Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia

Total Page:16

File Type:pdf, Size:1020Kb

Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia David P.G. Bond1†, Paul B. Wignall2, and Stephen E. Grasby3,4 1Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 3Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 4Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada ABSTRACT ing gun of eruptions in the distant Emeishan 2009; Wignall et al., 2009a, 2009b; Bond et al., large igneous province, which drove high- 2010a, 2010b), making this a mid-Capitanian Until recently, the biotic crisis that oc- latitude anoxia via global warming. Although crisis of short duration, fulfilling the second cri- curred within the Capitanian Stage (Middle the global Capitanian extinction might have terion. Several other marine groups were badly Permian, ca. 262 Ma) was known only from had different regional mechanisms, like the affected in equatorial eastern Tethys Ocean, in- equatorial (Tethyan) latitudes, and its global more famous extinction at the end of the cluding corals, bryozoans, and giant alatocon- extent was poorly resolved. The discovery of Permian, each had its roots in large igneous chid bivalves (e.g., Wang and Sugiyama, 2000; a Boreal Capitanian crisis in Spitsbergen, province volcanism. Weidlich, 2002; Bond et al., 2010a; Chen et al., with losses of similar magnitude to those in 2018). In contrast, pelagic elements of the fauna low latitudes, indicated that the event was INTRODUCTION (ammonoids and conodonts) suffered a later, geographically widespread, but further non- ecologically distinct, extinction crisis in the ear- Tethyan records are needed to confirm this as The Capitanian (Guadalupian Series, Middle liest Lopingian (Huang et al., 2019). Although a a true mass extinction. The cause of this crisis Permian) crisis is among the least understood severe extinction of Capitanian brachiopods has is similarly controversial: While the temporal of the major mass extinctions. It has been in- been found in the Boreal sections of Spitsbergen coincidence of the extinction and the onset terpreted as extinction comparable to the “Big (Bond et al., 2015), evaluation of the true geo- of volcanism in the Emeishan large igneous 5” Phanerozoic crises (Stanley and Yang, 1994; graphic extent of the crisis requires more evi- province in China provides a clear link be- Bond et al., 2010a, 2015; Stanley, 2016) or, al- dence from outside Tethys to resolve the third tween those phenomena, the proximal kill ternatively, as a gradually attained low point in criterion. mechanism is unclear. Here, we present an Permian diversity of regional extent and there- The losses in China coincided with the onset integrated fossil, pyrite framboid, and geo- fore not a mass extinction at all (Yang et al., of Emeishan large igneous province volcanism chemical study of the Middle to Late Perm- 2000; Clapham et al., 2009; Payne and Clapham, in the southwest of the country (Wignall et al., ian section of the Sverdrup Basin at Borup 2012; Groves and Wang, 2013). Although there 2009a; Huang et al., 2019), suggesting a role for Fiord, Ellesmere Island, Arctic Canada. As is no universally accepted definition of “mass large igneous province activity. The recent de- in Spitsbergen, the Capitanian extinction extinction,” key criteria include the following: A velopment of mercury as a proxy for volcanism is recorded by brachiopods in a chert/lime- mass extinction should have significant impact (Sanei et al., 2012) permits further evaluation of stone succession 30–40 m below the Permian- on a range of biota, it should be of geologically the large igneous province–extinction link in lo- Triassic boundary. The extinction level shows short duration, and it should be of global extent. cations far removed from the site of volcanism. elevated concentrations of redox-sensitive Until recently, most studies have focused on Several large igneous province–driven kill trace metals (Mo, V, U, Mn), and contempo- equatorial (Tethyan) records, especially those mechanisms have been implicated in the Capi- rary pyrite framboid populations are domi- from South China, where fusulinacean foramini- tanian crisis, especially marine anoxia, which is nated by small individuals, suggestive of a fers and brachiopods lost 82% and 87% of spe- implicated in numerous other mass extinction causal role for anoxia in the wider Boreal cies, respectively (Jin et al., 1994; Shen and Shi, scenarios (see reviews in Wignall, 2001; Bond crisis. Mercury concentrations—a proxy for 1996; Bond et al., 2010a), thus fulfilling the first and Wignall, 2014; Bond and Grasby, 2017). volcanism—are generally low throughout criterion. These losses were originally ascribed Notably, the Capitanian losses in Spitsbergen the succession but are elevated at the extinc- to the Guadalupian-Lopingian Series boundary coincided with a phase of benthic oxygen deple- tion level, and this spike withstands normal- (end of Capitanian Stage), hence the widespread tion (Bond et al., 2015). Other purported Capi- ization to total organic carbon, total sulfur, use of the term “end-Guadalupian extinction” tanian extinction mechanisms include cooling and aluminum. We suggest this is the smok- in earlier literature. However, the South China (Isozaki et al., 2007), death-by-photosynthetic benthic crisis has now been accurately dated to shutdown at the onset of volcanism (Bond et al., the Jinogondolella altudaensis–Jinogondolella 2010a, 2010b), ocean acidification caused by † [email protected]. prexuanhanensis conodont zones (Shen and Shi, volcanogenic CO2 (McGhee et al., 2013), and GSA Bulletin; May/June 2020; v. 132; no. 5/6; p. 931–942; https://doi.org/10.1130/B35281.1; 8 figures; 3 tables; published online 30 August 2019. © 2019 The Authors. Gold Open Access: 931 This paper is published under the terms of the CC-BY license. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/132/5-6/931/4990324/931.pdf by guest on 28 September 2021 Bond et al. volcanogenic toxic metal poisoning (Grasby presence of Crockerland, a structural high that environmental and biotic changes on the NW et al., 2015). formed the northern basin rim (Embry, 1988, margin of Pangea. Thus, controversy surrounds whether the 1989). The Middle to Late Permian succession Capitanian crisis was a true global extinction and at Borup Fiord (81°00′33.4″N, 81°30′51.0″W; MATERIAL AND METHODS whether (and how) the Emeishan large igneous Fig. 2) formed at around 40°N on a shallow, province was responsible. We address this with open-marine siliceous ramp near the basin’s Facies and Fossils a new record from the Sverdrup Basin (Arctic northeastern margin and belongs to the De- Canada). Our study presents brachiopod range gerböls and Lindström Formations (but shares Sedimentary logging was undertaken through data from the Degerböls and Lindström Forma- lithological similarities with their more distal ∼100 m of the Degerböls and Lindström Forma- tions of Ellesmere Island, Permian-aged mixed equivalents, the van Hauen and Black Stripe tions and the basal meters of the Blind Fiord For- spiculitic chert/carbonate units that formed on Formations, respectively; Beauchamp et al., mation at Borup Fiord, which was accessed by a cool, siliciclastic ramp in the Boreal Ocean 2009; Embry and Beauchamp, 2019). The suc- helicopter in July 2015. The outcrop lies along- (Embry, 1988; Embry and Beauchamp, 2008, cession is composed of white to pale-gray spic- side an east-west–trending glacier and provides 2019; Beauchamp et al., 2009). We assessed the ulitic cherts and numerous limestone interbeds a continuous exposure of fresh surfaces polished role of redox changes during this interval using (Beauchamp and Grasby, 2012). The Lindström by ice movement. Facies, and trace and body a combination of petrographic and geochemical Formation is overlain conformably by the latest fossils (principally brachiopods) were identified approaches, and we further examined the link Permian–Early Triassic Blind Fiord Formation in the field. The field observations were supple- between these factors and the Emeishan large (Grasby and Beauchamp, 2008; Proemse et al., mented with analysis of 24 thin sections. igneous province using the mercury proxy for 2013) at Borup Fiord, while an unconformity volcanism. The precise ages of the Degerböls marks this contact in more proximal settings. As Redox Proxies and Lindström Formations are unclear, and we in other regions, notably the lithostratigraphi- investigated this through lithostratigraphic and cally similar Svalbard and Barents Sea, the The concentrations of redox-sensitive trace chemostratigraphic comparison with better- Permian-Triassic boundary lies a few meters metals in marine sediment provide a measure of dated Boreal successions in East Greenland and above the major lithological change at the for- ancient depositional conditions, because the re- Spitsbergen. mational contact (Beauchamp et al., 2009). The duced forms of many metals (e.g., Mo, U, V, and Blind Fiord Formation is a thick succession of Mn) are insoluble in seawater; therefore, these REGIONAL GEOLOGY offshore mudstones, siltstones, and shelf-slope elements are scavenged by sediment under anox- sandstones that record major flooding, as well as ic conditions. The U, Th, and K concentrations The
Recommended publications
  • Geologic Time Scale Cards
    PreCambrian SuperEon (4.6 BYA – 541 MYA) Hadean Eon (4.6 BYA - 4 BYA) Slide # 1 46 feet Earth Forms • Earth is formed from a mass of dust and gas that gravity pulled together. • The process causes a huge amount of radioactive decay and Earth is a boiling ball of lava. • At 4.5 BYA a protoplanet named Theia collides with Earth and a debris ring forms which later becomes our moon. • Earth cools and forms the layers – core, mantel, and outer crust. • Meteors bombard earth bringing frozen droplets of water that later become our oceans. • Volcanic activity continues and Earth’s earliest continental crust forms before 4.03 BYA. The Acasta gneiss is one of the oldest rocks on Earth dating 4.03 billion years.. PreCambrian SuperEon (4.6 BYA – 541 MYA) Archaean Eon (4 BYA – 2.5 BYA) Slide # 2 40 feet Primitive, Simple Life Forms • Earth’s crust cools and plate tectonics forms. • Ancient rock formations form from 4 to 2.5 BYA. • The Primordial soup theory suggests early minerals and compounds from meteors made the perfect recipe for primitive, simple life to form at the thermal vents of the ocean. • Single cell life formed the ocean and over time stromatolites, photosynthesizing colonial bacteria, formed in shallow water and released oxygen. • The oxygen attached to trace iron in the oceans and formed sedimentary layers of banded iron formations (BIFS) that are presently mined for iron ore. Banded iron formations from the late Archaean and early Proterozoic eons Stromatolite fossil image PreCambrian SuperEon (4.6 BYA – 541 MYA) Proterozoic Eon (2.5 BYA – 541 MYA) Slide # 3 25 feet Early life • Photosynthesizing life further establishes and releases oxygen throughout the ocean.
    [Show full text]
  • The Capitanian (Permian) Kamura Cooling Event
    Palaeoworld 16 (2007) 16–30 Research paper The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic–Mesozoic transition Yukio Isozaki a,∗, Hodaka Kawahata b, Kayo Minoshima c a Department of Earth Science and Astronomy, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan b Graduate School of Frontier Sciences and Ocean Research Institute, The University of Tokyo, Minamidai, Nakano, Tokyo 164-8639, Japan c Geological Survey of Japan, AIST, Tsukuba 305-8567, Japan Received 4 January 2007; received in revised form 12 May 2007; accepted 15 May 2007 Available online 25 May 2007 Abstract 13 The Capitanian (late Guadalupian) high positive plateau interval of carbonate carbon isotope ratio (␦ Ccarb) was recognized lately in a mid-Panthalassan paleo-atoll limestone in Japan as the Kamura event. This unique episode in the late-middle Permian indicates high productivity in the low-latitude superocean likely coupled with resultant global cooling. This event ended shortly before the Guadalupian–Lopingian (middle-late Permian) boundary (ca. 260 Ma); however, its onset time has not been ascertained previously. Through a further analysis of the Wordian (middle Guadalupian) to lower Capitanian interval in the same limestone at 13 Kamura in Kyushu, we have found that the ␦ Ccarb values started to rise over +4.5‰ and reached the maximum of +7.0‰ within the Yabeina (fusuline) Zone of the early-middle Capitanian. Thus the total duration of the Kamura event is estimated over 3–4 million years, given the whole Capitanian ranging for 5.4 million years. This 3–4 million years long unique cooling event occurred clearly after the Gondwana glaciation period (late Carboniferous to early Permian) in the middle of the long-term warming trend toward the Mesozoic.
    [Show full text]
  • PERMIAN BASIN PROVINCE (044) by Mahlon M
    PERMIAN BASIN PROVINCE (044) By Mahlon M. Ball INTRODUCTION The Permian Basin is one of the largest structural basins in North America. It encompasses a surface area in excess of 86,000 sq mi and includes all or parts of 52 counties located in West Texas and southeast New Mexico. Structurally, the Permian Basin is bounded on the south by the Marathon-Ouachita Fold Belt, on the west by the Diablo Platform and Pedernal Uplift, on the north by the Matador Arch, and on the east by the Eastern Shelf of the Permian (Midland) Basin and west flank of the Bend Arch. The basin is about 260 mi by 300 mi in area and is separated into eastern and western halves by a north-south trending Central Basin Platform. In cross section, the basin is an asymmetrical feature; the western half contains a thicker and more structurally deformed sequence of sedimentary rock. The Permian Basin has been characterized as a large structural depression formed as a result of downwarp in the Precambrian basement surface located at the southern margin of the North American craton. The basin was filled with Paleozoic and, to a much lesser extent, younger sediments. It acquired its present structural form by Early Permian time. The overall basin is divisible into several distinct structural and tectonic elements. They are the Central Basin Platform and the Ozona Arch, which separate the Delaware and Val Verde Basins on the south and west from the Midland Basin on the north and east, the Northwestern Shelf on the southern extremity of the Pedernal Uplift and Matador Arch, and the Eastern Shelf on the western periphery of the Bend Arch.
    [Show full text]
  • Gemmologythe Journal of Volume 28 No.7 July 2003
    ^ GemmologyThe Journal of Volume 28 No.7 July 2003 The Gemmological Association and Gem Testing Laboratory of Great Britain ~ ~. ~ Gemmological Association , ~ '.~ , and Gem Testing Laboratory ~, :~ of Great Britain • 27 Greville Street, London ECIN 8TN Tel: +44 (0)20 7404 3334 Fax: +44 (0)20 7404 8843 e-mail: [email protected] Website: www.gem-a.info President: Professor A.T Collins Vice-Presidents: N. W. Deeks, A.E. Farn, RA Howie, D.G. Kent, RK. Mitchell Honorary Fellows: Chen Zhonghui, RA Howie, K. Nassau Honorary Life Members: H . Bank, D.J. Ca llaghan, E.A [obbins, H . Tillander Council of Management: T J. Davidson, RR Harding, I. Mercer, J. Monnickendam, M.J. 0'Donoghue, E. Stern, I. Thomson, Y.P. Watson Members' Council: A J. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.J. Wates, CH. Winter Branch Chairmen: Midlands -G.M. Green, North West -D. M. Brady, Scottish - B. Jackson, South Eas t - CH. Winter, South West - RM. Slater Examiners: A J. Allnutt, M.5e., Ph.D., FGA, L. Bartlett, B.5e., M.Ph il., FGA, DGA, S. Coelho, BS e., FGA, DGA, Prof. AT Co llins, BSe., Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, S. Greatwood, FGA, DGA, G.M. Green, FGA, DGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA , B. Jackson, FGA, DGA, G.H. Jones, BSe., PhD., FGA, Li Li Ping, FGA, DGA, M.A Medniuk, FGA, DGA, M. Newton, BSe. , D.Phil., CJ.E. Oldershaw, BSe. (Hans), FGA, DGA, H.L.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Q05-03 Report
    Missed pay analysis well Q05-03 (P045) March 2016 Missed pay analysis well Q05-03 (P045) Authors Kirsten Brautigam Reviewed by Coen Leo Prepared by PanTerra Geoconsultants B.V. Weversbaan 1-3 2352 BZ Leiderdorp The Netherlands T +31 (0)71 581 35 05 F +31 (0)71 301 08 02 [email protected] This report contains analysis opinions or interpretations which are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of PanTerra Geoconsultants B.V. (all errors and omissions excepted). PanTerra Geoconsultants B.V. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas, water or other mineral well or sand in connection which such report is used or relied upon. PanTerra Geoconsultants B.V. ● Missed Pay Q05-03 (0P45) ● Page 2 of 12 Contents Summary .......................................................................................................................................... 4 1 Introduction .......................................................................................................................... 4 2 Available data ........................................................................................................................ 4 3 Nearby hydrocarbon fields ..................................................................................................
    [Show full text]
  • Wrangellia Flood Basalts in Alaska, Yukon, and British Columbia: Exploring the Growth and Magmatic History of a Late Triassic Oceanic Plateau
    WRANGELLIA FLOOD BASALTS IN ALASKA, YUKON, AND BRITISH COLUMBIA: EXPLORING THE GROWTH AND MAGMATIC HISTORY OF A LATE TRIASSIC OCEANIC PLATEAU By ANDREW R. GREENE A THESIS SUBMITTED iN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Geological Sciences) UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 ©Andrew R. Greene, 2008 ABSTRACT The Wrangellia flood basalts are parts of an oceanic plateau that formed in the eastern Panthalassic Ocean (ca. 230-225 Ma). The volcanic stratigraphy presently extends >2300 km in British Columbia, Yukon, and Alaska. The field relationships, age, and geochemistry have been examined to provide constraints on the construction of oceanic plateaus, duration of volcanism, source of magmas, and the conditions of melting and magmatic evolution for the volcanic stratigraphy. Wrangellia basalts on Vancouver Island (Karmutsen Formation) form an emergent sequence consisting of basal sills, submarine flows (>3 km), pillow breccia and hyaloclastite (<1 1cm), and subaerial flows (>1.5 km). Karmutsen stratigraphy overlies Devonian to Permian volcanic arc (—‘380-355 Ma) and sedimentary sequences and is overlain by Late Triassic limestone. The Karmutsen basalts are predominantly homogeneous tholeiitic basalt (6-8 wt% MgO); however, the submarine part of the stratigraphy, on northern Vancouver Island, contains picritic pillow basalts (9-20 wt% MgO). Both lava groups have overlapping initial and ENd, indicating a common, ocean island basalt (OIB)-type Pacific mantle source similar to the source of basalts from the Ontong Java and Caribbean Plateaus. The major-element chemistry of picrites indicates extensive melting (23 -27%) of anomalously hot mantle (‘—1500°C), which is consistent with an origin from a mantle plume head.
    [Show full text]
  • Large Igneous Provinces and Mass Extinctions: an Update
    Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality.
    [Show full text]
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D
    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
    [Show full text]
  • Indo-Brazilian Late Palaeozoic Wildfires
    1919 DOI: 10.11606/issn.2316-9095.v16i4p87-97 Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 16, n. 4, p. 87-97, Dezembro 2016 Indo-Brazilian Late Palaeozoic wildfires: an overview on macroscopic charcoal Incêndios vegetacionais Indo-Brasileiros no Neopaleozoico: uma revisão dos registros de carvão vegetal macroscópico André Jasper1,2,3, Dieter Uhl1,2,3, Rajni Tewari4, Margot Guerra-Sommer5, Rafael Spiekermann1, Joseline Manfroi1,2, Isa Carla Osterkamp1,2, José Rafael Wanderley Benício1,2, Mary Elizabeth Cerruti Bernardes-de-Oliveira6, Etiene Fabbrin Pires7 and Átila Augusto Stock da Rosa8 1Centro Universitário UNIVATES, Museu de Ciências Naturais, Setor de Paleobotânica e Evolução de Biomas, Avenida Avelino Tallini, 171, CEP 9590000, Lajeado, RS, Brazil ([email protected]; [email protected]; [email protected]; [email protected]; [email protected]) 2Centro Universitário UNIVATES, Programa de Pós-graduação em Ambiente e Desenvolvimento, Lajeado, RS, Brazil 3Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Hesse, Germany ([email protected]) 4Birbal Sahni Institute of Paleosciences, Lucknow, Uttar Pradesh, India ([email protected]) 5Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil ([email protected]) 6Universidade de São Paulo - USP, São Paulo, SP, Brazil ([email protected]) 7Universidade Federal do Tocantins - UFT, Porto Nacional, TO, Brazil ([email protected]) 8Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil ([email protected]) Received on April 1st, 2016; accepted on September 22nd, 2016 Abstract Sedimentary charcoal is widely accepted as a direct indicator for the occurrence of paleo-wildfires and, in Upper Paleozoic sediments of Euramerica and Cathaysia, reports on such remains are relatively common and (regionally and stratigraphically) more or less homogeneously distributed.
    [Show full text]
  • Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition
    Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kate E. Tierney, M.S. Graduate Program in the School of Earth Sciences The Ohio State University 2010 Dissertation Committee: Matthew R. Saltzman, Advisor William I. Ausich Loren Babcock Stig M. Bergström Ola Ahlqvist Copyright by Kate Elizabeth Tierney 2010 Abstract The Permian is one of the most important intervals of earth history to help us understand the way our climate system works. It is an analog to modern climate because during this interval climate transitioned from an icehouse state (when glaciers existed extending to middle latitudes), to a greenhouse state (when there were no glaciers). This climatic amelioration occurred under conditions very similar to those that exist in modern times, including atmospheric CO2 levels and the presence of plants thriving in the terrestrial system. This analog to the modern system allows us to investigate the mechanisms that cause global warming. Scientist have learned that the distribution of carbon between the oceans, atmosphere and lithosphere plays a large role in determining climate and changes in this distribution can be studied by chemical proxies preserved in the rock record. There are two main ways to change the distribution of carbon between these reservoirs. Organic carbon can be buried or silicate minerals in the terrestrial realm can be weathered. These two mechanisms account for the long term changes in carbon concentrations in the atmosphere, particularly important to climate.
    [Show full text]