180 679 Ghzelian Penn 5466078 301.165 680 Ghzelian Penn

continued Table 1 continued

5466079 301.157 680.5 Ghzelian Penn 5466080 301.142 681.5 Ghzelian Penn 5466081 301.127 682.5 Ghzelian Penn 5466082 301.111 683.5 Ghzelian Penn 5466083 301.096 684.5 Ghzelian Penn 5466084 301.081 685.5 Ghzelian Penn 5466085 301.066 686.5 Ghzelian Penn 5466086 301.058 687 Ghzelian Penn 5466087 301.043 688 Ghzelian Penn 5466088 301.028 689 255.73 0.708227 0.000008 2.201 -5.263 Ghzelian Penn 5466089 301.013 690 Ghzelian Penn 110 5466090 301.005 690.5 Ghzelian Penn

5466091 300.997 691 Ghzelian Penn 5466092 300.937 695 Ghzelian Penn 5466093 300.884 698.5 Ghzelian Penn 10 cm below conglomerate parallel to conglomerate lens 1.5 5466094 300.830 702 202.923 0.708408 0.000009 0.736 -7.475 Ghzelian Penn m thick 5466095 300.808 703.5 Ghzelian Penn 5466096 300.785 705 Ghzelian Penn 5466097 300.762 706.5 Ghzelian Penn 5466098 300.739 708 Ghzelian Penn 5466099 300.716 709.5 Ghzelian Penn erosional surface? 5466100 300.694 711 Ghzelian Penn 5466101 300.671 712.5 Ghzelian Penn 5466102 300.648 714 Ghzelian Penn 5466103 300.625 715.5 Ghzelian Penn 5466104 300.603 717 Ghzelian Penn 5466105 300.580 718.5 Ghzelian Penn

continued Table 1 continued

5466106 300.557 720 Ghzelian Penn 5466107 300.534 721.5 533.33 0.708459 0.000007 2.259 -12.433 Ghzelian Penn C7 5466108 300.511 723 Ghzelian Penn 5466109 300.489 724.5 Ghzelian Penn 5466110 300.466 726 Ghzelian Penn 5466111 300.443 727.5 Ghzelian Penn 5466112 300.420 729 Ghzelian Penn 5466113 300.397 730.5 Ghzelian Penn 5466114 300.375 732 Ghzelian Penn 5466115 300.352 733.5 Ghzelian Penn 5466116 300.329 735 Ghzelian Penn 111 5466117 300.306 736.5 Ghzelian Penn

5466118 300.284 738 313.686 0.708319 0.000008 3.416 -9.998 Ghzelian Penn C8 5466119 300.261 739.5 Ghzelian Penn 5466120 300.238 741 Ghzelian Penn 5466121 300.215 742.5 Ghzelian Penn 5466122 300.192 744 Ghzelian Penn 5466123 300.170 745.5 Ghzelian Penn 5466124 300.147 747 Ghzelian Penn covered above for 16 m 5466125 300.124 748.5 Ghzelian Penn 5466126 300.101 750 Ghzelian Penn 5466127 300.078 751.5 276.46 0.708179 0.000012 3.326 -5.892 Ghzelian Penn C9 5466128 300.056 753 Ghzelian Penn 5466129 300.033 754.5 Ghzelian Penn 5466130 300.010 756 Ghzelian Penn 5466131 299.987 757.5 Ghzelian Penn 5466132 299.965 759 Ghzelian Penn 5466133 299.942 760.5 Ghzelian Penn continued Table 1 continued

5466134 299.919 762 Ghzelian Penn 5466135 299.896 763.5 Ghzelian Penn 5466136 299.873 765 280.439 0.708135 0.00001 2.829 -6.202 Ghzelian Penn C10 5466137 299.851 766.5 Ghzelian Penn 5466151 299.266 805 Ghzelian Penn 5466152 299.243 806.5 Ghzelian Penn 5466153 299.220 808 Ghzelian Penn 5466154 299.197 809.5 Ghzelian Penn 5466155 299.175 811 Ghzelian Penn 5466156 299.152 812.5 Ghzelian Penn 5466157 299.129 814 Ghzelian Penn 112 5466158 299.114 815 285.144 0.708194 0.000011 3.415 -4.789 Ghzelian Penn

5466159 299.106 815.5 Ghzelian Penn 6.5 m covered 5466160 299.008 822 Ghzelian Penn 5466162 299.004 823.5 Ghzelian Penn 5153159 299.000 825 214.87 0.708099 0.000011 2.397 -4.689 Asselian Cisuralian CARB-PERMIAN BOUNDARY 5153160 298.968 825.5 Asselian Cisuralian first appearance S. isolatus 5153161 298.936 826 Asselian Cisuralian 5153162 298.904 826.5 Asselian Cisuralian 5153163 298.872 827 Asselian Cisuralian 5153164 298.841 827.5 Asselian Cisuralian 5153165 298.809 828 Asselian Cisuralian 5153166 298.777 828.5 Asselian Cisuralian 5153167 298.745 829 Asselian Cisuralian 5153168 298.713 829.5 Asselian Cisuralian 5153169 298.681 830 Asselian Cisuralian 5153170 298.649 830.5 336.24 0.708137 0.000007 1.989 -4.905 Asselian Cisuralian

continued Table 1 continued

5153171 298.617 831 Asselian Cisuralian 5153172 298.586 831.5 Asselian Cisuralian 5153173 298.554 832 Asselian Cisuralian 5153174 298.522 832.5 Asselian Cisuralian 5153175 298.490 833 Asselian Cisuralian 5153176 298.458 833.5 Asselian Cisuralian 5153177 298.426 834 Asselian Cisuralian 5153178 298.394 834.5 Asselian Cisuralian 5153179 298.362 835 Asselian Cisuralian 5153180 298.330 835.5 418.115 0.708112 0.000011 2.910 -5.705 Asselian Cisuralian 5153181 298.299 836 Asselian Cisuralian 113 5153182 298.267 836.5 Asselian Cisuralian

5153183 298.235 837 187.046 0.708185 0.000012 2.006 -6.259 Asselian Cisuralian 5153184 298.203 837.5 Asselian Cisuralian 5153185 298.171 838 Asselian Cisuralian 5153186 298.139 838.5 Asselian Cisuralian 5153187 298.107 839 Asselian Cisuralian 5153188 298.075 839.5 Asselian Cisuralian 5153189 298.043 840 Asselian Cisuralian 5153190 298.012 840.5 Asselian Cisuralian 5153191 297.980 841 Asselian Cisuralian 5153192 297.948 841.5 191.084 0.708282 0.000011 1.529 -5.949 Asselian Cisuralian 5153193 297.916 842 Asselian Cisuralian 5153194 297.884 842.5 Asselian Cisuralian 5153195 297.852 843 Asselian Cisuralian 5153196 297.820 843.5 Asselian Cisuralian 5153197 297.788 844 Asselian Cisuralian 5153198 297.757 844.5 Asselian Cisuralian continued Table 1 continued

5153199 297.725 845 Asselian Cisuralian 5153200 297.693 845.5 Asselian Cisuralian 5153201 297.661 846 Asselian Cisuralian 5153202 297.629 846.5 Asselian Cisuralian 5153203 297.597 847 547.093 0.708129 0.000007 3.105 -6.912 Asselian Cisuralian 5153204 297.565 847.5 Asselian Cisuralian 5153205 297.533 848 Asselian Cisuralian 5153206 297.501 848.5 Asselian Cisuralian 5153207 297.470 849 Asselian Cisuralian 5153208 297.438 849.5 Asselian Cisuralian 5153209 297.406 850 398.745 0.708189 0.00001 3.041 -6.969 Asselian Cisuralian 114 5153210 297.374 850.5 Asselian Cisuralian

5153211 297.342 851 Asselian Cisuralian 5153212 297.310 851.5 Asselian Cisuralian 5153213 297.278 852 Asselian Cisuralian 5153214 297.246 852.5 Asselian Cisuralian 5153215 297.214 853 Asselian Cisuralian 5153216 297.183 853.5 Asselian Cisuralian 5153217 297.151 854 Asselian Cisuralian 5153218 297.119 854.5 Asselian Cisuralian 5153219 297.087 855 Asselian Cisuralian 5153220 297.055 855.5 172.198 0.708168 0.000012 1.831 -3.843 Asselian Cisuralian 5153221 297.023 856 Asselian Cisuralian 5153222 296.991 856.5 Asselian Cisuralian 5153223 296.959 857 Asselian Cisuralian 5153224 296.896 858 Asselian Cisuralian 5153225 296.832 859 Asselian Cisuralian

continued Table 1 continued

5153226 296.800 859.5 1.908 -6.437 Asselian Cisuralian 5153227 296.768 860 Asselian Cisuralian 5153228 296.704 861 Asselian Cisuralian 5153229 296.449 865 Asselian Cisuralian 5153230 296.417 865.5 Asselian Cisuralian 5153231 296.386 866 Asselian Cisuralian 5153232 296.322 867 Asselian Cisuralian 5153233 296.130 870 Asselian Cisuralian 5153234 295.875 874 132.999 0.708195 0.000011 2.586 -4.623 Asselian Cisuralian 5153235 295.780 875.5 Asselian Cisuralian 5153236 295.684 877 Asselian Cisuralian 115 5153237 295.493 880 Asselian Cisuralian

5153238 295.429 881 Asselian Cisuralian 5153239 295.365 882 Asselian Cisuralian 5153240 295.301 883 Asselian Cisuralian 5153241 295.270 883.5 Asselian Cisuralian 5153242 295.238 884 135.403 0.70805 0.000009 3.545 -5.156 Asselian Cisuralian 5153243 295.206 884.5 Asselian Cisuralian 5153244 295.110 886 Asselian Cisuralian 5153245 295.046 887 Asselian Cisuralian 5153246 294.983 888 Asselian Cisuralian 5153247 294.951 888.5 Asselian Cisuralian 5153248 294.919 889 215.345 0.7079 0.000009 3.493 -4.277 Asselian Cisuralian 5153249 294.903 889.25 Asselian Cisuralian 889 5153250 294.887 889.5 Asselian Cisuralian 5153251 294.855 890.0 Asselian Cisuralian 5153252 294.823 890.5 Asselian Cisuralian

continued Table 1 continued

5153253 294.791 891.0 Asselian Cisuralian 5153254 294.728 892.0 Asselian Cisuralian 5153255 294.696 892.5 Asselian Cisuralian 5153256 294.664 893.0 Asselian Cisuralian 5153257 294.632 893.5 94.72 0.708246 0.000000 2.448 -5.447 Asselian Cisuralian 5153258 294.600 894.0 Asselian Cisuralian 5153259 294.568 894.5 Asselian Cisuralian 5153260 294.600 895.0 Sakmarian Cisuralian first appearance S. merrilli 5153261 294.572 895.5 Sakmarian Cisuralian 5153262 294.543 896.0 Sakmarian Cisuralian 5153263 294.486 897.0 Sakmarian Cisuralian 116 5153264 294.429 898.0 Sakmarian Cisuralian

5153265 294.401 898.5 Sakmarian Cisuralian 5153266 294.372 899.0 87.66 0.708353 0.000012 2.032 -2.763 Sakmarian Cisuralian 5153267 294.344 899.5 Sakmarian Cisuralian 5153268 294.315 900.0 Sakmarian Cisuralian 5153269 294.258 901.0 Sakmarian Cisuralian 5153270 294.230 901.5 Sakmarian Cisuralian 5153271 294.201 902.0 Sakmarian Cisuralian 5153272 294.030 905.0 Sakmarian Cisuralian 5153273 293.973 906.0 Sakmarian Cisuralian 5153274 293.945 906.5 Sakmarian Cisuralian 5153275 293.916 907.0 196.761 0.707939 0.000008 3.499 -2.181 Sakmarian Cisuralian 5153276 293.888 907.5 Sakmarian Cisuralian 5153277 293.859 908.0 Sakmarian Cisuralian 5153278 293.831 908.5 Sakmarian Cisuralian 5153279 293.802 909.0 Sakmarian Cisuralian

continued Table 1 continued

5153280 293.660 911.5 164.531 0.707891 0.000007 3.415 -9.949 Sakmarian Cisuralian 5153281 293.631 912.0 Sakmarian Cisuralian 5153282 293.603 912.5 Sakmarian Cisuralian 5153283 293.574 913.0 Sakmarian Cisuralian 5153284 293.546 913.5 Sakmarian Cisuralian 5153285 293.517 914.0 Sakmarian Cisuralian 5153286 293.489 914.5 Sakmarian Cisuralian 5153287 293.175 920.0 Sakmarian Cisuralian 5153288 293.118 921.0 Sakmarian Cisuralian 5153289 293.061 922.0 Sakmarian Cisuralian 5153290 293.004 923.0 Sakmarian Cisuralian 117 5153291 292.947 924.0 159.364 0.707883 0.000009 3.217 -5.919 Sakmarian Cisuralian

5153292 292.919 924.5 Sakmarian Cisuralian 5153293 292.834 926.0 Sakmarian Cisuralian 5153294 292.777 927.0 Sakmarian Cisuralian 5153295 292.748 927.5 Sakmarian Cisuralian 5153296 292.720 928.0 Sakmarian Cisuralian 5153297 292.691 928.5 Sakmarian Cisuralian 5153298 292.663 929.0 Sakmarian Cisuralian 5153299 292.634 929.5 Sakmarian Cisuralian 5153300 292.606 930.0 90.66 0.708278 0.000017 4.075 -3.810 Sakmarian Cisuralian 5153301 292.560 930.8 Sakmarian Cisuralian 5153302 292.514 931.6 Sakmarian Cisuralian 5153303 292.469 932.4 Sakmarian Cisuralian 5153304 292.423 933.2 Sakmarian Cisuralian 5153305 292.378 934.0 Sakmarian Cisuralian 5153306 292.332 934.8 Sakmarian Cisuralian 5153307 292.286 935.6 Sakmarian Cisuralian continued Table 1 continued

5153308 292.241 936.4 Sakmarian Cisuralian - 5153309 292.207 937.0 85.93 0.707906 0.000002 3.815 -5.250 Sakmarian Cisuralian 5153310 292.178 937.5 Sakmarian Cisuralian 5153311 292.150 938.0 Sakmarian Cisuralian 5153312 292.121 938.5 Sakmarian Cisuralian 5153313 292.093 939.0 Sakmarian Cisuralian 5153314 292.064 939.5 Sakmarian Cisuralian 5153315 292.036 940.0 Sakmarian Cisuralian 5153316 292.007 940.5 Sakmarian Cisuralian 5153317 291.979 941.0 Sakmarian Cisuralian

118 5153318 291.922 942.0 76.79 0.708191 0.000000 4.350 -2.009 Sakmarian Cisuralian 5153319 291.893 942.5 Sakmarian Cisuralian

5153320 291.865 943.0 Sakmarian Cisuralian 5153321 291.836 943.5 Sakmarian Cisuralian 5153322 291.808 944.0 Sakmarian Cisuralian 5153323 291.751 945.0 Sakmarian Cisuralian 5153324 291.694 946.0 Sakmarian Cisuralian 5153325 291.637 947.0 Sakmarian Cisuralian 5153326 291.580 948.0 Sakmarian Cisuralian 5153327 291.523 949.0 Sakmarian Cisuralian 5153328 291.494 949.5 141.121 0.707913 0.000013 3.480 -4.957 Sakmarian Cisuralian 5153329 291.437 950.5 Sakmarian Cisuralian 5153330 291.352 952.0 Sakmarian Cisuralian 5153331 291.323 952.5 Sakmarian Cisuralian 5153332 291.266 953.5 Sakmarian Cisuralian 5153333 291.209 954.5 Sakmarian Cisuralian 5153334 291.181 955.0 Sakmarian Cisuralian

continued Table 1 continued

5153335 291.153 955.5 Sakmarian Cisuralian 5153336 291.124 956.0 Sakmarian Cisuralian 5153337 291.096 956.5 Sakmarian Cisuralian 5153338 291.039 957.5 149.804 0.707861 0.000024 3.489 -5.037 Sakmarian Cisuralian 5153339 291.010 958.0 3.589 -5.228 Sakmarian Cisuralian 5153340 290.782 962.0 Sakmarian Cisuralian 5153341 290.668 964.0 Sakmarian Cisuralian 5153342 290.640 964.5 Sakmarian Cisuralian 5153343 290.611 965.0 Sakmarian Cisuralian 5153344 290.583 965.5 Sakmarian Cisuralian 5153345 290.326 970.0 Sakmarian Cisuralian 119 5153346 290.298 970.5 Sakmarian Cisuralian

5153347 290.241 971.5 Sakmarian Cisuralian 5153348 290.127 973.5 138.93 0.70784 0.000007 4.325 -5.179 Sakmarian Cisuralian 5153349 290.041 975.0 Sakmarian Cisuralian 5153350 289.984 976.0 Sakmarian Cisuralian 5153351 289.956 976.5 225.069 0.707782 0.000006 4.380 -5.333 Sakmarian Cisuralian 5153352 289.927 977.0 Sakmarian Cisuralian 5153353 289.870 978.0 Sakmarian Cisuralian 5153354 289.842 978.5 176.949 0.707825 0.000008 4.398 -5.219 Sakmarian Cisuralian 5153355 289.813 979.0 Sakmarian Cisuralian 5153356 289.756 980.0 Sakmarian Cisuralian 5153357 289.642 982.0 Sakmarian Cisuralian 5153358 289.585 983.0 Sakmarian Cisuralian 5153359 289.528 984.0 Sakmarian Cisuralian 5153360 289.500 984.5 225.342 0.707795 0.000008 4.839 -4.696 Sakmarian Cisuralian 5153361 289.472 985.0 Sakmarian Cisuralian

continued Table 1 continued

5153362 289.457 985.3 Sakmarian Cisuralian 5153363 289.443 985.5 Sakmarian Cisuralian 5153364 289.429 985.8 Sakmarian Cisuralian 5153365 289.415 986.0 Sakmarian Cisuralian 5153366 289.400 986.3 Sakmarian Cisuralian 5153367 289.386 986.5 Sakmarian Cisuralian 5153368 289.358 987.0 218.458 0.707843 0.000003 4.077 -5.588 Sakmarian Cisuralian 5153369 289.187 990.0 Sakmarian Cisuralian 5153370 289.016 993.0 Sakmarian Cisuralian 5153371 288.788 997.0 172.159 0.7078 0 2.901 -6.036 Sakmarian Cisuralian 5153372 288.759 997.5 Sakmarian Cisuralian 120 5153373 288.731 998.0 Sakmarian Cisuralian

5153374 288.679 998.9 Sakmarian Cisuralian 5153375 288.674 999.0 Sakmarian Cisuralian 5153376 288.617 1000.0 Sakmarian Cisuralian 5153377 288.560 1001.0 Sakmarian Cisuralian 5153378 288.503 1002.0 Sakmarian Cisuralian 5153379 288.446 1003.0 271.693 0.707807 0.00002 2.737 -6.158 Sakmarian Cisuralian 5153380 288.389 1004.0 2.364 -4.941 Sakmarian Cisuralian 5153381 288.360 1004.5 Sakmarian Cisuralian 5153382 288.303 1005.5 Sakmarian Cisuralian 5153383 288.275 1006.0 Sakmarian Cisuralian 5153384 288.218 1007.0 Sakmarian Cisuralian 5153385 288.132 1008.5 223.125 0.70784 0.000017 2.777 -5.144 Sakmarian Cisuralian 5153386 288.104 1009.0 Sakmarian Cisuralian 5153387 287.904 1012.5 Sakmarian Cisuralian 5153388 287.876 1013.0 286.466 0.70784 0.000003 Sakmarian Cisuralian

continued Table 1 continued

5153389 287.819 1014.0 Sakmarian Cisuralian 5153390 287.762 1015.0 Sakmarian Cisuralian 5153391 287.705 1016.0 Sakmarian Cisuralian 5153392 287.648 1017.0 Sakmarian Cisuralian 5153393 287.591 1018.0 Sakmarian Cisuralian 5153394 287.534 1019.0 Sakmarian Cisuralian 5153395 287.477 1020.0 Sakmarian Cisuralian 5153396 287.306 1023.0 95.03 0.708492 0.000006 2.221 -4.510 Sakmarian Cisuralian 5153397 287.221 1024.5 Sakmarian Cisuralian 5153398 287.164 1025.5 Sakmarian Cisuralian 5153399 287.107 1026.5 Sakmarian Cisuralian 121 5153400 287.050 1027.5 Sakmarian Cisuralian

5153401 286.993 1028.5 Sakmarian Cisuralian 5153402 286.936 1029.5 Sakmarian Cisuralian 5153403 286.879 1030.5 Sakmarian Cisuralian 5153404 286.822 1031.5 Sakmarian Cisuralian 5153405 286.508 1037.0 92.79 0.708141 0.000009 2.272 -5.869 Sakmarian Cisuralian 5153406 286.480 1037.5 Sakmarian Cisuralian 5153407 286.451 1038.0 Sakmarian Cisuralian 5153408 286.423 1038.5 Sakmarian Cisuralian 5153409 286.394 1039.0 197.58 0.707839 0.000000 2.308 -4.863 Sakmarian Cisuralian 5153410 286.366 1039.5 Sakmarian Cisuralian 5153411 286.337 1040.0 Sakmarian Cisuralian 5153412 286.280 1041.0 Sakmarian Cisuralian 5153413 286.252 1041.5 Sakmarian Cisuralian 5153414 286.223 1042.0 Sakmarian Cisuralian 5153415 286.195 1042.5 Sakmarian Cisuralian 5153416 286.166 1043.0 Sakmarian Cisuralian continued Table 1 continued

5153417 286.109 1044.0 Sakmarian Cisuralian 5153418 286.081 1044.5 Sakmarian Cisuralian 5153419 286.053 1045.0 144.34 0.707807 0.000003 2.370 -5.664 Sakmarian Cisuralian 5153420 286.024 1045.5 Sakmarian Cisuralian 5153421 285.996 1046.0 Sakmarian Cisuralian 5153422 285.939 1047.0 Sakmarian Cisuralian 5153423 285.882 1048.0 Sakmarian Cisuralian 5153424 285.825 1049.0 Sakmarian Cisuralian 5153425 285.768 1050.0 Sakmarian Cisuralian 5153426 285.682 1051.5 Sakmarian Cisuralian 5153427 285.625 1052.5 Sakmarian Cisuralian 122 5153428 285.597 1053.0 Sakmarian Cisuralian

5466169 285.540 1054.0 148.13 0.708042 0.000005 1.735 -3.689 Sakmarian Cisuralian 5466170 285.483 1055.0 Sakmarian Cisuralian 5466171 285.426 1056.0 Sakmarian Cisuralian 5466172 285.369 1057.0 Sakmarian Cisuralian 5466173 285.312 1058.0 Sakmarian Cisuralian 5466174 285.255 1059.0 Sakmarian Cisuralian 5466175 285.198 1060.0 Sakmarian Cisuralian 5466176 285.169 1060.5 1.876 -3.912 Sakmarian Cisuralian 5466177 285.141 1061.0 Sakmarian Cisuralian 5466178 285.084 1062.0 Sakmarian Cisuralian 5466179 285.027 1063.0 Sakmarian Cisuralian 5466180 284.827 1066.5 Sakmarian Cisuralian 5466181 284.799 1067.0 Sakmarian Cisuralian 5466182 284.742 1068.0 Sakmarian Cisuralian 5466183 284.685 1069.0 Sakmarian Cisuralian

continued Table 1 continued

5466184 284.628 1070.0 136.87 0.707746 0.000006 1.864 -5.165 Sakmarian Cisuralian 5466185 284.571 1071.0 Sakmarian Cisuralian 5466186 284.514 1072.0 Sakmarian Cisuralian 5466187 284.457 1073.0 Sakmarian Cisuralian 5466188 284.400 1074.0 Sakmarian Cisuralian 5466189 284.400 1075.0 107.52 0.707776 0.000045 1.893 -4.570 Artinskian Cisuralian Chalaroschwagerina 5466190 1076.0 Artinskian Cisuralian 5466191 1077.0 Artinskian Cisuralian 5466192 1078.0 Artinskian Cisuralian 5466193 1079.0 Artinskian Cisuralian 5466194 1080.0 2.066 -4.611 Artinskian Cisuralian 123 5466195 1081.0 Artinskian Cisuralian

5466196 1082.0 Artinskian Cisuralian 5466197 1083.0 Artinskian Cisuralian 5466198 1085.0 Artinskian Cisuralian 5466199 1086.0 Artinskian Cisuralian 5466200 1087.0 Artinskian Cisuralian 5466201 1088.0 Artinskian Cisuralian 5466202 1089.0 Artinskian Cisuralian 5466203 1090.0 2162.8 0.707725 0.000004 Artinskian Cisuralian

continued Table 2 Rockland Ridge Section, Nevada, USA Permian Composite Section 2 Starting #: 5153434 (2nd Roll Starting #: 5466204) Ticket # age Meter Sr ppm 87Sr/86Sr carbonate oxygen Stage Notes 5153434 1235 2.328 -5.671 Upper Sak 00TAS021 5153435 1236.5 Sakmarian 5153436 1241 Sakmarian 5153437 1243 153.91 0.707907 Sakmarian 00TAS022 5153438 1244 Sakmarian 5153439 1246 Sakmarian 5153440 1249 Sakmarian 5153441 1250 Sakmarian Paint 46 124 5153442 1253 41.50 0.708932 1.493 -6.079 Sakmarian 5153443 1254 Sakmarian 00TAS031 5153444 1255 2.340 -6.746 Sakmarian W97-55F 5153445 1256 Sakmarian 5153446 1257 Sakmarian 5153447 1258 Sakmarian 5153448 1259 Sakmarian 5153449 1260 1.388 -6.410 Sakmarian 00TAS033 5153450 1262 Sakmarian 5153451 1263 Sakmarian 5153452 1264.5 Sakmarian 5153453 1266 151.93 0.708425 1.420 -5.038 Sakmarian 00TAS034 5153454 1268 Sakmarian 5153455 1269.5 Sakmarian 5153456 1270 Sakmarian 00TAS041 5153457 1271 Sakmarian 5153458 1275 0.893 -5.926 Sakmarian 00TAS042 continued 5153459 284.4 1282 Artinskian Chalaroschwagerina

Table 2 continued 5153460 284.3893 1283 Artinskian 5153461 284.3786 1284 Artinskian 00TAS043 5153462 284.3678 1285 Artinskian 5153463 284.3571 1286 Artinskian 5153464 284.3357 1288 Artinskian 5153465 284.3143 1290 0.489 -7.270 Artinskian 5153466 284.2928 1292 Artinskian 5153467 284.2499 1296 Artinskian 5153468 284.2178 1299 Artinskian 5153469 284.1428 1306 Artinskian 5153470 284.0677 1313 0.324 -8.353 Artinskian 00TAS062 5153471 284.0034 1319 Artinskian 00TAS063

125 5153472 283.8962 1329 Artinskian 5153473 283.7569 1342 Artinskian 5153474 283.7354 1344 1.389 -3.083 Artinskian 5153475 283.7247 1345 Artinskian 5153476 283.7086 1346.5 Artinskian 5153477 283.6926 1348 Artinskian 5153478 283.6711 1350 Artinskian 5153479 283.6497 1352 Artinskian 5153480 283.6283 1354 Artinskian 5153481 283.6068 1356 Artinskian 5153482 283.5907 1357.5 Artinskian 5153483 283.5747 1359 Artinskian 5153484 283.5211 1364 Artinskian 00TAS071 5153485 283.5104 1365 Artinskian 5153486 283.4889 1367 Artinskian 5153487 283.4675 1369 Artinskian 5153488 283.446 1371 Artinskian 5153489 283.4032 1375 Artinskian W97222 continued Table 2 continued 5153490 283.3924 1376 Artinskian 5153491 283.371 1378 Artinskian 5153492 283.3496 1380 Artinskian 5153493 283.3174 1383 Artinskian 5153494 283.3067 1384 Artinskian 5153495 283.2745 1387 Artinskian 5153496 283.2531 1389 Artinskian 5153497 283.221 1392 Artinskian W97258 5153498 283.1995 1394 Artinskian 5153499 283.1781 1396 Artinskian 5153500 283.1566 1398 353.20 0.707646 -7.039 Artinskian BEDDED CHERT 5153501 283.1352 1400 Artinskian

126 5153502 283.1138 1402 Artinskian 5153503 283.0923 1404 Artinskian 5153504 283.0066 1412 Artinskian 5153505 282.9208 1420 Artinskian 5153506 282.8351 1428 Artinskian 5153507 282.7708 1434 Artinskian W97360 5153508 282.7493 1436 262.66 0.707668 1.929 -3.856 Artinskian 5153509 282.7065 1440 Artinskian 5153510 282.6636 1444 Artinskian 5153511 282.6314 1447 281.43 0.707625 2.062 -4.338 Artinskian 5153512 282.6153 1448.5 Artinskian 5153513 282.5993 1450 Artinskian 5153514 282.5778 1452 Artinskian 5153515 282.5564 1454 Artinskian 5153516 282.535 1456 Artinskian 5153517 282.5135 1458 158.33 0.707698 1.584 -8.585 Artinskian 00TAS081 5153518 282.4921 1460 Artinskian 5153519 282.4599 1463 1.277 -7.462 Artinskian 00TAS082 continued Table 2 continued 5153520 282.4171 1467 Artinskian W97420 5153521 282.4063 1468 Artinskian 5153522 282.3903 1469.5 1.931 -5.020 Artinskian 5153523 282.3742 1471 Artinskian 5153524 282.3527 1473 Artinskian 00TAS083 5153525 282.3313 1475 Artinskian 5153526 282.3099 1477 Artinskian 5153527 282.2777 1480 377.555 0.707605 2.236 -4.396 Artinskian 5153528 282.2456 1483 Artinskian 5153529 282.2241 1485 261.80 0.707645 2.186 -4.700 Artinskian 5153530 282.1705 1490 Artinskian 5153531 282.1491 1492 Artinskian

127 5153532 282.1169 1495 Artinskian 5153533 282.1009 1496.5 Artinskian

5153534 282.0848 1498 1.503 -7.012 Artinskian 5466204 282.0526 1501 Artinskian 00TAS092 5466205 281.9883 1507 Artinskian 5466206 281.9669 1509 Artinskian CHERT 5466207 281.9454 1511 2.079 -4.038 Artinskian 5466208 281.924 1513 Artinskian 5466209 281.9026 1515 Artinskian 5466210 281.8811 1517 198.03 0.707614 Artinskian

5466211 281.8597 1519 Artinskian W97457, PAINT 55, 1523 5466212 281.8382 1521 Artinskian 5466213 281.8168 1523 Artinskian 5466214 281.8061 1524 Artinskian 5466215 281.7954 1525 0.998 -6.264 Artinskian 00TAS103, 1529 5466216 281.7847 1526 Artinskian

continued Table 2 continued 5466217 281.7793 1526.5 1.040 -9.109 Artinskian 00TAS104, 1529.5 5466218 281.6935 1534.5 Artinskian 5466219 281.6828 1535.5 Artinskian 5466220 281.6721 1536.5 1.966 -8.477 Artinskian 5466221 281.6614 1537.5 Artinskian 5466222 281.6507 1538.5 Artinskian 5466223 281.64 1539.5 Artinskian 5466224 281.6292 1540.5 Artinskian 00TAS105, 1554 5466225 281.6185 1541.5 Artinskian 5466226 281.6078 1542.5 Artinskian 5466227 281.5971 1543.5 Artinskian 5466228 281.5864 1544.5 1.711 -5.748 Artinskian

128 5466229 281.5756 1545.5 Artinskian 5466230 281.5649 1546.5 Artinskian

5466231 281.5542 1547.5 2.200 -2.367 Artinskian 5466232 281.5435 1548.5 Artinskian 5466233 281.5328 1549.5 Artinskian 5466234 281.522 1550.5 Artinskian 5466235 281.5113 1551.5 2.109 -5.427 Artinskian 5466236 281.5006 1552.5 Artinskian 5466237 281.4899 1553.5 Artinskian 5466238 281.4685 1555.5 2.194 -4.897 Artinskian 5466239 281.4577 1556.5 Artinskian 5466240 281.447 1557.5 Artinskian 5466241 281.2058 1580 1.753 -5.351 Artinskian 00TAS111, PAINT 56 5466242 281.2005 1580.5 Artinskian 5466243 281.1951 1581 1.442 -5.327 Artinskian C33 5466244 281.1898 1581.5 Artinskian 5466245 281.1844 1582 Artinskian

continued Table 2 continued 5466246 281.179 1582.5 Artinskian 5466247 281.1737 1583 2.061 -5.748 Artinskian 5466248 281.1683 1583.5 Artinskian 5466249 281.163 1584 Artinskian 5466250 281.1576 1584.5 Artinskian 5466251 281.1523 1585 Artinskian 5466252 281.1469 1585.5 Artinskian 5466253 281.1415 1586 Artinskian 5466254 281.1362 1586.5 Artinskian 5466255 281.1308 1587 2.571 -4.825 Artinskian 00TAS122 5466256 281.1094 1589 Artinskian 5466257 280.627 1634 2.452 -4.656 Artinskian W97842

129 5466258 280.5842 1638 Artinskian 5466259 280.5413 1642 Artinskian

5466260 280.4984 1646 2.323 -5.864 Artinskian 5466261 280.4555 1650 Artinskian 5466262 280.4287 1652.5 Artinskian 5466263 280.4019 1655 2.269 -7.972 Artinskian 00TAS124 5466264 280.3484 1660 Artinskian 5466265 280.2948 1665 Artinskian GASTROPODS? 5466266 280.2412 1670 3.298 -6.824 Artinskian 00TAS131 5466267 280.209 1673 Artinskian 5466268 280.1876 1675 Artinskian 5466269 280.1661 1677 Artinskian W97952 5466270 280.0911 1684 Artinskian 00TAS132 5466271 280.0697 1686 Artinskian C35, 1655 5466272 280.0482 1688 Artinskian 5153540 280.0268 1690 3.08 -9.38 Artinskian 5153541 280.0054 1692 Artinskian

continued Table 2 continued 5153542 279.9732 1695 Artinskian 5153544 279.9518 1697 Artinskian 5153545 279.9303 1699 Artinskian 5153546 279.8982 1702 3.66 -5.29 Artinskian 5153547 279.8767 1704 Artinskian 5153548 279.8446 1707 Artinskian 5153549 279.8124 1710 Artinskian 5153550 279.7588 1715 Artinskian 5153551 279.7374 1717 Artinskian 5153552 279.716 1719 3.58 -5.94 Artinskian 5153553 279.6945 1721 Artinskian 5153554 279.6731 1723 Artinskian 5153555 279.6516 1725 Artinskian 130 5153556 279.6302 1727 3.11 -9.59 Artinskian

5153557 279.5873 1731 Artinskian 5153558 279.5659 1733 Artinskian 5153559 279.5337 1736 Artinskian 5153560 279.5123 1738 Artinskian 5153560 279.5016 1739 2.09 -12.23 Artinskian 5153561 279.4801 1741 Artinskian TAS144 5153562 279.4587 1743 Artinskian 5153563 279.4373 1745 Artinskian 5153564 279.4051 1748 Artinskian 5153565 279.3837 1750 Artinskian 5153566 279.3622 1752 Artinskian 5153567 279.3515 1753 Artinskian 5153568 279.3086 1757 Artinskian Paint 62 5153569 279.2658 1761 Artinskian 5153570 279.239 1763.5 Artinskian W97 -1122 5153571 279.1693 1770 2.87 -6.06 Artinskian

continued Table 2 continued 5153572 279.1371 1773 Artinskian 5153573 279.105 1776 Artinskian 5153574 279.0836 1778 Artinskian TAS162 5153575 279.03 1783 Artinskian 5153576 278.9871 1787 Artinskian 5153577 278.9442 1791 Artinskian 5153578 278.9067 1794.5 Artinskian p 63 5153579 278.8853 1796.5 Artinskian 5153580 278.8424 1800.5 Artinskian 5153581 278.821 1802.5 Artinskian 5153582 278.7942 1805 Artinskian 5153583 278.7406 1810 Artinskian 5153584 278.6977 1814 4.17 -6.23 Artinskian 131 5153585 278.6762 1816 Artinskian just across erosional boundary

5153586 278.6334 1820 Artinskian 5153587 278.6119 1822 Artinskian 5153588 278.5905 1824 Artinskian 5153589 278.5369 1829 Artinskian 5153590 278.478 1834.5 Artinskian p 64 5153591 278.4672 1835.5 Artinskian 5153592 278.4565 1836.5 Artinskian 5153593 278.4244 1839.5 Artinskian 5153594 278.4083 1841 Artinskian 5153595 278.3922 1842.5 2.35 -7.25 Artinskian 5153596 278.3708 1844.5 Artinskian TAS 171 5153597 278.3279 1848.5 Artinskian 5153598 278.2957 1851.5 Artinskian 5153599 278.2689 1854 Artinskian 5153600 278.2261 1858 Artinskian 5153601 278.1939 1861 Artinskian

continued Table 2 continued 5153602 278.1618 1864 Artinskian TAS 172 5153603 278.1242 1867.5 Artinskian 5153604 278.1028 1869.5 Artinskian 5153605 278.0814 1871.5 Artinskian 5153606 278.0599 1873.5 Artinskian 5153607 278.0385 1875.5 Artinskian TAS 173 5153608 278.0171 1877.5 Artinskian thin silty bed above 5153609 277.9956 1879.5 2.11 -7.03 Artinskian 5153610 277.9795 1881 Artinskian TAS 174 5153611 277.9581 1883 Artinskian 5153612 277.9152 1887 Artinskian 5153613 277.9045 1888 Artinskian 5153614 277.8616 1892 Artinskian 132 5153615 277.8295 1895 Artinskian W97 -1400

5153616 277.7437 1903 Artinskian 5153617 277.7116 1906 Artinskian 5153618 277.6794 1909 Artinskian 5153619 277.6473 1912 Artinskian 5153620 277.6205 1914.5 2.49 -11.24 Artinskian 5153621 277.5883 1917.5 Artinskian TAS 181 5153622 277.5669 1919.5 Artinskian 5153623 277.5562 1920.5 Artinskian p 67 5153624 277.5347 1922.5 Artinskian 5153625 277.4972 1926 Artinskian 5153626 277.465 1929 Artinskian 5153627 277.4436 1931 2.97 -4.72 Artinskian 5153628 277.4222 1933 Artinskian W97 -1483 5153629 277.4061 1934.5 Artinskian 5153630 277.39 1936 Artinskian 5153631 277.3739 1937.5 Artinskian

continued Table 2 continued 5153632 277.3471 1940 Artinskian TAS 191 top of limestone bluff 5153633 277.3257 1942 2.66 -8.62 Artinskian 5153634 277.3096 1943.5 Artinskian TAS 193 5153635 277.2935 1945 Artinskian TAS 194 5466273 277.2775 1946.5 Artinskian 5466274 277.2453 1949.5 Artinskian RED 5466275 277.2185 1952 Artinskian TAS 196 5466276 277.1971 1954 3.06 -6.57 Artinskian 5466277 277.181 1955.5 Artinskian 5466278 277.1649 1957 Artinskian 5466279 277.1488 1958.5 Artinskian 5466280 277.1328 1960 Artinskian 5466281 277.1167 1961.5 Artinskian 133 5466282 277.1006 1963 3.09 -5.55 Artinskian

5466283 277.0899 1964 Artinskian p 68 5466284 277.0738 1965.5 Artinskian 5466285 277.0577 1967 Artinskian 5466286 277.0417 1968.5 Artinskian 5466287 277.0256 1970 Artinskian 5466288 277.0149 1971 2.74 -7.82 Artinskian 5466289 277.0041 1972 Artinskian TAS 203 5466290 276.9881 1973.5 Artinskian 5466291 276.972 1975 Artinskian 5466292 276.9559 1976.5 Artinskian 5466293 276.9398 1978 Artinskian 5466294 276.9238 1979.5 2.00 -7.76 Artinskian 5466295 276.897 1982 Artinskian TAS 204 5466296 276.8326 1988 Artinskian TAS 205 5466297 276.8058 1990.5 Artinskian 5466298 276.7898 1992 Artinskian W97 -1582

continued Table 2 continued 5466299 276.7737 1993.5 Artinskian 5466300 276.763 1994.5 2.52 -7.79 Artinskian 5466301 276.7523 1995.5 Artinskian W97 -1590 p 69 5466302 276.8058 1990.5 Artinskian 5466303 276.7308 1997.5 Artinskian 5466304 276.7255 1998 3.32 -4.49 Artinskian TAS 212 5466305 276.704 2000 Artinskian conodont C41 5466306 276.6826 2002 Artinskian 5466307 276.6611 2004 Artinskian W97 -1610 5466308 276.6397 2006 Artinskian 5466309 276.6183 2008 Artinskian TAS 213 5466310 276.5968 2010 3.24 -9.83 Artinskian 5466311 276.5754 2012 Artinskian 134 5466312 276.5218 2017 Artinskian

5466313 276.5004 2019 Artinskian 5466314 276.4789 2021 Artinskian 5466315 276.4575 2023 Artinskian P70 5466316 276.4414 2024.5 3.80 -4.93 Artinskian 5466317 276.4253 2026 Artinskian TAS 221 5466318 276.4093 2027.5 Artinskian 5466319 276.3932 2029 Artinskian 5466320 276.3557 2032.5 Artinskian 5466321 276.3396 2034 Artinskian 5466322 276.3235 2035.5 3.40 -6.89 Artinskian 5466323 276.3074 2037 Artinskian TAS 223 5466324 276.2914 2038.5 Artinskian 5466325 276.2753 2040 Artinskian 5466326 276.2538 2042 Artinskian 5466327 276.2324 2044 Artinskian W97 -1715 5466328 276.211 2046 3.37 -4.85 Artinskian

continued Table 2 continued 5466329 276.1895 2048 Artinskian 5466330 276.1681 2050 Artinskian 5466331 276.1467 2052 Artinskian 5466332 276.1252 2054 Artinskian 5466333 276.1038 2056 Artinskian 5466334 276.0931 2057 Artinskian P 72 5466335 276.0823 2058 2.79 -8.34 Artinskian 5466336 276.0716 2059 Artinskian 5466337 276.0448 2061.5 Artinskian 5466338 276.018 2064 Artinskian 5466339 275.9912 2066.5 Artinskian 5466340 275.9644 2069 Artinskian 5466341 275.9376 2071.5 Artinskian 135 5466342 275.9108 2074 3.33 -4.54 Artinskian

5466343 275.884 2076.5 Artinskian 5466344 275.8572 2079 Artinskian 5466345 275.8305 2081.5 Artinskian 5466346 275.8197 2082.5 Artinskian 5466347 275.7822 2086 Artinskian 5466348 275.7608 2088 Artinskian W97-1805 5466349 275.734 2090.5 3.20 -4.56 Artinskian 5466350 275.7072 2093 Artinskian 5466351 275.6804 2095.5 Artinskian 5466352 275.6536 2098 Artinskian 5466353 275.6268 2100.5 Artinskian 5466354 275.6 2103 3.92 -4.95 Artinskian base of the Kungurian 5466355 2109 Kungurian P. crassitectoria 5466356 2111.5 Kungurian 5466357 2114 Kungurian Conodont C43 5466358 2114.5 4.04 -6.59 Kungurian TAS 233

continued Table 2 continued 5466359 2116 Kungurian 5466360 2117 Kungurian 5466361 2118 Kungurian 5466362 2118.5 Kungurian 5466363 2120 Kungurian 5466364 2121 Kungurian 5466365 2122.5 Kungurian 5466366 2123 2.65 -10.35 Kungurian 5466367 2124 Kungurian 5466368 2125.5 Kungurian 5466369 2126.5 Kungurian 5466370 2127 Kungurian 5466371 2128.5 Kungurian 136 5466372 2129.5 Kungurian

5466373 2130 Kungurian 5466374 2131 2.87 -4.98 Kungurian 5466375 2131.5 Kungurian conodont C-45 5466376 2132 2.53 -6.79 Kungurian

continued -+ Table 3

Tieqaio Section, Laibin, China Permian Composite Section 1

Starting #: 1241591 (2nd Roll Starting #: 1242429)

87 86 13 18 Ticket # age Meter "H" # Sr ppm Sr/ Sr δ Ccarb δ O Conodont Zone Fuslinid Zone Formation Stage

1591 -0.30 - 1.82 -14.07 Pseudoschwagerina-Pamirina Maping Artinskian(?)

1592 -0.18 - 409.62 0.707668 Pseudoschwagerina-Pamirina Maping Artinskian(?)

1593 -0.05 - 1.55 -11.74 Pseudoschwagerina-Pamirina Maping Artinskian(?)

1594 0.10 H1 1.74 -10.18 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1595 0.25 H1 2.89 -7.38 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1596 0.40 H1 3.03 -4.90 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1597 0.70 H1 2.83 -7.13 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1598 1.00 H1 374.40 0.707585 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

137 1599 1.25 H1 2.63 -11.94 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1600 1.50 H1 3.01 -4.83 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1601 1.70 H1 2.96 -5.69 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1602 2.00 H1 1.90 -10.06 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1603 2.25 H1 2.50 -7.64 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1604 2.50 H1 2.77 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1605 2.75 H1 156.87 0.707569 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1606 3.00 H1 2.51 -5.63 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1607 3.25 H1 2.29 -5.88 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1608 3.50 H1 2.39 -5.75 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1609 3.75 H1 2.26 -5.94 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1610 4.00 H1 2.00 -5.65 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1611 4.35 H2 10.84 0.707713 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1612 4.85 H2 2.78 -7.77 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1613 5.25 H2 2.69 -8.45 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1614 5.50 H2 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1615 5.75 H2 3.05 -4.89 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian continued

Table 3 continued

1616 6.00 H3 140.31 0.707651 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1617 6.20 H3 2.42 -5.13 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1618 6.40 H3 2.62 -5.37 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1619 6.75 H4 2.77 -4.57 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1620 7.30 H4 168.81 0.707607 2.87 -3.22 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1621 7.55 H4 2.47 -5.03 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1622 8.00 H5 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1623 8.30 H5 2.56 -5.16 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1624 8.55 H5 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1625 8.72 H5 262.50 0.707585 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1626 8.93 H5 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1627 9.43 H5 2.10 -4.65 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 138

1628 9.63 H6 2.84 -4.86 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1629 10.00 H6 2.41 -4.71 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1630 10.43 H6 2.37 -5.49 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1631 10.72 H6 2.27 -5.15 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1632 11.25 H6 2.84 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1633 11.70 H6 3.06 -5.89 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1634 12.00 H7 2.97 -6.52 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1635 12.66 H7 3.28 -6.18 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1636 13.00 H8 3.12 -6.05 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1637 13.50 H8 3.46 -6.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1638 14.00 H8 3.27 -5.91 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1639 14.50 H8 2.81 -5.92 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1640 14.91 H8 242.35 0.707508 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1641 15.50 H8 2.68 -4.63 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1642 15.95 H8 2.87 -5.22 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1643 16.54 H8 2.95 -5.78 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

continued

Table 3 continued

1644 17.00 H8 2.57 -5.73 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1645 17.50 H8 3.05 -5.51 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1646 18.00 H8 2.67 -5.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1647 18.45 H8 2.77 -5.45 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1648 19.00 H8 2.90 -5.42 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1649 19.50 H8 3.11 -5.17 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1650 19.80 H9 3.26 -4.37 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1651 20.80 H9 2.08 -5.67 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1652 21.30 H9 420.48 0.707588 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1653 21.60 H9 4.86 -6.25 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1654 22.10 H9 3.29 -5.39 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian H11

139 1655 22.75 (no10) 3.33 -7.91 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1656 23.05 H11 2.95 -6.20 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1657 23.68 H11 3.40 -5.68 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1657+ 40 cm shale H12 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1658 24.30 H13 1.47 -6.55 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1659 25.00 H13 3.20 -4.86 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1660 25.85 H13 2.64 -5.38 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1660+ 40 cm shale H14 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1661 26.45 H15 2.96 -5.10 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1662 26.85 H15 687.13 0.707554 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1663 27.46 H15 2.65 -7.39 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1664 27.93 H15 2.72 -5.59 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1665 28.10 H16 2.88 -4.88 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1666 28.75 H16 2.01 -6.99 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1667 29.15 H16 2.15 -6.05 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

1668 29.60 H16 2.49 -5.03 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian

continued

Table 3 continued

1669 29.85 H16 462.55 0.707464 Staffella, Pseudofusulina, S. tschernyschewi Chihsia Artinskian 1670 275.600 39.00 H18 602.22 0.707421 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1671 275.594 39.50 H18 2.63 -4.91 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1672 275.587 40.10 H18 2.18 -4.15 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1673 275.579 40.75 H18 2.63 -4.14 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1674 275.572 41.35 H18 2.70 -4.06 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1675 275.563 42.05 H19 2.54 -4.18 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1676 275.555 42.75 H19 2.58 -4.06 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1677 275.549 43.25 H19 2.43 -4.87 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1678 275.541 43.85 H19 2.96 -4.08 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1679 275.537 44.25 H19 2.62 -4.04 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1680 275.524 45.25 H19 1055.00 0.707412 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian 140

1681 275.488 48.25 H19 3.08 -3.98 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1682 275.467 50.00 H20 2.82 -4.04 Ps. costatus Staffella, Pseudofusulina, S. tschernyschewi Chihsia Kungurian

1683 275.453 51.15 H21 1.83 -4.98 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1684 275.443 52.00 H21 2.32 -3.51 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1685 275.419 54.00 H21 2.98 -4.32 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1686 275.397 55.80 H22 2.33 -4.35 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1687 275.371 57.90 H22 3.27 -4.28 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1688 275.364 58.50 H22 3.29 -3.79 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1689 275.346 60.00 H23 3.52 -3.57 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1690 275.326 61.65 H23 3.83 -3.00 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1691 275.307 63.25 H24 3.45 -2.49 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1692 275.283 65.25 H24 3.07 -4.73 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1693 275.263 66.85 H24 2.73 -5.46 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1694 275.237 69.00 H25 1.70 -6.19 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1695 275.220 70.40 H25 1175.00 0.707402 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1696 275.205 71.70 H25 1.99 -3.95 Ps. costatus Wentzellophyllum - Misellina claudiae Chihsia Kungurian continued

Table 3 continued

1697 275.179 73.80 H26 2.64 -3.60 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1698 275.148 76.40 H26 2.85 -4.22 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1699 275.121 78.60 H27 3.18 -3.54 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1700 275.104 80.00 H27 2.22 -4.88 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1701 275.081 81.90 H28 2.48 -4.31 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1702 275.066 83.20 H28 2.44 -4.78 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1703 275.046 84.80 H29 3.20 -3.50 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1704 275.027 86.40 H29 2.58 -5.21 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1705 275.003 88.40 H30 2.98 -4.41 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1706 274.980 90.30 H31 3.26 -8.06 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1707 274.960 91.90 H31 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

141 1708 274.935 94.00 H32 3.53 -4.73 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1709 274.907 96.30 H33 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1710 274.883 98.30 H33 772.70 0.707371 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1711 274.858 100.40 H34 3.21 -6.99 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1712 274.845 101.40 H35 3.23 -5.00 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1713 274.820 103.50 H36 3.93 -5.85 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1714 274.797 105.40 H37 3.50 -4.26 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1715 274.778 107.00 H37 3.41 -6.59 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1716 274.749 109.40 H38 2.68 -8.87 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1717 274.732 110.80 H39 2.13 -5.08 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1718 274.710 112.60 H39 2.35 -8.83 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1719 274.686 114.60 H40 2.32 -5.12 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1720 274.660 116.70 H40 2.82 -4.89 Wentzellophyllum - Misellina claudiae Chihsia Kungurian

1721 274.635 118.80 H41 2.99 -6.51 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1722 274.608 121.00 H41 3.10 -4.15 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1723 274.587 122.80 H41 3.27 -4.23 Nankingella orbicularis - Yangchienia Chihsia Kungurian

continued

Table 3 continued

1724 274.566 124.50 H42 3.20 -4.76 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1725 274.558 125.20 H43 3.15 -4.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1726 274.544 126.30 H44 3.28 -5.24 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1727 274.524 128.00 H44 3.12 -4.51 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1728 274.498 130.10 H45 553.20 0.707391 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1729 274.479 131.70 H45 3.20 -7.98 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1730 274.455 133.70 H45 3.07 -5.38 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1731 274.433 135.50 H45 3.51 -4.85 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1732 274.414 137.10 H46 3.39 -4.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1733 274.388 139.20 H47 3.40 -5.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1734 274.367 141.00 H47 3.73 -5.09 Nankingella orbicularis - Yangchienia Chihsia Kungurian

142 1735 274.345 142.80 H48 3.98 -6.65 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1736 274.329 144.10 H49 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1737 274.305 146.10 H50 4.02 -4.26 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1738 274.284 147.80 H50 3.75 -5.84 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1739 274.258 150.00 H50 3.54 -8.27 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1740 274.234 152.00 H50 3.22 -6.11 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1741 274.209 154.00 H51 3.25 -5.30 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1742 274.189 155.70 H52 3.35 -5.86 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1743 274.167 157.50 H52 3.09 -5.18 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1744 274.142 159.60 H52 3.32 -5.02 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1745 274.116 161.70 H52 2.39 -5.05 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1746 274.089 164.00 H52 646.40 0.707339 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1747 274.067 165.80 H52 2.85 -4.34 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1748 274.040 168.00 H53 1.63 -5.98 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1749 274.021 169.60 H53 2.55 -7.66 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1750 274.000 171.30 H53 2.44 -5.59 Nankingella orbicularis - Yangchienia Chihsia Kungurian

continued

Table 3 continued

1751 273.977 173.20 H54 2.90 -5.40 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1752 273.947 175.70 H54 3.00 -6.36 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1753 273.928 177.30 H54 2.38 -6.15 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1754 273.908 178.90 H55 2.44 -6.37 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1755 273.891 180.30 H56 3.12 -4.63 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1756 273.877 181.50 H56 2.66 -5.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1757 273.862 182.70 H57 2.68 -6.50 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1758 273.844 184.20 H57 1.29 -7.05 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1759 273.830 185.40 H58 2.97 -7.10 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1760 273.816 186.50 H58 3.33 -7.29 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1761 273.792 188.50 H58 2.83 -7.83 Nankingella orbicularis - Yangchienia Chihsia Kungurian

143 1762 273.780 189.50 H58 2.78 -7.49 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1763 273.752 191.80 H60 2.79 -7.04 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1764 273.734 193.30 H60 2.91 -5.75 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1765 273.715 194.90 H60 2.72 -7.30 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1766 273.697 196.40 H60 2.90 -6.38 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1767 273.687 197.20 H60 2.24 -6.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1768 273.668 198.80 H60 2.66 -6.41 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1769 273.647 200.50 H61 3.61 -7.45 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1770 273.627 202.20 H62 3.26 -5.48 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1771 273.618 202.90 H62 1346.00 0.707269 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1772 273.606 203.90 H62 3.19 -4.42 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1773 273.590 205.20 H62 2.98 -5.54 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1774 273.571 206.80 H62 2.73 -5.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1775 273.555 208.10 H63 3.25 -6.92 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1776 273.537 209.60 H63 2.80 -5.73 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1777 273.520 211.00 H63 3.25 -4.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian

1778 273.506 212.20 H63 2.76 -7.77 Nankingella orbicularis - Yangchienia Chihsia Kungurian continued

Table 3 continued

1779 273.486 213.80 H64 3.69 -4.76 Schwagerina chihsiaensis Chihsia Kungurian

1780 273.467 215.40 H64 3.00 -7.35 Schwagerina chihsiaensis Chihsia Kungurian

1781 273.444 217.30 H64 3.55 -4.78 Schwagerina chihsiaensis Chihsia Kungurian

1782 273.433 218.20 H64 2.48 -6.70 Schwagerina chihsiaensis Chihsia Kungurian

1783 273.417 219.50 H65 3.24 -5.49 Schwagerina chihsiaensis Chihsia Kungurian

1784 273.384 222.30 H65 2.79 -5.18 Schwagerina chihsiaensis Chihsia Kungurian

1785 273.368 223.60 H65 2.74 -6.11 Schwagerina chihsiaensis Chihsia Kungurian

1786 273.345 225.50 H65 3.37 -4.38 Schwagerina chihsiaensis Chihsia Kungurian

1787 273.326 227.10 H66 3.13 -5.52 Schwagerina chihsiaensis Chihsia Kungurian

1788 273.306 228.70 H66 3.52 -5.97 Schwagerina chihsiaensis Chihsia Kungurian

1789 273.282 230.70 H66 2.87 -5.11 Schwagerina chihsiaensis Chihsia Kungurian

1790 273.264 232.20 H66 1384.00 0.707256 Schwagerina chihsiaensis Chihsia Kungurian 144

1791 273.244 233.80 H66 Schwagerina chihsiaensis Chihsia Kungurian

1792 273.228 235.20 H66 3.58 -4.96 Schwagerina chihsiaensis Chihsia Kungurian

1793 273.203 237.20 H67 3.74 -5.36 Schwagerina chihsiaensis Chihsia Kungurian

1794 273.178 239.30 H67 4.00 -4.38 Schwagerina chihsiaensis Chihsia Kungurian

1795 273.156 241.10 H67 3.33 -6.81 Schwagerina chihsiaensis Chihsia Kungurian

1796 273.134 242.90 H67 2.92 -4.97 Schwagerina chihsiaensis Chihsia Kungurian

1797 273.110 244.90 H68 2.52 -7.05 Schwagerina chihsiaensis Chihsia Kungurian

1798 273.080 247.40 H69 2.75 -4.98 Schwagerina chihsiaensis Chihsia Kungurian

1799 273.041 250.60 H69 2.87 -3.84 Schwagerina chihsiaensis Chihsia Kungurian H71 1800 273.026 251.90 (N70) 3.36 -4.29 Schwagerina chihsiaensis Chihsia Kungurian

1801 272.997 254.30 H71 1.06 -7.38 Schwagerina chihsiaensis Chihsia Kungurian

1802 272.975 256.10 H71 2.72 -6.42 Schwagerina chihsiaensis Chihsia Kungurian

1803 272.945 258.60 H71 3.01 -4.72 Schwagerina chihsiaensis Chihsia Kungurian

1804 272.923 260.40 H71 2.11 -5.62 Schwagerina chihsiaensis Chihsia Kungurian

1805 272.899 262.40 H72 2.21 -7.17 Schwagerina chihsiaensis Chihsia Kungurian

continued

Table 3 continued

1806 272.874 264.40 H72 3.21 -6.21 Schwagerina chihsiaensis Chihsia Kungurian

1807 272.855 266.00 H73 2.84 -6.23 Schwagerina chihsiaensis Chihsia Kungurian

1808 272.829 268.20 H74 3.56 -4.90 Schwagerina chihsiaensis Chihsia Kungurian

1809 272.806 270.10 H74 2027.00 0.707204 Schwagerina chihsiaensis Chihsia Kungurian

1810 272.781 272.10 H74 3.08 -6.05 Schwagerina chihsiaensis Chihsia Kungurian

1811 272.762 273.70 H75 1.61 -8.80 Schwagerina chihsiaensis Chihsia Kungurian

1812 272.740 275.50 H89(Skip) 3.18 -8.99 Schwagerina chihsiaensis Chihsia Kungurian

1813 272.720 277.20 H89 3.59 -4.88 Schwagerina chihsiaensis Chihsia Kungurian

1814 272.687 279.90 H89 3.34 -6.02 Schwagerina chihsiaensis Chihsia Kungurian

1815 272.665 281.70 H89 2.97 -5.35 Schwagerina chihsiaensis Chihsia Kungurian

1816 272.636 284.10 H89 3.86 -4.70 Schwagerina chihsiaensis Chihsia Kungurian

145 1817 272.604 286.80 H90 3.67 -5.37 Schwagerina chihsiaensis Chihsia Kungurian

1818 272.577 289.00 H90 2.60 -7.71 Schwagerina chihsiaensis Chihsia Kungurian

1819 272.577 289.00 H90 3.64 -8.62 Schwagerina chihsiaensis Chihsia Kungurian

1820 272.553 291.00 H90 3.63 -7.44 Schwagerina chihsiaensis Chihsia Kungurian

1821 272.529 293.00 H90 2.88 -6.22 Schwagerina chihsiaensis Chihsia Kungurian

1822 272.504 295.00 H90 3.86 -5.61 Schwagerina chihsiaensis Chihsia Kungurian

1823 272.480 297.00 H90 4.24 -7.91 Schwagerina chihsiaensis Chihsia Kungurian

1824 272.456 299.00 H90 2.78 -8.42 Schwagerina chihsiaensis Chihsia Kungurian

1825 272.438 300.50 H90 3.63 -4.81 Schwagerina chihsiaensis Chihsia Kungurian

1826 272.408 303.00 H90 595.46 0.707270 Schwagerina chihsiaensis Chihsia Kungurian

1827 272.384 305.00 H90 2.92 -6.40 Schwagerina chihsiaensis Chihsia Kungurian

1828 272.359 307.00 H90 4.52 -3.85 Schwagerina chihsiaensis Chihsia Kungurian

1829 272.342 308.40 H90 4.19 -5.40 Schwagerina chihsiaensis Chihsia Kungurian

1830 272.318 310.40 H90 2.79 -6.65 Schwagerina chihsiaensis Chihsia Kungurian

1831 272.299 312.00 H90 3.51 -4.95 Schwagerina chihsiaensis Chihsia Kungurian

1832 272.275 314.00 H90 3.59 -5.06 Schwagerina chihsiaensis Chihsia Kungurian

1833 272.244 316.50 H90 3.68 -5.36 Schwagerina chihsiaensis Chihsia Kungurian

continued

Table 3 continued

1834 272.220 318.50 H90 3.33 -7.75 Schwagerina chihsiaensis Chihsia Kungurian

1835 272.190 321.00 H90 3.47 -8.28 Schwagerina chihsiaensis Chihsia Kungurian

1836 272.166 323.00 H90 3.29 -5.98 Schwagerina chihsiaensis Chihsia Kungurian

1837 272.142 325.00 H90 3.64 -6.69 Schwagerina chihsiaensis Chihsia Kungurian

1838 272.118 327.00 H90 3.27 -5.96 Schwagerina chihsiaensis Chihsia Kungurian

1839 272.093 329.00 H90 4.12 -4.76 Schwagerina chihsiaensis Chihsia Kungurian

1840 272.069 331.00 H90 3.43 -6.36 Schwagerina chihsiaensis Chihsia Kungurian

1841 272.045 333.00 H90 3.87 -4.58 Schwagerina chihsiaensis Chihsia Kungurian

1842 272.021 335.00 H90 755.72 0.707190 Schwagerina chihsiaensis Chihsia Kungurian

1843 271.997 337.00 H90 3.20 -4.62 Schwagerina chihsiaensis Chihsia Kungurian

1844 271.972 339.00 H90 4.19 -3.87 Schwagerina chihsiaensis Chihsia Kungurian

1845 271.948 341.00 H90 3.76 -4.25 Schwagerina chihsiaensis Chihsia Kungurian 146 1846 271.926 342.80 H91 2.88 -5.85 Schwagerina chihsiaensis Chihsia Kungurian

1847 271.902 344.80 H91 3.11 -5.55 Schwagerina chihsiaensis Chihsia Kungurian

1848 271.878 346.80 H91 1.74 -7.45 Schwagerina chihsiaensis Chihsia Kungurian

1849 271.854 348.80 H92 3.71 -4.04 Schwagerina chihsiaensis Chihsia Kungurian

1850 271.842 349.80 H92 3.25 -3.40 Schwagerina chihsiaensis Chihsia Kungurian

1851 271.818 351.80 H93 2.86 -5.71 Schwagerina chihsiaensis Chihsia Kungurian

1852 271.793 353.80 H93 3.22 -6.74 Schwagerina chihsiaensis Chihsia Kungurian

1853 271.778 355.10 H94 3.27 -8.61 Schwagerina chihsiaensis Chihsia Kungurian

1854 271.757 356.80 H94 1042.86 0.707224 Schwagerina chihsiaensis Chihsia Kungurian

1855 271.739 358.30 H94 3.21 -4.44 Schwagerina chihsiaensis Chihsia Kungurian

1856 271.710 360.70 H94 2.09 -7.50 Schwagerina chihsiaensis Chihsia Kungurian

1857 271.686 362.70 H95 2.68 -4.52 Schwagerina chihsiaensis Chihsia Kungurian

1858 271.663 364.60 H95 3.59 -3.31 Schwagerina chihsiaensis Chihsia Kungurian

1859 271.640 366.50 H96 3.45 -3.86 Schwagerina chihsiaensis Chihsia Kungurian

1860 271.616 368.50 H97 3.32 -6.53 Schwagerina chihsiaensis Chihsia Kungurian

1861 271.593 370.40 H97 1.45 -8.44 Schwagerina chihsiaensis Chihsia Kungurian continued

Table 3 continued

1862 271.573 372.00 H98 3.40 -4.82 Schwagerina chihsiaensis Chihsia Kungurian

1863 271.549 374.00 H98 4.01 -4.24 Schwagerina chihsiaensis Chihsia Kungurian

1864 271.535 375.20 H99 3.88 -5.19 Schwagerina chihsiaensis Chihsia Kungurian

1865 271.511 377.20 H99 3.30 -4.74 Schwagerina chihsiaensis Chihsia Kungurian

1866 271.484 379.40 H99 2.58 -4.98 Schwagerina chihsiaensis Chihsia Kungurian

1867 271.462 381.20 H99 2.93 -4.99 Schwagerina chihsiaensis Chihsia Kungurian

1868 271.433 383.60 H99 3.30 -4.39 Schwagerina chihsiaensis Chihsia Kungurian Neomisellina, Neoschwagerina, Minojapanella 1869 271.400 386.30 H100 3.63 -3.63 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1870 271.375 388.40 H100 3.83 -3.61 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1871 271.352 390.30 H100 3.50 -6.36 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella

147 1872 271.338 391.50 H100 3.83 -3.96 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella

1873 271.329 392.20 H101 4.38 -3.62 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1874 271.317 393.20 H101 543.73 0.707156 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1875 271.301 394.50 H101 3.96 -4.02 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1876 271.288 395.60 H102 4.37 -3.71 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1877 271.278 396.40 H102 5.29 -4.88 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1878 271.271 397.00 H102 4.73 -4.93 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1879 271.415 385.10 H100 2.52 -4.60 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1880 271.259 398.00 H102 5.40 -4.50 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1881 271.242 399.40 H102 4.62 -5.80 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1882 271.230 400.40 H102 5.08 -4.59 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1883 271.219 401.30 H102 4.90 -4.16 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1884 271.205 402.50 H103 5.05 -4.74 S. subasymmetricus pulchra Maokou Kungurian

1885 271.193 403.50 H103 4.40 -4.88 S. subasymmetricus Neomisellina, Neoschwagerina, Minojapanella Maokou Kungurian continued

Table 3 continued

pulchra Neomisellina, Neoschwagerina, Minojapanella 1886 271.180 404.50 H103 4.12 -5.11 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1887 271.165 405.80 H103 4.14 -4.36 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1888 271.151 406.90 H103 4.41 -3.46 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1889 271.134 408.30 H104 4.99 -3.78 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1890 271.122 409.30 H104 4.77 -4.49 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1891 271.110 410.30 H104 4.28 -4.98 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1892 271.096 411.50 H105 5.96 -4.19 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1893 271.085 412.40 H105 4.36 -5.08 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 148 1894 271.073 413.40 H105 590.35 0.707133 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella

1895 271.056 414.80 H105 4.76 -4.51 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1896 271.041 416.00 H106 4.79 -3.99 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1897 271.029 417.00 H106 5.39 -3.61 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1898 271.015 418.20 H106 4.05 -3.75 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1899 271.000 419.40 H106 3.83 -5.99 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1900 270.991 420.20 H106 4.27 -4.96 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1901 270.977 421.30 H106 4.98 -3.50 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1902 270.965 422.30 H106 3.38 -5.34 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1903 270.953 423.30 H107 4.68 -4.79 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1904 270.941 424.30 H107 3.14 -7.19 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1905 270.929 425.30 H107 591.00 0.707122 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1906 270.917 426.30 H107 3.78 -5.17 S. subasymmetricus pulchra Maokou Kungurian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 1907 270.904 427.40 H107 4.30 -4.66 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1908 270.888 428.70 H108 4.00 -3.80 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1909 270.878 429.50 H108 4.37 -4.85 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1910 270.864 430.70 H108 3.35 -4.76 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1911 270.852 431.70 H109 3.04 -5.69 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1912 270.837 432.90 H109 4.43 -4.27 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1913 270.825 433.90 H109 846.87 0.707146 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1914 270.812 435.00 H109 4.27 -5.26 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1915 270.796 436.30 H109 4.78 -3.77 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 149 1916 270.781 437.50 H109 2.52 -5.27 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella

1917 270.770 438.40 H110 3.08 -6.63 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1918 270.760 439.30 H110 3.29 -4.49 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1919 270.749 440.20 H110 1.93 -4.20 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1920 270.735 441.30 H110 1.76 -5.46 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1921 270.726 442.10 H110 3.88 -3.70 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1922 270.714 443.10 H111 3.52 -4.28 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1923 270.702 444.10 H111 4.28 -4.64 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1924 270.693 444.80 H111 4.27 -3.43 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1925 270.681 445.80 H111 3.25 -4.87 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1926 270.668 446.90 H111 1253.31 0.707001 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1927 270.657 447.80 H111 3.01 -4.68 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1928 270.645 448.80 H111 2.85 -4.26 S. subasymmetricus pulchra Maokou Kungurian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 1929 270.636 449.50 H111 2.97 -4.07 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1930 270.629 450.10 H111 2.07 -4.07 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1931 270.622 450.70 H111 2.21 -3.70 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1932 270.610 451.70 H111 2.47 -4.02 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1933 270.600 452.50 H111 2.35 -4.36 S. subasymmetricus pulchra Maokou Kungurian Neomisellina, Neoschwagerina, Minojapanella 1934 270.600 470.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1935 270.543 472.00 H112 x J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1936 270.486 474.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1937 270.429 476.00 H112 J. nankingensis pulchra Maokou Roadian

150 Neomisellina, Neoschwagerina, Minojapanella 1938 270.343 479.00 H112 J. nankingensis pulchra Maokou Roadian

Neomisellina, Neoschwagerina, Minojapanella 1939 270.286 481.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1940 270.229 483.00 H112 0.99 -12.82 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1941 270.171 485.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1942 270.114 487.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1943 270.057 489.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1944 270.000 491.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1945 269.943 493.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1946 269.886 495.00 H112 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1947 269.457 510.00 H113 2.41 -5.78 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1948 269.426 511.10 H113 238.31 0.707713 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1949 269.391 512.30 H113 0.14 -9.21 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1950 269.369 513.10 H113 4.27 -3.27 J. nankingensis pulchra Maokou Roadian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 1951 269.323 514.70 H113 4.09 -3.98 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1952 269.300 515.50 H113 3.88 -4.33 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1953 269.269 516.60 H113 1.03 -7.46 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1954 269.223 518.20 H113 3.75 -5.10 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1955 269.189 519.40 H113 2.63 -7.78 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1956 269.160 520.40 H113 1.71 -8.53 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1957 269.137 521.20 H113 4.10 -6.42 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1958 269.089 522.90 H113 3.74 -3.61 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1959 269.057 524.00 H113 4.17 -4.23 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 151 1960 269.031 524.90 H113 402.40 0.707191 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1961 268.954 527.60 H113 4.28 -5.40 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1962 268.926 528.60 H113 4.36 -5.00 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1963 268.897 529.60 H113 3.27 -6.79 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1964 268.874 530.40 H113 3.40 -5.62 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1965 268.826 532.10 H113 4.01 -7.41 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1966 268.797 533.10 H113 0.35 -9.57 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1967 268.771 534.00 H113 1.59 -7.34 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1968 268.740 535.10 H113 2.56 -6.55 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1969 268.720 535.80 H113 4.28 -5.82 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1970 268.706 536.30 H113 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1971 268.691 536.80 H114 4.60 -3.41 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1972 268.677 537.30 H114 4.16 -5.24 J. nankingensis pulchra Maokou Roadian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 1973 268.663 537.80 H114 4.28 -5.53 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1974 268.649 538.30 H114 4.09 -5.60 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1975 268.629 539.00 H114 4.26 -5.31 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1976 268.614 539.50 H114 4.26 -5.34 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1977 268.600 540.00 H114 4.04 -5.90 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1978 268.586 540.50 H114 4.11 -5.73 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1979 268.571 541.00 H114 900.65 0.707043 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1980 268.557 541.50 H114 3.40 -5.91 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1981 268.543 542.00 H114 2.96 -6.08 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 152 1982 268.529 542.50 H114 3.52 -6.45 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1983 268.514 543.00 H114 3.73 -6.49 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1984 268.500 543.50 H114 4.30 -5.79 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1985 268.486 544.00 H114 4.09 -6.04 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1986 268.471 544.50 H114 4.16 -6.30 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1987 268.457 545.00 H114 995.92 0.707056 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1988 268.443 545.50 H114 4.30 -5.52 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1989 268.429 546.00 H114 4.36 -5.96 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1990 268.414 546.50 H114 2.95 -6.32 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1991 268.400 547.00 H114 4.61 -6.06 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1992 268.386 547.50 H114 0.97 -7.06 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1993 268.371 548.00 H114 4.36 -5.85 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1994 268.357 548.50 H114 4.15 -6.22 J. nankingensis pulchra Maokou Roadian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 1995 268.343 549.00 H114 0.47 -7.87 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1996 268.329 549.50 H114 4.08 -6.37 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1997 268.314 550.00 H114 886.52 0.707054 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1998 268.300 550.50 H114 4.14 -5.51 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 1999 268.286 551.00 H114 3.99 -6.11 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2000 268.271 551.50 H114 2.79 -7.48 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2001 268.257 552.00 H114 0.12 -8.02 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2002 268.243 552.50 H114 2.93 -6.14 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2003 268.229 553.00 H114 2.93 -6.86 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 153 2004 268.214 553.50 H114 3.62 -6.47 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2005 268.200 554.00 H114 3.19 -5.79 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2006 268.186 554.50 H114 4.28 -5.25 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2007 268.171 555.00 H114 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2008 268.157 555.50 H114 2.69 -6.22 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2429 268.143 556.00 H114 4.33 -5.34 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2430 268.129 556.50 H114 4.34 -5.54 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2431 268.114 557.00 H114 4.72 -5.02 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2432 268.100 557.50 H114 4.58 -5.51 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2433 268.086 558.00 H114 3.86 -5.34 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2434 268.071 558.50 H114 3.38 -5.79 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2435 268.057 559.00 H114 3.31 -5.60 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2436 268.043 559.50 H114 4.09 -5.14 J. nankingensis pulchra Maokou Roadian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 2437 268.029 560.00 H114 3.54 -5.82 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2438 268.014 560.50 H114 728.62 0.707067 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2439 268.006 560.80 H114 4.27 -5.35 J. nankingensis pulchra Maokou Roadian Neomisellina, Neoschwagerina, Minojapanella 2440 268.000 561.40 H115 4.71 -6.17 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2441 267.929 562.60 H115 3.78 -7.66 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2442 267.870 563.60 H115 500.13 0.707146 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2443 267.792 564.90 H115 4.19 -4.96 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2444 267.704 566.40 H115 3.05 -5.08 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2445 267.638 567.50 H115 3.45 -5.66 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 154 2446 267.579 568.50 H115 382.30 0.707059 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2447 267.520 569.50 H115 2.08 -8.33 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2448 267.460 570.50 H115 1.12 -6.99 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2449 267.360 572.20 H115 4.12 -4.23 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2450 267.271 573.70 H115 0.93 -6.70 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2451 267.045 577.50 H115 700.90 0.707165 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2452 266.998 578.30 H115 4.40 -3.52 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2453 266.909 579.80 H115 4.16 -4.00 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2454 266.790 581.80 H115 513.21 0.707058 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2455 266.666 583.90 H115 1.75 -6.47 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2456 266.535 586.10 H115 2.48 -6.62 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2457 266.446 587.60 H115 302.91 0.707121 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2458 266.328 589.60 H115 0.77 -7.25 J. aserrata pulchra Maokou Wordian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 2459 266.209 591.60 H115 1.04 -6.24 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2460 266.061 594.10 H115 0.00 -8.32 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2461 265.919 596.50 H115 183.20 0.707135 3.33 -5.82 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2462 265.800 598.50 H115 209.33 0.707087 J. aserrata pulchra Maokou Wordian Neomisellina, Neoschwagerina, Minojapanella 2463 265.800 600.50 H116 -1.20 -8.14 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2464 265.729 601.90 H116 175.95 0.706954 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2465 265.627 603.90 H116 3.01 -5.68 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2466 265.484 606.70 H116 0.55 -7.03 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2467 265.383 608.70 H116 -0.11 -8.45 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 155 2468 265.316 610.00 H116 -0.43 -7.88 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2469 265.215 612.00 H116 0.47 -8.68 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2470 265.113 614.00 H116 137.52 0.707104 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2471 265.001 616.20 H116 2.99 -5.45 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2472 264.909 618.00 H116 1.84 -8.83 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2473 264.808 620.00 H116 0.89 -9.14 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2474 264.706 622.00 H116 2.42 -10.70 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2475 264.599 624.10 H116 2.25 -5.58 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2476 264.497 626.10 H116 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2477 264.400 628.00 H116 1.85 -6.98 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2478 264.299 630.00 H116 141.80 0.707143 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2479 264.212 631.70 H116 3.01 -4.70 J. posterrata pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2480 264.110 633.70 H116 3.76 -4.87 J. posterrata pulchra Maokou Capitanian

continued

Table 3 continued

J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2481 264.019 635.50 H116 2.87 -6.33 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2482 263.917 637.50 H116 2.97 -7.07 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2483 263.805 639.70 H116 2.00 -6.54 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2484 263.703 641.70 H116 0.47 -7.68 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2485 264.059 634.70 H116 1.85 -7.90 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2486 263.505 645.60 H116 187.62 0.707186 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2487 263.403 647.60 H116 2.99 -9.18 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2488 263.240 650.80 H116 1.85 -8.04 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2489 263.143 652.70 H116 1.75 -10.85 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 156 2490 263.057 654.40 H116 2.27 -7.20 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2491 262.955 656.40 H116 2.32 -5.62 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2492 262.879 657.90 H116 3.11 -4.99 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2493 262.787 659.70 H116 208.04 0.707097 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2494 262.634 662.70 H117 3.93 -3.60 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2495 262.538 664.60 H117 1.89 -8.24 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2496 262.421 666.90 H117 2.12 -6.53 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2497 262.329 668.70 H117 1.96 -6.66 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2498 262.227 670.70 H117 2.08 -8.89 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2499 262.166 671.90 H117 2.80 -5.52 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2500 262.080 673.60 H117 4.00 -5.02 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2501 262.003 675.10 H117 2.63 -5.74 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2502 261.927 676.60 H117 165.92 0.707257 altudaensis pulchra Maokou Capitanian

continued

Table 3 continued

J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2503 261.861 677.90 H117 -1.02 -9.11 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2504 261.825 678.60 H117 -1.25 -8.78 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2505 261.759 679.90 H117 -2.84 -9.80 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2506 261.637 682.30 H117 -2.55 -9.17 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2507 261.571 683.60 H117 2.47 -10.44 altudaensis pulchra Maokou Capitanian J. shannoni/J. Neomisellina, Neoschwagerina, Minojapanella 2508 261.474 685.50 H117 2.51 -6.30 altudaensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2509 261.418 686.60 H117 0.47 -7.62 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2510 261.357 687.80 H117 -0.09 -7.93 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2511 261.286 689.20 H117 1.64 -7.03 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 157 2512 261.235 690.20 H118 187.51 0.707193 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2513 261.174 691.40 H118 0.55 -7.08 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2514 261.133 692.20 H118 2.38 -7.43 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2515 261.087 693.10 H118 0.27 -7.24 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2516 261.067 693.50 H118 3.04 -2.57 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2517 261.046 693.90 H118 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2518 261.036 694.10 H118 2.34 -6.14 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2519 261.001 694.80 H118 2.34 -7.05 J. prexuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2520 260.985 695.10 H118 2.46 -6.33 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2521 260.970 695.40 H118 2.71 -5.40 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2522 260.939 696.00 H118 2.81 -6.92 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2523 260.919 696.40 H118 3.30 -6.46 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2524 260.904 696.70 H118 0.13 -8.19 J. xuanhanensis pulchra Maokou Capitanian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 2525 260.884 697.10 H118 -1.39 -8.87 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2526 260.863 697.50 H119 -0.22 -11.31 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2527 260.843 697.90 H119 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2528 260.822 698.30 H119 1.13 -8.22 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2529 260.802 698.70 H119 -1.21 -9.81 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2530 260.787 699.00 H119 0.32 -9.81 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2531 260.772 699.30 H119 3.20 -8.15 J. xuanhanensis pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2532 260.751 699.70 H119 2.19 -11.26 J. xuanhanensis(?) pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2533 260.736 700.00 H119 1151.98 0.707486 J. xuanhanensis(?) pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 158 2534 260.716 700.40 H119 2.70 -9.39 J. xuanhanensis(?) pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2535 260.695 700.80 H119 0.40 -8.44 J. xuanhanensis(?) pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2536 260.680 701.10 H119 -0.86 -8.29 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2537 260.660 701.50 H119 -1.55 -8.70 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2538 260.644 701.80 H119 0.22 -7.99 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2539 260.629 702.10 H119 0.73 -8.19 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2540 260.614 702.40 H119 -1.00 -8.78 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2541 260.598 702.70 H119 -1.30 -8.51 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2542 260.583 703.00 H119 1.98 -7.57 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2543 260.568 703.30 H119 229.20 0.707090 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2544 260.553 703.60 H119 1.01 -8.89 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2545 260.537 703.90 H119 -0.90 -8.25 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2546 260.522 704.20 H119 0.87 -7.67 J. granti pulchra Maokou Capitanian

continued

Table 3 continued

Neomisellina, Neoschwagerina, Minojapanella 2547 260.507 704.50 H119 2.02 -8.21 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2548 260.487 704.90 H119 3.68 -4.97 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2549 260.471 705.20 H119 145.92 0.707137 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2550 260.464 705.35 H119 0.54 -8.93 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2551 260.459 705.45 H119 2.51 -7.92 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2552 260.451 705.60 H119 2.13 -6.69 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2553 260.443 705.75 H119 1.72 -7.51 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2554 260.438 705.85 H119 1.61 -7.63 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2555 260.431 706.00 H119 214.08 0.707115 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 159 2556 260.425 706.10 H119 2.01 -7.36 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2557 260.410 706.40 H119 182.57 0.707216 J. granti pulchra Maokou Capitanian Neomisellina, Neoschwagerina, Minojapanella 2558 260.400 706.90 H119 159.20 0.707034 C. postbitteri pulchra Maokou Wuchiapingian Neomisellina, Neoschwagerina, Minojapanella 2559 260.397 707.00 H119 2.98 -4.01 C. postbitteri pulchra Maokou Wuchiapingian Neomisellina, Neoschwagerina, Minojapanella 2560 260.392 707.20 H119 2.70 -6.21 C. postbitteri pulchra Maokou Wuchiapingian Neomisellina, Neoschwagerina, Minojapanella 2561 260.385 707.50 H119 C. postbitteri pulchra Maokou Wuchiapingian Neomisellina, Neoschwagerina, Minojapanella 2562 260.374 707.90 H119 109.46 0.707006 C. postbitteri pulchra Maokou Wuchiapingian Neomisellina, Neoschwagerina, Minojapanella 2563 260.367 708.20 H119 1.15 -10.31 C. postbitteri pulchra Maokou Wuchiapingian 2564 260.359 708.50 H120 -3.17 -9.53 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2565 260.349 708.90 H120 -1.91 -8.83 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2566 260.341 709.20 H120 -1.26 -8.94 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2567 260.331 709.60 H120 0.41 -11.71 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2568 260.320 710.00 H120 293.46 0.707321 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2569 260.315 710.20 H120 -0.19 -11.51 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2570 260.307 710.50 H120 -2.26 -9.70 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2571 260.295 711.00 H120 2.03 -8.09 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2572 260.287 711.30 H120 -2.90 -9.40 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2573 260.277 711.70 H120 -1.86 -9.82 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2574 260.264 712.20 H120 -1.20 -9.32 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2575 260.259 712.40 H120 1.14 -9.22 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2576 260.251 712.70 H120 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2577 260.243 713.00 H120 395.24 0.707039 1.69 -7.95 C. dukouensis Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 2578 260.235 713.30 H120 -2.95 -8.95 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2579 260.225 713.70 H120 0.08 -8.33 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2580 260.220 713.90 H120 0.32 -8.67 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2581 260.215 714.10 H120 0.14 -7.92 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 160 2582 260.210 714.30 H120 0.42 -8.62 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2583 260.199 714.70 H120 C. asymmetrica Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2584 259.891 726.70 H122 455.33 0.707070 C. leveni(?) Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2585 259.863 727.80 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2586 259.842 728.60 H122 -2.13 -10.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2587 259.809 729.90 H122 1.74 -7.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2588 259.786 730.80 H122 1.48 -7.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2589 259.760 731.80 H122 2.50 -6.91 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2590 259.729 733.00 H122 2.96 -12.53 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2591 259.703 734.00 H122 304.69 0.707227 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2592 259.683 734.80 H122 -0.16 -9.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2593 259.649 736.10 H122 4.14 -4.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2594 259.624 737.10 H122 1.21 -8.32 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2595 259.588 738.50 H122 2.06 -7.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2596 259.562 739.50 H122 4.33 -6.25 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2597 259.531 740.70 H122 4.11 -5.79 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2598 259.498 742.00 H122 3.52 -5.71 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2599 259.456 743.60 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2600 259.431 744.60 H122 3.63 -6.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2601 259.410 745.40 H122 1.21 -7.37 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2602 259.377 746.70 H122 2.70 -6.24 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2603 259.343 748.00 H122 -1.54 -8.68 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2604 259.310 749.30 H122 2.50 -8.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2605 259.276 750.60 H122 1.34 -7.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2606 259.248 751.70 H122 2.53 -4.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2607 259.212 753.10 H122 202.38 0.707218 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2608 259.189 754.00 H122 0.73 -8.73 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2609 259.156 755.30 H122 2.35 -7.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 161 2610 259.120 756.70 H122 2.68 -7.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2611 259.078 758.30 H122 -0.38 -10.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2612 259.053 759.30 H122 2.65 -7.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2613 259.017 760.70 H122 2.25 -9.55 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2614 258.983 762.00 H122 2.47 -8.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2615 258.952 763.20 H122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2616 258.922 764.40 H122 4.68 -7.81 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2617 258.906 765.00 H122 1.12 -7.00 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2618 258.896 765.40 H122 2.15 -8.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2619 258.888 765.70 H123 154.12 0.707197 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2620 258.875 766.20 H123 4.90 -6.22 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2621 258.862 766.70 H123 4.01 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2622 258.837 767.70 H123 3.10 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2623 258.816 768.50 H123 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2624 258.798 769.20 H123 3.61 -7.74 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2625 258.793 769.40 H123 4.48 -6.34 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2626 258.790 769.50 H123 -0.26 -8.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2627 258.772 770.20 H123 1.88 -10.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2628 258.747 771.20 H123 3.76 -7.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2629 258.721 772.20 H123 163.38 0.707156 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2630 258.708 772.70 H123 1.59 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2631 258.677 773.90 H123 2.10 -8.23 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2632 258.662 774.50 H123 3.63 -7.43 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2633 258.659 774.60 H123 4.72 -7.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2634 258.647 775.10 H123 5.21 -6.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2635 258.636 775.50 H123 4.72 -5.22 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2636 258.629 775.80 H124 4.93 -9.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2637 258.613 776.40 H124 0.80 -7.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 162

2638 258.598 777.00 H124 3.87 -7.75 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2639 258.582 777.60 H124 3.62 -8.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2640 258.575 777.90 H124 4.30 -6.69 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2641 258.593 777.20 H124 6.29 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2642 258.510 780.40 H125 5.78 -8.07 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2643 258.495 781.00 H125 6.31 -7.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2644 258.482 781.50 H125 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2645 258.469 782.00 H125 5.09 -6.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2646 258.456 782.50 H125 4.92 -6.24 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2647 258.443 783.00 H125 4.85 -7.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2648 258.431 783.50 H125 5.14 -6.56 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2649 258.418 784.00 H125 5.00 -6.67 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2650 258.405 784.50 H125 5.04 -6.56 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2651 258.392 785.00 H125 5.29 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2652 258.379 785.50 H125 4.96 -6.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2653 258.366 786.00 H125 5.07 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2654 258.353 786.50 H125 5.13 -6.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2655 258.341 787.00 H125 -0.25 -9.04 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2656 258.328 787.50 H125 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2657 258.315 788.00 H125 4.72 -6.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2658 258.302 788.50 H125 4.84 -6.44 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2659 258.289 789.00 H125 5.18 -7.23 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2660 258.276 789.50 H125 202.74 0.707178 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2661 258.263 790.00 H126 3.45 -7.60 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2662 258.240 790.90 H126 5.28 -9.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2663 258.199 792.50 H126 -1.30 -8.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2664 258.184 793.10 H126 2.46 -7.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2665 258.166 793.80 H126 3.23 -9.08 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 163

2666 258.150 794.40 H127 4.32 -6.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2667 258.130 795.20 H127 4.56 -6.54 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2668 258.107 796.10 H127 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2669 258.081 797.10 H127 4.87 -7.08 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2670 258.065 797.70 H127 5.01 -6.73 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2671 258.047 798.40 H127 2.90 -4.00 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2672 258.022 799.40 H127 4.89 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2673 257.996 800.40 H127 4.94 -6.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2674 257.970 801.40 H127 4.88 -6.81 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2675 257.945 802.40 H128 2.61 -6.58 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2676 257.916 803.50 H128 2.88 -8.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2677 257.873 805.20 H128 323.58 0.707355 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2678 257.844 806.30 H128 3.75 -9.82 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2679 257.803 807.90 H128 4.81 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2680 257.775 809.00 H129 4.95 -7.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2681 257.747 810.10 H129 5.08 -7.46 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2682 257.718 811.20 H129 5.05 -6.83 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2683 257.690 812.30 H129 5.10 -7.41 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2684 257.664 813.30 H129 4.58 -7.41 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2685 257.639 814.30 H129 0.27 -8.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2686 257.618 815.10 H129 5.01 -7.21 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2687 257.592 816.10 H129 5.08 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2688 257.569 817.00 H129 3.84 -7.93 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2689 257.544 818.00 H129 5.27 -7.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2690 257.518 819.00 H129 234.29 0.707122 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2691 257.497 819.80 H130 -0.46 -8.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2692 257.474 820.70 H131 4.76 -6.48 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2693 257.448 821.70 H131 5.17 -6.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 164

2694 257.420 822.80 H131 5.07 -6.29 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2695 257.384 824.20 H131 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2696 257.361 825.10 H132 5.16 -6.62 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2697 257.335 826.10 H132 5.24 -7.02 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2698 257.302 827.40 H132 5.11 -6.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2699 257.266 828.80 H133 5.14 -6.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2700 257.227 830.30 H133 5.25 -7.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2701 257.189 831.80 H133 5.09 -7.05 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2702 257.145 833.50 H133 5.04 -6.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2703 257.099 835.30 H133 5.22 -6.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2704 257.060 836.80 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2705 257.014 838.60 H133 4.95 -7.16 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2706 256.968 840.40 H133 3.28 -9.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2707 256.916 842.40 H133 4.12 -7.34 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2708 256.865 844.40 H133 4.59 -6.67 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2709 256.813 846.40 H133 4.20 -7.98 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2710 256.767 848.20 H133 4.93 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2711 256.721 850.00 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2712 256.669 852.00 H133 4.68 -6.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2713 256.618 854.00 H133 3.82 -7.78 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2714 256.566 856.00 H133 4.33 -7.20 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2715 256.515 858.00 H133 4.46 -6.60 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2716 256.464 860.00 H133 4.80 -6.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2717 256.412 862.00 H133 4.19 -7.42 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2718 256.361 864.00 H133 5.05 -6.95 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2719 256.309 866.00 H133 4.85 -6.57 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2720 256.258 868.00 H133 3.26 -7.40 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2721 256.207 870.00 H133 5.81 -7.61 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 165 2722 256.155 872.00 H133 4.33 -7.13 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2723 256.104 874.00 H133 3.98 -7.30 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2724 256.052 876.00 H133 4.41 -7.25 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2725 256.001 878.00 H133 4.49 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2726 255.949 880.00 H133 4.74 -7.37 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2727 255.898 882.00 H133 4.61 -7.35 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2728 255.847 884.00 H133 4.67 -7.32 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2729 255.795 886.00 H133 284.29 0.707148 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2730 255.744 888.00 H133 4.07 -7.33 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2731 255.692 890.00 H133 4.36 -6.50 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2732 255.654 891.50 H133 4.79 -7.11 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2733 255.615 893.00 H133 3.20 -6.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2734 255.577 894.50 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2735 255.538 896.00 H133 4.49 -6.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2736 255.499 897.50 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2737 255.461 899.00 H133 4.11 -7.10 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2738 255.422 900.50 H133 2.86 -7.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2739 255.384 902.00 H133 4.42 -6.63 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2740 255.345 903.50 H133 3.64 -7.28 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2741 255.307 905.00 H133 4.61 -6.83 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2742 255.268 906.50 H133 4.07 -6.46 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2743 255.230 908.00 H133 303.64 0.707085 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2744 255.191 909.50 H133 3.98 -7.26 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2745 255.152 911.00 H133 4.24 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2746 255.114 912.50 H133 3.71 -6.77 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2747 255.075 914.00 H133 2.41 -7.77 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2748 255.050 915.00 H133 3.13 -7.43 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2749 255.024 916.00 H133 2.86 -7.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 166 2750 254.998 917.00 H133 4.49 -6.71 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2751 254.972 918.00 H133 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2752 254.962 918.40 H133 3.55 -7.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2753 254.954 918.70 H133 0.84 -8.47 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2754 254.942 919.20 H134 3.08 -7.45 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2755 254.921 920.00 H134 4.08 -7.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2756 254.895 921.00 H134 2.67 -8.01 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2757 254.870 922.00 H134 2.71 -8.79 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2758 254.844 923.00 H134 0.93 -7.88 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2759 254.818 924.00 H134 285.67 0.707137 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2760 254.792 925.00 H134 2.28 -6.09 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2761 254.767 926.00 H134 2.26 -8.21 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2762 254.741 927.00 H134 3.41 -9.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2763 254.708 928.30 H134 4.16 -9.16 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2764 254.630 931.30 H134 3.06 -14.39 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2765 254.574 933.50 H134 2.89 -11.03 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2766 254.543 934.70 H134 2.98 -10.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2767 254.530 935.20 H134 3.17 -9.64 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2768 254.502 936.30 H134 4.57 -7.70 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2769 254.466 937.70 H134 2.29 -7.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2770 254.445 938.50 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2771 254.422 939.40 H134 3.37 -12.84 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2772 254.396 940.40 H134 2.68 -10.06 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2773 254.386 940.80 H134 0.14 -11.86 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2774 254.360 941.80 H134 3.95 -7.55 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2775 254.325 943.20 H134 4.38 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2776 254.296 944.30 H134 2.80 -6.96 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2777 254.273 945.20 H134 4.65 -5.76 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian 167 2778 254.250 946.10 H134 -0.43 -9.58 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2779 254.235 946.70 H134 417.31 0.707063 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2780 254.227 947.00 H134 3.12 -10.51 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2781 254.206 947.80 H134 3.84 -8.92 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2782 254.183 948.70 H134 4.57 -6.75 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2783 254.168 949.30 H134 3.31 -8.03 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2784 254.145 950.20 H134 4.27 -7.40 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2785 254.127 950.90 H134 3.18 -7.94 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2786 254.103 951.80 H134 2.95 -8.44 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2787 254.080 952.70 H134 3.18 -8.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2788 254.060 953.50 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2789 254.047 954.00 H134 4.80 -6.36 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2790 254.026 954.80 H134 445.58 0.707089 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2791 254.001 955.80 H134 3.41 -7.72 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2792 253.975 956.80 H134 4.92 -6.04 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2793 253.952 957.70 H134 4.51 -5.99 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

continued

Table 3 continued

2794 253.929 958.60 H134 4.67 -6.31 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2795 253.911 959.30 H134 4.51 -7.80 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2796 253.890 960.10 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2797 253.869 960.90 H134 4.41 -6.85 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2798 253.846 961.80 H134 4.21 -6.66 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2799 253.800 963.60 H134 Codonofusiella - Liangshanophyllum Wujiaping Wuchiapingian

2799+ 50m covered H135 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

2800 1013.60 H136 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

2801 1014.60 H136 2.45 -7.49 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

2802 1015.60 H136 2.35 -6.70 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

168 2803 1016.60 H136 2.14 -6.74 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

2804 1017.60 H136 Palaeofusulina - Colaniella Dalong Wuchiapingian(?)

continued