U.S. Solar Market Insight Report | Q4 2011 & 2011 Year-In-Review | Full Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Report IEA-PVPS T1-21:2012 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Contents Introduction 2 1 Implementation of PV systems 3 2 The PV industry 24 3 Policy, regulatory and business framework for deployment 32 4 Summary of trends 39 PV technology note 44 Foreword This year’s 17th edition of the IEA PVPS international survey report on Trends in Photovoltaic (PV) Applications falls together with almost 20 years of global cooperation within the IEA PVPS The International Energy Agency (IEA), founded in 1974, Programme. The history of PV market deployment over this is an autonomous body within the framework of the decisive period for PV from its very first market developments to Organization for Economic Cooperation and the present large scale deployment, meanwhile accounting for Development (OECD). The IEA carries out a important shares of the newly installed capacity for electricity comprehensive programme of energy cooperation production, can uniquely be followed year by year in the series among its 28 member countries and with the of IEA PVPS trends reports. 2011 has been yet another year of unprecedented further market growth, continued massive participation of the European Commission. cost reduction and ongoing signs of industry and market consolidation. In total, about 28 GW of PV capacity were The IEA Photovoltaic Power Systems Programme installed in the IEA PVPS countries during 2011 (2010: 14,2 GW), (IEA PVPS) is one of the collaborative research and thus again doubling the installed capacity of the year before; this development agreements within the IEA and was raised the total installed capacity in IEA PVPS countries close to established in 1993. -
BNEF Long Form
THE EVOLVING LANDSCAPE FOR EPCS IN US RENEWABLES 14 OCTOBER 2014 SECTION 4. THE PLAYERS This section of the report analyzes players in EPC for solar and wind in the US. About this analysis This section is based mostly on data gathered from companies’ websites. Much of this analysis relies on linking firms to projects in our database, which contains nearly 3,000 wind and solar projects in the US at various stages of development. The information mapping projects to their EPCs is captured in our Industry Intelligence database, available to subscribers of our service. There are a number of assumptions, caveats, and methodological points that are important to note in the context of this analysis; an Appendix at the end of this report identifies these. 4.1. LEAGUE TABLES The charts below show the top EPC firms for solar and wind, ranked strictly in terms of historic activity – ie, this does not reflect any kind of qualitative assessment about firms’ competencies. • Top-ranked solar EPCs includes the three vertically-integrated giants – SunPower, First Solar, and SunEdison – and some EPC specialists, like Bechtel and Fluor, that have performed a small number of very large projects. • The league tables for wind are headlined by Mortenson, IEA, RES Americas, and Blattner (with Blattner under-represented, as explained in the Appendix). Figure 8: Top EPC firms for US utility-scale solar (GW of Figure 9: Top EPC firms for US wind (GW of ‘active’ ‘active’ projects) projects) 0.0 0.5 1.0 1.5 2.0 0 4 8 12 SunPower MA Mortenson Co First Solar Inc IEA / White Construction MA Mortenson Co RES Americas E Light Wind and Solar Michels Corp Abengoa Blattner Energy Inc Bechtel Power Corp Wanzek Construction SunEdison Fluor Rosendin Electric Inc AMEC Tetra Tech Construction Inc Strata Solar LLC Signal Energy LLC Blymyer Engineers Dashiell Swinerton Inc TVIG / American Helios Blattner Energy Inc Reed & Reed Inc Baker Electric S&C Electric Co Blue Oak Energy Inc Barton Malow Co ARB Jay Cashman, Inc. -
3.17 Indirect and Cumulative Effects
FHWA-AZ-EIS-19-01-D Draft Tier 1 Environmental Impact Statement and Preliminary Section 4(f) Evaluation Section 3.17, Indirect and Cumulative Effects March 2019 Federal Aid No. 999-M(161)S ADOT Project No. 999 SW 0 M5180 01P This page intentionally left blank I-11 Corridor Draft Tier 1 EIS Section 3.17. Indirect and Cumulative Effects 1 3.17 Indirect and Cumulative Effects 2 This section identifies potential indirect and cumulative effects that would result from the 3 implementation of the Build Corridor Alternatives. 4 3.17.1 Regulatory Guidance 5 The Council on Environmental Quality (CEQ) states that indirect effects “are caused by the 6 action and are later in time or farther removed in distance, but are still reasonably foreseeable. 7 Indirect effects may include growth-inducing effects and other effects related to induced 8 changes in the pattern of land use, population density or growth rate, and related effects on air 9 and water and other natural systems, including ecosystems” (Code of Federal Regulations 10 Title 40, Sec. 1508.8[b]). Indirect effects are commonly categorized as effects that would not 11 occur “but for” the implementation of a project. Indirect effects also can be considered “ripple 12 effects” (Transportation Research Board 2002). 13 The CEQ states that cumulative effects result from the “incremental impact of an action when 14 added to other past, present, and reasonably foreseeable future actions regardless of which 15 agency (federal or non-federal) or person undertakes such actions. Cumulative effects can 16 result from individually minor, but collectively significant actions taking place over a period of 17 time” (Code of Federal Regulations title 40, sec. -
2015-SVTC-Solar-Scorecard.Pdf
A PROJECT OF THE SILICON VALLEY TOXICS COALITION 2015 SOLAR SCORECARD ‘‘ www.solarscorecard.com ‘‘ SVTC’s Vision The Silicon Valley Toxics Coalition (SVTC) believes that we still have time to ensure that the PV sector is safe The PV industry’s rapid growth makes for the environment, workers, and communities. SVTC it critical that all solar companies envisions a safe and sustainable solar PV industry that: maintain the highest sustainability standards. 1) Takes responsibility for the environmental and health impacts of its products throughout their life- cycles, including adherence to a mandatory policy for ‘‘The Purpose responsible recycling. The Scorecard is a resource for consumers, institutional purchasers, investors, installers, and anyone who wants 2) Implements and monitors equitable environmental to purchase PV modules from responsible product and labor standards throughout product supply chains. stewards. The Scorecard reveals how companies perform on SVTC’s sustainability and social justice benchmarks 3) Pursues innovative approaches to reducing and to ensure that the PV manufacturers protect workers, work towards eliminating toxic chemicals in PV mod- communities, and the environment. The PV industry’s ule manufacturing. continued growth makes it critical to take action now to reduce the use of toxic chemicals, develop responsible For over three decades, SVTC has been a leader in recycling systems, and protect workers throughout glob- encouraging electronics manufacturers to take lifecycle al PV supply chains. Many PV companies want to pro- responsibility for their products. This includes protecting duce truly clean and green energy systems and are taking workers from toxic exposure and preventing hazardous steps to implement more sustainable practices. -
Celebrating U.S. Solar Contractors
July 2017 www.solarpowerworldonline.com Technology • Development • Installation CELEBRATING U.S. SOLAR CONTRACTORS Cover_July 2017_Vs3.indd 1 6/30/17 8:32 AM HONORING THE BEST OF THE INDUSTRY The 2017 class of Top Solar Contractors is dedicated to bringing solar to the United States. The following pages honor the hard-working efforts of 500 solar companies across the country. The Top 500 List Begins On The Next Page Lists By Market p.52 Lists By Top States p.87 Lists By Service p.68 Contractors Across America p.105 INTRO Top 500_Vs2kp.indd 1 6/30/17 9:16 AM = UTILITY CONTRACTOR = RESIDENTIAL CONTRACTOR = COMMERCIAL/INDUSTRIAL CONTRACTOR = OFF-GRID CONTRACTOR = EPC = INSTALLATION SUBCONTRACTOR = ELECTRICAL SUBCONTRACTOR = DEVELOPER = ROOFTOP CONTRACTOR Pie pieces represent all services and markets in which a company works RANK & STATE/ PRIMARY TOTAL KILOWATTS ALL ALL PRIMARY COMPANY CITY TERRITORY FOUNDED EMPLOYEES MARKET INSTALLED INSTALLED SERVICES MARKETS SERVICE KILOWATTS IN 2016 OFFERED SERVED 21 CSI Electrical Contractors Santa Fe Springs CA 1990 1000 1,231,825 281,805 22 E Light Electric Services Englewood CO 1998 255 1,752,050 276,430 23 Moss Fort Lauderdale FL 2004 600 790,015 244,015 24 Vivint Solar Lehi UT 2011 5000 680,000 221,500 25 DKD Electric Albuquerque NM 1978 129 370,120 220,400 26 Bombard Renewable Energy Las Vegas NV 1982 800 420,033 219,494 27 SunEnergy1 Mooresville NC 2009 211 706,000 214,000 28 DEPCOM Power Scottsdale AZ 2013 84 390,000 205,000 29 Cantsink Lilburn GA 1988 50 416,000 197,387 30 CSW Contractors Scottsdale AZ 1982 350 1,669,000 195,000 31 HCS Renewable Energy Round Rock TX 2014 425 553,000 189,000 32 Primoris Renewable Energy Denver CO 2013 20 479,000 186,000 33 The Ryan Company Greenwood Village CO 1949 100 536,496 182,294 34 juwi Boulder CO 2008 60 420,000 182,089 35 ESA Renewables Sanford FL 2002 25 615,000 165,011 36 Hypower Fort Lauderdale FL 1991 450 425,000 165,000 37 J&B Solar Cocoa FL 2013 85 360,000 160,000 38 J. -
Lsoar Value Chain Value Chain
Solar Private companies in black Public companies in blue Followed by the founding date of companies less than 15 years old value chain (1 of 2) This value chain publication contains information gathered and summarized mainly from Lux Research and a variety of other public sources that we believe to be accurate at the time of ppggyublication. The information is for general guidance only and not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization nor Lux Research can accept responsibility for loss to any person relying on this publication. Materials and equipment Components and products Balance of system and installations Crystalline silicon photovoltaic GCL Silicon, China (2006); LDK Solar, China (2005); MEMC, US; Renewable Energy Corporation ASA, Norway; SolarWorld AG, Germany (1998) Bosch Solar Energy, Germany (2000); Canadian Solar, Canada/China (2001); Jinko Solar, China (2006); Kyocera, Japan; Sanyo, Japan; SCHOTT Solar, Germany (2002); Solarfun, China (2004); Tianwei New Energy Holdings Co., China; Trina Solar, China (1997); Yingli Green Energy, China (1998); BP Solar, US; Conergy, Germany (1998); Eging Photovoltaic, China SOLON, Germany (1997) Daqo Group, China; M. Setek, Japan; ReneSola, China (2003); Wacker, Germany Hyundai Heavy Industries,,; Korea; Isofoton,,p Spain ; JA Solar, China (();2005); LG Solar Power,,; Korea; Mitsubishi Electric, Japan; Moser Baer Photo Voltaic, India (2005); Motech, Taiwan; Samsung -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
Shining Cities 2018
Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Written by: Abi Bradford, Frontier Group Bret Fanshaw, Environment America Research & Policy Center April 2018 Acknowledgments Environment America Research & Policy Center sincerely thanks Nathan Phelps with Vote Solar, Zachary Greene with The Solar Foundation, and Nicholas Kasza with National League of Cities, for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone who went out of their way to provide us with data for this report. Thanks to Gideon Weissman, Judee Burr, Jordan Schneider, Lindsey Hallock and Kim Norman for laying the groundwork by authoring previous editions of this report. Thanks also to Tony Dutzik and Elizabeth Berg of Frontier Group for editorial support and to ESRI for their grant of ArcGIS software that we used for the data analysis in this report. Environment America Research & Policy Center thanks Arntz Family Foundation, Barr Foundation, Bullitt Foundation, Energy Foundation, Footprint Foundation, The Fund for New Jersey, John Merck Fund, McCune Charitable Foundation, Park Foundation, Scherman Foundation, The Cricket Foundation, The Cynthia & George Mitchell Foundation, Turner Foundation, and Wardlaw Charitable Trust for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment America Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2018 Environment America Research & Policy Center. Some Rights Reserved. -
Skyline Solar Phase I
SOLAR We take pride in constructing high quality industrial, commercial, and office buildings as well as solar PV systems for clients who range from small single users to the most sophisticated developers. We, as a professional general contractor, provide a full spectrum of services, including: conceptual estimating, value engineering and cost monitoring, in addition to competitive bidding in the markets we serve. We are proud of our nearly eighty-year tenure in the business community and of our long standing relationships with an extensive list of repeat customers whose business is not only valued, but basic to our survival. We offer career opportunities to a dedicated group of professionals who are proud of the work they do and proud of the organization of which they are a part. Our aim is to make a fair profit and maintain a steady growth, but never at the expense of quality construction or quality professional service. TABLE OF CONTENTS PROFILE + EXPERIENCE n Firm Profile n Company History QUALIFICATIONS n Capabilities n Renewable Energy Experience LEADERSHIP n Company Profiles CONCLUSION PROFILE + EXPERIENCE PROFILE + EXPERIENCE | FIRM PROFILE PROFILE + EXPERIENCE | COMPANY HISTORY Oltmans Construction Co. has built their steadfast reputation This reputation was earned by our commitment to Oltmans Construction Co., headquartered in Whittier, stockholders. It was this same year, 1946, that Oltmans by delivering the highest level of quality and personalized professionalism, integrity and our consistency in quality California, is perennially one of the top 10 producers of its Construction Co. topped the $1 million mark in volume for services available in today’s marketplace. -
BC-TES-TMP-2443.Pdf (5.514Mb)
UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS Para Optar el Título Profesional de INGENIERO MECÁNICO ELECTRICISTA “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA AL CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” Presentado Por: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ Asesor: Msc. Ing. JONY VILLALOBOS CABRERA LAMBAYEQUE – PERÚ Enero del 2019 UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS Para Optar el Título Profesional de INGENIERO MECÁNICO ELECTRICISTA “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA ALELECTRICISTA CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” Presentado Por: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ Aprobado por el Jurado Examinador PRESIDENTE: Dr. DANIEL CARRANZA MONTENEGRO. SECRETARIO: ING. CARLOS JAVIER COTRINA SAAVEDRA. MIEMBRO: ING. TEOBALDO EDGAR JULCA OROZCO. ASESOR: M.Sc. JONY VILLALOBOS CABRERA. LAMBAYEQUE – PERÚ Enero del 2019 UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS TITULO “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA AL CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” CONTENIDOS CAPITULO I: PROBLEMA DE LA INVESTIGACIÓN. CAPITULO II: MARCO TEÓRICO. CAPITULO III: MARCO METODOLÓGICO. CAPITULO IV: PROPUESTA DE LA INVESTIGACIÓN. CAPITULO V: ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS. CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES. AUTOR: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ --------------------------------- --------------------------------------- PRESIDENTE SECRETARIO ---------------------------------- ------------------------------------- MIEMBRO ASESOR LAMBAYEQUE – PERÚ Enero del 2019 DEDICATORIA Dedico éste Proyecto de Tesis a: Dios ya que gracias a Él he llegado a concluir una de mis metas la cual es concluir con mi carrera. -
RE-Powering America's Land Initiative: Project Tracking Matrix April 2016
RE-Powering America’s Land Initiative: April 2016 Project Tracking Matrix The U.S. Environmental Protection Agency (EPA) recognizes the overall environmental RE-Powering America’s benefit of siting renewable energy projects on contaminated properties. Through Land Initiative the RE-Powering America’s Land Initiative, EPA is encouraging renewable energy development on current and formerly contaminated lands, landfills, and mine sites To provide information on renewable energy on when such development is aligned with the community’s vision for the site. contaminated land projects not currently appearing Using publically available information, RE-Powering maintains a list of completed in this document, email [email protected]. renewable energy installations on contaminated sites and landfills. To date, the To receive updates, newsletters, and other RE-Powering Initiative has identified 179 renewable energy installations on 171 information about the RE-Powering program, contaminated lands, landfills, and mine sites1, with a cumulative installed capacity of click the banner below. just over 1,124 megawatts (MW) and consistent growth in total installations since the inception of the RE-Powering Initiative. Approximately 60% of these installations are Subscribe large-scale systems with a project capacity of 1 MW or more, either exporting energy EPA’s RE-Powering Listserv onto the utility grid or offsetting onsite energy demands. This document provides summary statistics of known installations and discusses emerging trends. In addition to the completed sites listed here, EPA is tracking more than 50 renewable energy projects on contaminated or disturbed properties in various stages of planning, approval, or construction. These include a 1.1-MW solar project under construction on a Meriden, CT landfill; a 2.25-MW solar project under construction on a coal ash landfill in Beloit, WI; and an 18.6-MW solar installation underway at the U.S. -
Siting Solar Without Cutting Down Trees
Siting Solar Without Cutting Down Trees Griztko Erickson AMP and Lexington, Massachusetts • This project starts with the AMP’s Proposal to Lexington to be the anchor in a community solar deal • The project would have required a 10-acre deforestation and was backed with claims that solar panels have a better climate change value than trees • Better climate change value refers to the decrease in emissions from losing dependency on fossil fuels being greater than the carbon that 10-acres of forest would sequester. Is it Just about the Carbon Value? Trees offer much more than their functionality as carbon sinks • Trees sustain both habitats and biodiversity (a 2019 study from the UN’s Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services suggests 1 million plant and animal species worldwide face extinction) • Trees provide urban cooling and flood control • Prevent erosion • Filter toxins from the air and water • Provide natural resources • Raise property values Do Trees really need to be cut down? Forests offer vital and unquantifiable benefits aside from just carbon sequestration. Because solar panels can be fitted on many kinds of impervious surfaces, there are functioning, viable alternatives to deforestation for solar farms. DOER Model Zoning Bylaw • According to Mass Audubon: “In recent years, more than 25% of all new solar arrays were large-scale ground mounted arrays on former forests or farmlands.” At this rate, more than 100,000 acres of land will be converted. • DOER Model Zoning Bylaw discourages solar siting in locations that result in land or natural resource loss, such as farm and forest land.