The Seeds of Solar Innovation: How a Nation Can Grow a Competitive Advantage by Donny Holaschutz

Total Page:16

File Type:pdf, Size:1020Kb

The Seeds of Solar Innovation: How a Nation Can Grow a Competitive Advantage by Donny Holaschutz The Seeds of Solar Innovation: How a Nation can Grow a Competitive Advantage by Donny Holaschutz B.A. Hispanic Studies (2004), University of Texas at Austin B.S. Aerospace Engineering (2004), University of Texas at Austin M.S.E Aerospace Engineering (2007), University of Texas at Austin Submitted to the System Design and Management Program In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management ARCHIVES MASSACHUSETTS INSTITUTE at the OF TECHNOLOGY Massachusetts Institute of Technology February 2012 © 2012 Donny Holaschutz. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereqfter reated. Signed by Author: Donny Holaschutz Engineering Systems Division and Sloan School of Management January 20, 2012 Certified by: James M. Utterback, Thesis Supervisor David . McGrath jr (1959) Professor of Management and Innovation and Professor of neering SysemsIT oan School of Management Accepted by: Patrick C.Hale Director otS ystem Design and Management Program THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents Fig u re List ...................................................................................................................................................... 5 T ab le List........................................................................................................................................................7 Executive Su mm ary ....................................................................................................................................... 9 Ackno w ledgem ents.....................................................................................................................................11 Chapter 1 - The Seeds of Solar Innovation ............................................................................................ 13 Chapter 2 - M ethods & Explanation of Key Concepts............................................................................ 19 The Solar Innovation Leading Enterprise and Its Evolution ................................................................ 20 Value Creation, Spillover, and Capture in the Power Sector .............................................................. 22 The Solar Cluster and the Solar Innovation Leading Enterprise........................................................ 24 Informal Organizations (Solar Innovation Tribes) to Solar Innovation Leading Enterprise ................ 25 Solar Innovation Leading Enterprise and the Dynamics of Innovation ............................................... 26 Chapter 3 - The Solar Innovation Leading Enterprise and its Relationship to the Cluster.....................29 Characteristics of the Solar Innovation Leading Enterprise ............................................................... 29 The Impact of the new Solar Innovation Leading Enterprises on the Clusters ................................... 33 Emergence of the Local Innovation Leading Enterprise as Local Solar Innovation Tribe .................. 43 Essential Resources and Dynamic Capabilities for the Solar Innovation Tribe ................................... 48 Evolution of Capabilities and Resources Required by Solar Innovation Tribe to become an Established Solar Innovation Leading Enterprise .................................................................................................. 50 The Impacts of the Location of the Cluster on the Solar Innovation Leading Enterprise ................... 53 Factors that Impact the Solar Leading Innovation Enterprise and that Change the Value Network Po rtio n of the Cluster .............................................................................................................................. 57 Chapter 4 - Solar Innovation Cluster Formation and Emergence..........................................................63 Location of Established Solar Innovation Clusters .............................................................................. 63 Cadm ium Telluride (CdTe) Cluster - Toledo Ohio............................................................................ 63 Crystalline Silicon (c-Si) Cluster - Silicon Valley CA ........................................................................ 63 Em erging Solar Innovation Clusters .................................................................................................. 64 Cadmium Telluride (CdTe) Solar Innovation Leading Enterprise Investment ................................. 65 Concentrated Photovoltaic (CPV) Solar Innovation Leading Enterprise Investment......................66 Copper Indium Gallium (di)Selenide (CIGS) Solar Innovation Leading Enterprise Investment...........67 Organic Photovoltaic Solar Innovation Leading Enterprise Investment ........................................ 68 Other Solar Innovation Leading Enterprise Investment................................................................. 69 Future of Solar Innovation, Solar Innovation Leading Enterprise, and Solar Innovation Cluster ........... 70 Chapter 5 - Conclusions and Recom mendations ................................................................................... 73 Co nclusio ns..............................................................................................................................................7 3 The solar innovation leading enterprise drives the change of the value network portion of the solar innovatio n cluste r................................................................................................................................73 The solar innovation leading enterprise has developed and produced architectural forms with a higher scalability potential and a greater ability to satisfy the needs of the electricity consumer....73 The complementary network of the solar innovation cluster has given the solar innovation leading enterprise an advantage in its early stages................................................................................... 73 Solar innovation clusters focused on specific architectural forms are emerging and have formed w ithin the U.S ...................................................................................................................................... 73 Most of the time, the solar innovation leading enterprise begins as an innovation tribe in the professional enviro nm ent. .................................................................................................................. 74 In its infancy stage, the solar innovation leading enterprise relies mostly on local resources and kno w ho w ............................................................................................................................................. 74 Most of the time, the location where the solar innovation leading enterprise emerges is determined by location where the founders were working right before the founders started the enterprise.....74 The formation and change of solar innovation clusters is influenced by the solar innovation leading ente rp rise ............................................................................................................................................ 74 For the heavier and bulkier solar technologies transportation costs are becoming a greater com ponent of the overall cost for the final product...................................................................... 75 Recommendations to the Decision Maker at the Department of Energy .......................................... 75 Engage the local to build a global competitive advantage ........................................................... 75 Use new insights to im prove risk management............................................................................ 77 Design support systems for the solar innovation tribe ................................................................... 78 Re-architect strategy to support the solar innovation leading enterprise and push the current solar in novatio n bo undary ........................................................................................................................... 79 Bib lio gra phy.................................................................................................................................................8 3 Figure List Figure 1 - How solar innovation leading enterprises could build dynamic capabilities and resources to generate rents and capture value (Created by Author).......................................................................... 21 Figure 2 - Direction set by solar innovation leading enterprise in cluster (Created by Author).............24 Figure 3 - Economic value created by many types of companies in solar industry in 2010 (Created by Author using [21-27] and com pany websites)....................................................................................... 29 Figure 4 - Private investment by type of company in solar industry (Created by Author using [21-27] and co mpany w ebsites)......................................................................................................................................30 Figure 5 - Solar innovation enterprise shaping the value network portion of cluster (Created by Author). ....................................................................................................................................................................
Recommended publications
  • 2015-SVTC-Solar-Scorecard.Pdf
    A PROJECT OF THE SILICON VALLEY TOXICS COALITION 2015 SOLAR SCORECARD ‘‘ www.solarscorecard.com ‘‘ SVTC’s Vision The Silicon Valley Toxics Coalition (SVTC) believes that we still have time to ensure that the PV sector is safe The PV industry’s rapid growth makes for the environment, workers, and communities. SVTC it critical that all solar companies envisions a safe and sustainable solar PV industry that: maintain the highest sustainability standards. 1) Takes responsibility for the environmental and health impacts of its products throughout their life- cycles, including adherence to a mandatory policy for ‘‘The Purpose responsible recycling. The Scorecard is a resource for consumers, institutional purchasers, investors, installers, and anyone who wants 2) Implements and monitors equitable environmental to purchase PV modules from responsible product and labor standards throughout product supply chains. stewards. The Scorecard reveals how companies perform on SVTC’s sustainability and social justice benchmarks 3) Pursues innovative approaches to reducing and to ensure that the PV manufacturers protect workers, work towards eliminating toxic chemicals in PV mod- communities, and the environment. The PV industry’s ule manufacturing. continued growth makes it critical to take action now to reduce the use of toxic chemicals, develop responsible For over three decades, SVTC has been a leader in recycling systems, and protect workers throughout glob- encouraging electronics manufacturers to take lifecycle al PV supply chains. Many PV companies want to pro- responsibility for their products. This includes protecting duce truly clean and green energy systems and are taking workers from toxic exposure and preventing hazardous steps to implement more sustainable practices.
    [Show full text]
  • Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program Hilary Kao
    William & Mary Environmental Law and Policy Review Volume 37 | Issue 2 Article 4 Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program Hilary Kao Repository Citation Hilary Kao, Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program, 37 Wm. & Mary Envtl. L. & Pol'y Rev. 425 (2013), http://scholarship.law.wm.edu/wmelpr/vol37/iss2/4 Copyright c 2013 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository. http://scholarship.law.wm.edu/wmelpr BEYOND SOLYNDRA: EXAMINING THE DEPARTMENT OF ENERGY’S LOAN GUARANTEE PROGRAM HILARY KAO* ABSTRACT In the year following the Fukushima nuclear disaster in March 2011, the renewable and clean energy industries faced significant turmoil— from natural disasters, to political maelstroms, from the Great Recession, to U.S. debt ceiling debates. The Department of Energy’s Loan Guarantee Program (“DOE LGP”), often a target since before it ever received a dollar of appropriations, has been both blamed and defended in the wake of the bankruptcy filing of Solyndra, a California-based solar panel manufac- turer, in September 2011, because of the $535 million loan guarantee made to it by the Department of Energy (“DOE”) in 2009.1 Critics have suggested political favoritism in loan guarantee awards and have questioned the government’s proper role in supporting renewable energy companies and the renewable energy industry generally.2 This Article looks beyond the Solyndra controversy to examine the origin, structure and purpose of the DOE LGP. It asserts that loan guaran- tees can serve as viable policy tools, but require careful crafting to have the potential to be effective programs.
    [Show full text]
  • Cadmium Telluride Photovoltaics - Wikipedia 1 of 13
    Cadmium telluride photovoltaics - Wikipedia 1 of 13 Cadmium telluride photovoltaics Cadmium telluride (CdTe) photovoltaics describes a photovoltaic (PV) technology that is based on the use of cadmium telluride, a thin semiconductor layer designed to absorb and convert sunlight into electricity.[1] Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.[1][2][3] On a lifecycle basis, CdTe PV has the smallest carbon footprint, lowest water use and shortest energy payback time of any current photo voltaic technology. PV array made of cadmium telluride (CdTe) solar [4][5][6] CdTe's energy payback time of less than a year panels allows for faster carbon reductions without short- term energy deficits. The toxicity of cadmium is an environmental concern mitigated by the recycling of CdTe modules at the end of their life time,[7] though there are still uncertainties[8][9] and the public opinion is skeptical towards this technology.[10][11] The usage of rare materials may also become a limiting factor to the industrial scalability of CdTe technology in the mid-term future. The abundance of tellurium—of which telluride is the anionic form— is comparable to that of platinum in the earth's crust and contributes significantly to the module's cost.[12] CdTe photovoltaics are used in some of the world's largest photovoltaic power stations, such as the Topaz Solar Farm. With a share of 5.1% of worldwide PV production, CdTe technology accounted for more than half of the thin film market in 2013.[13] A prominent manufacturer of CdTe thin film technology is the company First Solar, based in Tempe, Arizona.
    [Show full text]
  • Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market
    AGENCY/PHOTOGRAPHER ASSOCIATED PRESS ASSOCIATED Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin June 2013 WWW.AMERICANPROGRESS.ORG Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin May 2013 Contents 1 Introduction and summary 3 6 reasons to support concentrating solar power 5 Concentrating solar power is a proven zero-carbon technology with high growth potential 6 Concentrating solar power can be used for baseload power 7 Concentrating solar power has few impacts on natural resources 8 Concentrating solar power creates jobs Concentrating solar power is low-cost electricity 9 Concentrating solar power is carbon-free electricity on a budget 11 Market and regulatory challenges to innovation and deployment of CSP technology 13 Low-cost policy solutions to reduce risk, promote investment, and drive innovation 14 Existing policy framework 15 Policy reforms to reduce risk and the cost of capital 17 Establish an independent clean energy deployment bank 18 Implement CLEAN contracts or feed-in tariffs Reinstate the Department of Energy’s Loan Guarantee Program 19 Price carbon Policy reforms to streamline regulation and tax treatment 20 Tax reform for capital-intensive clean energy technologies Guarantee transmission-grid connection for solar projects 21 Stabilize and monetize existing tax incentives 22 Further streamline regulatory approval by creating an interagency one-stop shop for solar power 23 Regulatory transparency 24 Conclusion 26 About the authors 27 Endnotes Introduction and summary Concentrating solar power—also known as concentrated solar power, concen- trated solar thermal, and CSP—is a cost-effective way to produce electricity while reducing our dependence on foreign oil, improving domestic energy-price stabil- ity, reducing carbon emissions, cleaning our air, promoting economic growth, and creating jobs.
    [Show full text]
  • AS You Sow on Creating Greener Solar PV Panels
    AS You Sow on Creating Greener Solar PV Panels Andrew Burger. March 28, 2012 Advocating solar PV manufacturers adopt a set of industry best practices, a new survey and report highlights the environmental benefits of using solar photovoltaic (PV) energy as compared to fossil fuels, while at the same time criticizing ongoing, outsized government support for fossil fuel production. “Even though there are toxic compounds used in the manufacturing of many solar panels, the generation of electricity from solar energy is much safer to both the environment and workers than production of electricity from coal, natural gas, or nuclear,” stated Amy Galland, PhD and research director at non-profit group As You Sow. “For example, once a solar panel is installed, it generates electricity with no emissions of any kind for decades, whereas coal-fired power plants in the U.S. emitted nearly two billion tons of carbon dioxide and millions of tons of toxic compounds in 2010 alone.” Based on an international survey of more than 100 solar PV manufac- turers, the best practices in As You Sow’s report, “Clean & Green: Best Practices in Photovoltaics” aim to protect the employee and community health and safety, as well as the broader environment. Also analyzed are investor considerations regarding environmental, social and govern- ance for responsible management of solar PV manufacturing business- es. The best practices listed were determined in consultation with sci- entists, engineers, academics, government labs and industry consult- ants. Solar PV CSR survey and report card “We have been working with solar companies to study and minimize the environmental health and safety risks in the production of solar panels and the industry has embraced the opportunities,” Vasilis Fthenakis, PhD and director of the National PV Environmen- tal Health and Safety Research Center at Brookhaven National Laboratory and director of the Center for Life Cycle Analysis at Columbia University, explained.
    [Show full text]
  • Federal Incentives for Clean Energy After Solyndra: a Post-Recovery Act Precipice
    North Dakota Law Review Volume 87 Number 4 Article 7 1-1-2011 Federal Incentives for Clean Energy After Solyndra: A Post- Recovery Act Precipice John A. Herrick Cara S. Elias Follow this and additional works at: https://commons.und.edu/ndlr Part of the Law Commons Recommended Citation Herrick, John A. and Elias, Cara S. (2011) "Federal Incentives for Clean Energy After Solyndra: A Post- Recovery Act Precipice," North Dakota Law Review: Vol. 87 : No. 4 , Article 7. Available at: https://commons.und.edu/ndlr/vol87/iss4/7 This Article is brought to you for free and open access by the School of Law at UND Scholarly Commons. It has been accepted for inclusion in North Dakota Law Review by an authorized editor of UND Scholarly Commons. For more information, please contact [email protected]. HERRICK 10-15-10 MFE (DO NOT DELETE) 10/15/2012 10:13 AM FEDERAL INCENTIVES FOR CLEAN ENERGY AFTER SOLYNDRA: A POST–RECOVERY ACT PRECIPICE JOHN A. HERRICK* & CARA S. ELIAS** I. INTRODUCTION ....................................................................... 628 II. FEDERAL NON-TAX INCENTIVE PROGRAMS .................. 630 A. TYPES OF FEDERAL INCENTIVES FOR CLEAN ENERGY ........ 630 1. PURPA Renewable Power Purchase Requirements ...... 630 2. Federal Financial Assistance Programs for Clean Energy ............................................................................ 632 3. U.S. Department of Energy (DOE) Cooperative Agreements ..................................................................... 635 4. DOE Technology Investment Agreements ...................... 637 5. Federal Loan Guarantees .............................................. 638 6. Rights to Intellectual Property Under Federal Incentive Programs ........................................................................ 640 * John A. Herrick is Senior Counsel in the Denver office of Brownstein Hyatt Farber Schreck LLP where he specializes in the clean technology practice area.
    [Show full text]
  • The Water-Energy Nexus: Challenges and Opportunities Overview
    U.S. Department of Energy The Water-Energy Nexus: Challenges and Opportunities JUNE 2014 THIS PAGE INTENTIONALLY BLANK Table of Contents Foreword ................................................................................................................................................................... i Acknowledgements ............................................................................................................................................. iii Executive Summary.............................................................................................................................................. v Chapter 1. Introduction ...................................................................................................................................... 1 1.1 Background ................................................................................................................................................. 1 1.2 DOE’s Motivation and Role .................................................................................................................... 3 1.3 The DOE Approach ................................................................................................................................... 4 1.4 Opportunities ............................................................................................................................................. 4 References ..........................................................................................................................................................
    [Show full text]
  • Hawaii Clean Energy Initiative Hawaiian Electric Companies’ Energy Agreement One-Year Progress Update
    Hawaii Clean Energy Initiative Hawaiian Electric Companies’ Energy Agreement One-Year Progress Update n October 2008, the Hawaiian Electric Companies joined the Governor of Hawaii; the Hawaii Department of Busi ness, Economic Development and Tourism; and Office of Consumer Advocacy in an energy agreement Ias part of the Hawaii Clean Energy Initiative. The agreement – the most aggressive such effort in the nation – aims to move Hawaii decisively away from imported oil for electricity and ground transportation toward diverse, local renewable energy and energy efficiency. Our goal is energy and economic security for Hawaii and reduced greenhouse gas emissions responsible for the climate change to which our islands are especially vulnerable. Making the needed investments now can provide more stable energy costs in the long-run. It will require unprecedented cooperation and commitment among individuals, businesses, institutions and government. We need unity of purpose through good and bad times, success and setbacks, no matter whether oil prices go up and down. This list summarizes some key actions by the Hawaiian Electric Companies in cooperation with others after only one year. Increased Renewable Portfolio Standards (Act 155 - 2009) Hawaiian Electric Companies supported placing into law an increased renewable energy requirement of 40 percent of electric sales by 2030 and a new Energy Efficiency Portfolio Standard. New HCEI proposals submitted to the Hawaii Public Utilities Commission (PUC) • Feed-In Tariff (FIT): Creates standard rates to ease the process for private developers to add renewable energy to Hawaiian Electric Companies’ grids. After detailed hearings to obtain input from a broad range of stakeholders, the PUC issued basic principles for such tariffs.
    [Show full text]
  • The Status of CSP Development
    The Status of CSP Development DISH STIRLING POWER TOWER CLFR Tom Mancini CSP Program Manager Sandia National Laboratories PARABOLIC TROUGH 505.844.8643 DISH STIRLING [email protected] [email protected] 1 Presentation Content • Brief Overview of Sandia National Laboratories • Background information • Examples of CSP Technologies − Parabolic Trough Systems − Power Tower Systems − Thermal Energy Storage − Dish Stirling Systems • Status of CSP Technologies • Cost of CSP and Resource Availability • Deployments • R & D Directions [email protected] 2 Four Mission Areas Sandia’s missions meet national needs in four key areas: • Nuclear Weapons • Defense Systems and Assessments • Energy, Climate and Infrastructure Security • International, Homeland, and Nuclear Security [email protected] 3 Research Drives Capabilities High Performance Nanotechnologies Extreme Computing & Microsystems Environments Computer Materials Engineering Micro Bioscience Pulsed Power Science Sciences Electronics Research Disciplines 4 People and Budget . On-site workforce: 11,677 FY10 operating revenue . Regular employees: 8,607 $2.3 billion 13% . Over 1,500 PhDs and 2,500 MS/MA 13% 43% 31% Technical staff (4,277) by discipline: (Operating Budget) Nuclear Weapons Defense Systems & Assessments Energy, Climate, & Infrastructure Security International, Homeland, and Nuclear Security Computing 16% Math 2% Chemistry 6% Physics 6% Other science 6% Other fields 12% Electrical engineering 21% Mechanical engineering 16% Other engineering 15% 5 Sandia’s NSTTF Dish Engine Engine Test Rotating Testing Facility Platform Established in 1976, we provide ………. • CSP R&D NSTTF • Systems analysis and FMEA • System and Tower Testing Solar Furnace component testing and support NATIONAL SOLAR THERMAL TEST FACILITY [email protected] 6 Labs Support the DOE Program The CSP Programs at Sandia and the National Renewable Energy Laboratory (NREL) support the DOE Solar Energy Technology Program.
    [Show full text]
  • The Solyndra Failurex
    The Solyndra Failurex Majority Staff Report Prepared for the Use of the Committee on Energy and Commerce Fred Upton, Chairman U.S. House of Representatives 112th Congress August 2, 2012 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................... ii TABLE OF NAMES .......................................................................................................... v I. INTRODUCTION .................................................................................................. 1 II. HISTORY OF THE COMMITTEE’S INVESTIGATION .................................... 5 III. DOE’S REVIEW OF THE SOLYNDRA LOAN APPLICATION AND CONDITIONAL COMMITMENT ........................................................................ 9 A. The Energy Policy Act of 2005 and The Establishment of the Loan Guarantee Program at DOE .............................................................................................................................. 9 B. Solyndra’s Application ................................................................................................... 10 C. Solyndra Loan Application Begins Due Diligence and Is Remanded by the First DOE Credit Committee (2008 and 2009) ................................................................................ 12 D. The Stimulus and Other Changes to the DOE Loan Guarantee Program Under the Obama Administration ................................................................................................... 16 E. Review
    [Show full text]
  • Lsoar Value Chain Value Chain
    Solar Private companies in black Public companies in blue Followed by the founding date of companies less than 15 years old value chain (1 of 2) This value chain publication contains information gathered and summarized mainly from Lux Research and a variety of other public sources that we believe to be accurate at the time of ppggyublication. The information is for general guidance only and not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization nor Lux Research can accept responsibility for loss to any person relying on this publication. Materials and equipment Components and products Balance of system and installations Crystalline silicon photovoltaic GCL Silicon, China (2006); LDK Solar, China (2005); MEMC, US; Renewable Energy Corporation ASA, Norway; SolarWorld AG, Germany (1998) Bosch Solar Energy, Germany (2000); Canadian Solar, Canada/China (2001); Jinko Solar, China (2006); Kyocera, Japan; Sanyo, Japan; SCHOTT Solar, Germany (2002); Solarfun, China (2004); Tianwei New Energy Holdings Co., China; Trina Solar, China (1997); Yingli Green Energy, China (1998); BP Solar, US; Conergy, Germany (1998); Eging Photovoltaic, China SOLON, Germany (1997) Daqo Group, China; M. Setek, Japan; ReneSola, China (2003); Wacker, Germany Hyundai Heavy Industries,,; Korea; Isofoton,,p Spain ; JA Solar, China (();2005); LG Solar Power,,; Korea; Mitsubishi Electric, Japan; Moser Baer Photo Voltaic, India (2005); Motech, Taiwan; Samsung
    [Show full text]
  • Bankrupt Companies
    The List of Fallen Solar Companies: 2015 to 2009: S.No Year/Status Company Name and Details 118 2015 Enecsys (microinverters) bankrupt -- Enecsys raised more than $55 million in VC from investors including Wellington Partners, NES Partners, Good Energies and Climate Change Capital Private Equity for its microinverter technology. 117 2015 QBotix (trackers) closed -- QBotix had a two-axis solar tracker system where the motors, instead of being installed two per tracker, were moved around by a rail-mounted robot that adjusted each tracker every 40 minutes. But while QBotix was trying to gain traction, single-axis solar trackers were also evolving and driving down cost. QBotix raised more than $19.5 million from Firelake, NEA, DFJ JAIC, Siemens Ventures, E.ON and Iberdrola. 116 2015 Solar-Fabrik (c-Si) bankrupt -- German module builder 115 2015 Soitec (CPV) closed -- France's Soitec, one of the last companies with a hope of commercializing concentrating photovoltaic technology, abandoned its solar business. Soitec had approximately 75 megawatts' worth of CPV projects in the ground. 114 2015 TSMC (CIGS) closed -- TSMC Solar ceased manufacturing operations, as "TSMC believes that its solar business is no longer economically sustainable." Last year, TSMC Solar posted a champion module efficiency of 15.7 percent with its Stion- licensed technology. 113 2015 Abengoa -- Seeking bankruptcy protection 112 2014 Bankrupt, Areva's solar business (CSP) closed -- Suffering through a closed Fukushima-inspired slowdown in reactor sales, Ausra 111 2014 Bankrupt,
    [Show full text]