Shining Cities 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Report IEA-PVPS T1-21:2012 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Contents Introduction 2 1 Implementation of PV systems 3 2 The PV industry 24 3 Policy, regulatory and business framework for deployment 32 4 Summary of trends 39 PV technology note 44 Foreword This year’s 17th edition of the IEA PVPS international survey report on Trends in Photovoltaic (PV) Applications falls together with almost 20 years of global cooperation within the IEA PVPS The International Energy Agency (IEA), founded in 1974, Programme. The history of PV market deployment over this is an autonomous body within the framework of the decisive period for PV from its very first market developments to Organization for Economic Cooperation and the present large scale deployment, meanwhile accounting for Development (OECD). The IEA carries out a important shares of the newly installed capacity for electricity comprehensive programme of energy cooperation production, can uniquely be followed year by year in the series among its 28 member countries and with the of IEA PVPS trends reports. 2011 has been yet another year of unprecedented further market growth, continued massive participation of the European Commission. cost reduction and ongoing signs of industry and market consolidation. In total, about 28 GW of PV capacity were The IEA Photovoltaic Power Systems Programme installed in the IEA PVPS countries during 2011 (2010: 14,2 GW), (IEA PVPS) is one of the collaborative research and thus again doubling the installed capacity of the year before; this development agreements within the IEA and was raised the total installed capacity in IEA PVPS countries close to established in 1993. -
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets. -
Design and Experiment of a Sun-Powered Smart Building Envelope with Automatic Control
Energy & Buildings 223 (2020) 110173 Contents lists available at ScienceDirect Energy & Buildings journal homepage: www.elsevier.com/locate/enb Design and experiment of a sun-powered smart building envelope with automatic control Qiliang Lin a, Yanchu Zhang a, Arnaud Van Mieghem b, Yi-Chung Chen c, Nanfang Yu d, Yuan Yang d, ⇑ Huiming Yin a, a Department of Civil Engineering and Engineering Mechanics, Columbia University, United States b Department of Electrical Engineering ESAT, Katholieke Universiteit Leuven, Belgium c Department of Electrical and Computer Engineering, Tennessee State University, United States d Department of Applied Physics and Applied Mathematics, Columbia University, United States article info abstract Article history: A novel sun-powered smart window blind (SPSWB) system has been designed and developed for the Received 26 February 2020 smart control of building envelopes to achieve the optimal internal comfort with minimum energy Revised 15 May 2020 expenditure. Its self-powered sensing, controlling, and actuation significantly simplify the installation Accepted 21 May 2020 and maintenance of the system. The energy is harvested by the attached thin-film photovoltaic cells, after Available online 29 May 2020 which it is voltage-regulated for the permanent storage into a rechargeable battery with 55% energy effi- ciency. The excessive heat absorbed by the solar cells is dissipated by a PVdF-HFP porous coating with Keywords: more than 9% temperature reduction. The smart control of the energy harvesting and the cooling is Smart building envelope achieved based on the blinds’ surface temperature by an Arduino-based sensing, controlling, and actuat- Window blinds Energy harvesting ing system, whose energy consumption is closely monitored. -
Ab307 Application Summary Proposed Project Applicant App
AB307 APPLICATION SUMMARY PROPOSED PROJECT APPLICANT APP. RCVD. TYPE COUNTY SIZE Bordertown to California 120kV NV Energy 6/27/2012 Powerline Washoe 120 kV North Elko Pipeline Prospector Pipeline Comp. 7/11/2012 Nat Gas Pipeline Elko, Eureka Wild Rose ORNI 47 7/17/2012 Geothermal Mineral 30 MW New York Canyon New York Canyon LLC 8/14/2012 Geothermal Persh., Church. 70 MW Mountain View Solar Energy Mountain View Solar LLC 9/24/2012 Solar Clark 20 MW Mahacek to Mt. Hope 230kV Eureka Moly LLC 10/23/2012 Powerline Eureka 230 kV Moapa Solar Energy Center Moapa Solar LLC 11/5/2012 Powerline Clark 230 kV, 500 kV Pahrump Valley Solar Project Abengoa Solar Inc. 11/14/2012 Solar Clark, Nye 225 MW Copper Rays Solar Farm Element Power Solar Dev. LLC 11/26/2012 Solar Nye 180 MW Boulder City Solar Project Techren Solar 1/2/2013 Solar Clark 300 MW Townsite Solar Project KOWEPO America LLC/Skylar Res. LP 1/15/2013 Solar Clark 180 MW Copper Mountain Solar 3 CMS-3 LLC (Sempra Energy) 1/16/2013 Solar Clark 250 MW Crescent Peak Wind Crescent Peak Renewables LLC 1/23/2013 Wind Clark 500 MW Silver State Solar South Silver State Solar Power South LLC 1/23/2013 Solar Clark 350 MW Toquop Power Project Toquop Power Holdings LLC 1/23/2013 Fossil Fuel Lincoln 1,100 MW Hidden Hills 230kV Transmission Valley Electric Transmission Assoc. LLC 1/28/2013 Powerline Nye, Clark 230 kV Boulder Solar Project Boulder Solar Power LLC 1/25/2013 Solar Clark 350 MW ARES Regulation Energy Mgmt. -
Shining Cities 2018
Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Written by: Abi Bradford, Frontier Group Bret Fanshaw, Environment America Research & Policy Center April 2018 Acknowledgments Environment America Research & Policy Center sincerely thanks Nathan Phelps with Vote Solar, Zachary Greene with The Solar Foundation, and Nicholas Kasza with National League of Cities, for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone who went out of their way to provide us with data for this report. Thanks to Gideon Weissman, Judee Burr, Jordan Schneider, Lindsey Hallock and Kim Norman for laying the groundwork by authoring previous editions of this report. Thanks also to Tony Dutzik and Elizabeth Berg of Frontier Group for editorial support and to ESRI for their grant of ArcGIS software that we used for the data analysis in this report. Environment America Research & Policy Center thanks Arntz Family Foundation, Barr Foundation, Bullitt Foundation, Energy Foundation, Footprint Foundation, The Fund for New Jersey, John Merck Fund, McCune Charitable Foundation, Park Foundation, Scherman Foundation, The Cricket Foundation, The Cynthia & George Mitchell Foundation, Turner Foundation, and Wardlaw Charitable Trust for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment America Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2018 Environment America Research & Policy Center. Some Rights Reserved. -
UNEP Guide for Energy Efficiency and Renewable Energy Laws
UNEP Guide for Energy Efficiency and Renewable Energy Laws United Nations Environment Programme, Pace University Law School Energy and Climate Center UNEP United Nations Environment Programme i Published by the United Nations Environment Programme (UN Environment) September 2016 UNEP Guide for Energy Efficiency and Renewable Energy Laws – English ISBN No: 978-92-807-3609-0 Job No: DEL/2045/NA Reproduction This publication may be reproduced in whole or in part and in any form for educational and non profit pur- poses without special permission from the copyright holder, provided that acknowledgement of the source is made. UN Environment Programme will appreciate receiving a copy of any publication that uses this material as a source. No use of this publication can be made for the resale or for any other commercial purpose whatsoever without the prior permission in writing of UN Environment Programme. Application for such permission with a statement of purpose of the reproduction should be addressed to the Communications Division, of the UN Environment Programme, P.O BOX 30552, Nairobi 00100 Kenya. The use of information from this document for publicity of advertising is not permitted. Disclaimer The contents and views expressed in this publication do not necessarily reflect the views or policies of the UN Environment Programme or its member states. The designations employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of UN Environ- ment concerning the legal status of any country, territory or its authorities, or concerning the delimitation of its frontiers and boundaries. -
Ground-Mounted Solar Photovoltaic Systems
Questions & Answers Ground-Mounted Solar Photovoltaic Systems Westford Solar Park, photo courtesy of EEA June 2015 Massachusetts Department of Energy Resources Massachusetts Department of Environmental Protection Massachusetts Clean Energy Center Table of Contents Background……………………………………………………………………………………………………….3 Hazardous Materials………………………………………………………………………………………...5 End-of-Life/Decommissioning…………………………………………………………………………..7 Ambient Temperature (“Heat Island”)……………………………………………………………...9 Electric and Magnetic Fields (EMF)………………………………………………………………....10 Property Values…………………………………………………………………………….……………..….13 Public Safety (including fires)…………………………………………………………………………..14 Historic Preservation……………………………………………………………………………………….16 Noise……………………………………………………………………………………………………………….18 Water-Related Impacts……………………………………………………………………………………20 Glare……………………………………………………………………………………………………………….22 Endangered Species and Natural Heritage………………………………………………………23 2 Background Encouraging increased use of solar photovoltaic (PV) technology, which converts sunlight directly into electricity, is a key priority for state clean energy efforts. The environmental benefits of solar PV abound. Unlike conventional fossil fuel power generation (such as coal, gas and oil), generating electricity with ground-mounted solar PV involves no moving parts, uses no water, and produces no direct emissions of climate-warming greenhouse gases. Solar PV environmental and energy benefits, combined with strong incentives available for solar projects, have significantly increased -
Shining Cities 2020
Shining Cities 2020 The Top U.S. Cities for Solar Energy Shining Cities 2020 The Top U.S. Cities for Solar Energy Written by: Adrian Pforzheimer and Elizabeth Ridlington, Frontier Group Ben Sonnega and Emma Searson, Environment America Research & Policy Center May 2020 Acknowledgments Environment Texas Research & Policy Center sincerely thanks Spencer Fields, Toyah Barigye, Nathan Phelps and Nicholas Kasza for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone working for cities, counties, states, utilities and nonprofits who went out of their way to provide us with data for this report. Thanks to Abi Bradford, formerly of Frontier Group, for her support in launching this year’s report, and to Frontier Group intern Hannah Scholl for her tireless assistance with the research for the project. Thanks also to Tony Dutzik, Susan Rakov, Gideon Weissman, R.J. Cross, and Linus Lu of Frontier Group for editorial support. Environment Texas Research & Policy Center thanks our funders for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment Texas Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2020 Environment Texas Research & Policy Center. This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives 3.0 Unported License. To view the terms of this license, visit creativecommons.org/licenses/by-nc-nd/3.0. Environment Texas Research & Policy Center is a 501(c)(3) organization. -
Shining Cities 2016
Shining Cities 2016 How Smart Local Policies Are Expanding Solar Power in America Shining Cities 2016 How Smart Local Policies Are Expanding Solar Power in America Written by: Kim Norman, Frontier Group Rob Sargent and Bret Fanshaw, Environment America Research & Policy Center April 2016 Acknowledgments Environment California Research & Policy Center sincerely thanks Kevin Steinberger, Natural Resources Defense Council, and Annie Lappé, Vote Solar, for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone who went out of their way to provide us with data for this report. Thanks also to Tony Dutzik and Gideon Weissman of Frontier Group for editorial support and to ESRI for their grant of ArcGIS software that we used for our data analysis in this report. Environment California Research & Policy Center thanks the Tilia Fund, the Barr Foundation, the John Merck Fund, Fred & Alice Stanback, the Scherman Foundation, the Arntz Family Foundation, Kendeda Founda- tion, Fund for New Jersey and Gertrude and William C. Wardlaw for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment California Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2016 Environment California Research & Policy Center. Some Rights Reserved. This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives 3.0 Unported License. To view the terms of this license, visit creativecommons.org/licenses/by-nc-nd/3.0. Environment California Research & Policy Center is a 501(c)(3) organization. -
Operation Construction Development
Major Solar Projects in the United States Operating, Under Construction, or Under Development Updated March 7, 2016 Overview This list is for informational purposes only, reflecting projects and completed milestones in the public domain. The information in this list was gathered from public announcements of solar projects in the form of company press releases, news releases, and, in some cases, conversations with individual developers. It is not a comprehensive list of all major solar projects under development. This list may be missing smaller projects that are not publicly announced. Particularly, many smaller projects located outside of California that are built on a short time-scale may be underrepresented on this list. Also, SEIA does not guarantee that every identified project will be built. Like any other industry, market conditions may impact project economics and timelines. SEIA will remove a project if it is publicly announced that it has been cancelled. SEIA actively promotes public policy that minimizes regulatory uncertainty and encourages the accelerated deployment of utility-scale solar power. This list includes ground-mounted solar power plants 1 MW and larger. Example Projects Nevada Solar One Sierra SunTower Nellis Air Force Base DeSoto Next Generation Solar Energy Center Developer: Acciona Developer: eSolar Developer: MMA Renewable Ventures Developer: Florida Power & Light Co. Electricity Purchaser: NV Energy Electricity Purchaser: Southern Electricity Purchaser: Nellis AFB Electricity Purchaser: Florida Power & California -
The Economic and Reliability Benefits of CSP with Thermal Energy Storage: Literature Review and Research Needs
CSP ALLIANCE REPORT The Economic and Reliability Benefits of CSP with Thermal Energy Storage: Literature Review and Research Needs TECHNICAL REPORT SEPTEMBER 2014 csp-alliance.org BENEFITS OF CSP WITH THERMAL STORAGE The CSP Alliance The CSP Alliance is a public policy advocacy organization dedicated to bringing increased awareness and visibility to this sustainable, dispatchable technology. Our membership includes many of the world’s largest CSP corporations and their supply-chain partners. Our objectives include advancing the industry’s value proposition, addressing issues of job creation and environmental sustainability, and setting the foundation for future uses of the technology. The first version of this report was released in December 2012. This next version includes expanded discussion of methodology and new study results available over the course of 2013-14. Acknowledgments This project was initiated for the CSP Alliance by Joseph Desmond, BrightSource Energy, Fred Morse, Abengoa Solar, and Tex Wilkins, CSP Alliance. The report was prepared by Udi Helman and David Jacobowitz. Many other people contributed data and provided comments. In particular, we would like to thank the following for their comments and support on the original and revised report: Brendan Acord, Paul Denholm, Paul Didsayabutra, Jon Forrester, Warren Katzenstein, Or Kroyzer, Tandy McMannes, Mark Mehos, Andrew Mills, Hank Price, Tom Riley, Ramteen Sioshansi, Chifong Thomas and Mitch Zafer. Brendan Acord, Yehuda Halevy, Vered Karty, Saheed Okuboyejo, Elizabeth Santos, David Schlosberg, Daniel Schwab, Zhanna Sigwart, Mitch Zafer, and Omer Zehavi provided support for Tables 5-1 to 5-3. Tom Mancini provided a full review of the document. However, reviewers of the report are not responsible for any subsequent errors or interpretations of results. -
City of Austin
OFFICIAL STATEMENT DATED JULY 30, 2019 NEW ISSUES - Book-Entry-Only Ratings: Moody’s: “Aa3” S&P: “AA” Fitch: “AA” (See “OTHER RELEVANT INFORMATION – Ratings”) Delivery of the Series 2019B Bonds is subject to the receipt of the opinion of Norton Rose Fulbright US LLP, Bond Counsel, to the effect that, assuming continuing compliance by the City of Austin, Texas (the” City”) with certain covenants contained in the Seventeenth Supplement described in this document, interest on the Bonds will be excludable from gross income for federal income taxation under existing law, subject to the matters described under “TAX MATTERS – Series 2019B” in this document. Interest on the Taxable 2019C Bonds will be included in gross income for federal income tax purposes. See “TAX MATTERS – Taxable Series 2019C” in this document. CITY OF AUSTIN, TEXAS $169,850,000 $104,775,000 Electric Utility System Revenue Refunding Bonds, Electric Utility System Revenue Refunding and Series 2019B Improvement Bonds, Taxable Series 2019C Dated: Date of Initial Delivery Due: As shown on the pages i and ii of this document The bonds offered in this document are the $169,850,000 City of Austin, Texas Electric Utility System Revenue Refunding Bonds, Series 2019B (the “Series 2019B Bonds”) and the $104,775,000 City of Austin, Texas Electric Utility System Revenue Refunding and Improvement Bonds, Taxable Series 2019C (the “Taxable Series 2019C Bonds”). The Series 2019B Bonds and Taxable Series 2019C Bonds are collectively referred to in this document as the “Bonds.” The Bonds represent the seventeenth and eighteenth series, respectively, of “Parity Electric Utility Obligations” issued pursuant to City of Austin, Texas (the “City”) Ordinance No.