TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRENDS in PHOTOVOLTAIC APPLICATIONS Survey Report of Selected IEA Countries Between 1992 and 2011
TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Report IEA-PVPS T1-21:2012 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2011 Contents Introduction 2 1 Implementation of PV systems 3 2 The PV industry 24 3 Policy, regulatory and business framework for deployment 32 4 Summary of trends 39 PV technology note 44 Foreword This year’s 17th edition of the IEA PVPS international survey report on Trends in Photovoltaic (PV) Applications falls together with almost 20 years of global cooperation within the IEA PVPS The International Energy Agency (IEA), founded in 1974, Programme. The history of PV market deployment over this is an autonomous body within the framework of the decisive period for PV from its very first market developments to Organization for Economic Cooperation and the present large scale deployment, meanwhile accounting for Development (OECD). The IEA carries out a important shares of the newly installed capacity for electricity comprehensive programme of energy cooperation production, can uniquely be followed year by year in the series among its 28 member countries and with the of IEA PVPS trends reports. 2011 has been yet another year of unprecedented further market growth, continued massive participation of the European Commission. cost reduction and ongoing signs of industry and market consolidation. In total, about 28 GW of PV capacity were The IEA Photovoltaic Power Systems Programme installed in the IEA PVPS countries during 2011 (2010: 14,2 GW), (IEA PVPS) is one of the collaborative research and thus again doubling the installed capacity of the year before; this development agreements within the IEA and was raised the total installed capacity in IEA PVPS countries close to established in 1993. -
3.17 Indirect and Cumulative Effects
FHWA-AZ-EIS-19-01-D Draft Tier 1 Environmental Impact Statement and Preliminary Section 4(f) Evaluation Section 3.17, Indirect and Cumulative Effects March 2019 Federal Aid No. 999-M(161)S ADOT Project No. 999 SW 0 M5180 01P This page intentionally left blank I-11 Corridor Draft Tier 1 EIS Section 3.17. Indirect and Cumulative Effects 1 3.17 Indirect and Cumulative Effects 2 This section identifies potential indirect and cumulative effects that would result from the 3 implementation of the Build Corridor Alternatives. 4 3.17.1 Regulatory Guidance 5 The Council on Environmental Quality (CEQ) states that indirect effects “are caused by the 6 action and are later in time or farther removed in distance, but are still reasonably foreseeable. 7 Indirect effects may include growth-inducing effects and other effects related to induced 8 changes in the pattern of land use, population density or growth rate, and related effects on air 9 and water and other natural systems, including ecosystems” (Code of Federal Regulations 10 Title 40, Sec. 1508.8[b]). Indirect effects are commonly categorized as effects that would not 11 occur “but for” the implementation of a project. Indirect effects also can be considered “ripple 12 effects” (Transportation Research Board 2002). 13 The CEQ states that cumulative effects result from the “incremental impact of an action when 14 added to other past, present, and reasonably foreseeable future actions regardless of which 15 agency (federal or non-federal) or person undertakes such actions. Cumulative effects can 16 result from individually minor, but collectively significant actions taking place over a period of 17 time” (Code of Federal Regulations title 40, sec. -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
Shining Cities 2018
Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Shining Cities 2018 How Smart Local Policies Are Expanding Solar Power in America Written by: Abi Bradford, Frontier Group Bret Fanshaw, Environment America Research & Policy Center April 2018 Acknowledgments Environment America Research & Policy Center sincerely thanks Nathan Phelps with Vote Solar, Zachary Greene with The Solar Foundation, and Nicholas Kasza with National League of Cities, for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone who went out of their way to provide us with data for this report. Thanks to Gideon Weissman, Judee Burr, Jordan Schneider, Lindsey Hallock and Kim Norman for laying the groundwork by authoring previous editions of this report. Thanks also to Tony Dutzik and Elizabeth Berg of Frontier Group for editorial support and to ESRI for their grant of ArcGIS software that we used for the data analysis in this report. Environment America Research & Policy Center thanks Arntz Family Foundation, Barr Foundation, Bullitt Foundation, Energy Foundation, Footprint Foundation, The Fund for New Jersey, John Merck Fund, McCune Charitable Foundation, Park Foundation, Scherman Foundation, The Cricket Foundation, The Cynthia & George Mitchell Foundation, Turner Foundation, and Wardlaw Charitable Trust for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment America Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2018 Environment America Research & Policy Center. Some Rights Reserved. -
BC-TES-TMP-2443.Pdf (5.514Mb)
UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS Para Optar el Título Profesional de INGENIERO MECÁNICO ELECTRICISTA “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA AL CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” Presentado Por: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ Asesor: Msc. Ing. JONY VILLALOBOS CABRERA LAMBAYEQUE – PERÚ Enero del 2019 UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS Para Optar el Título Profesional de INGENIERO MECÁNICO ELECTRICISTA “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA ALELECTRICISTA CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” Presentado Por: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ Aprobado por el Jurado Examinador PRESIDENTE: Dr. DANIEL CARRANZA MONTENEGRO. SECRETARIO: ING. CARLOS JAVIER COTRINA SAAVEDRA. MIEMBRO: ING. TEOBALDO EDGAR JULCA OROZCO. ASESOR: M.Sc. JONY VILLALOBOS CABRERA. LAMBAYEQUE – PERÚ Enero del 2019 UNIVERSIDAD NACIONAL “PEDRO RUIZ GALLO” Facultad de Ingeniería Mecánica y Eléctrica TESIS TITULO “UTILIZACIÓN DE LA ENERGÍA EÓLICA Y SOLAR COMO FUENTE PARA EL SUMINISTRO DE ENERGÍA ELÉCTRICA AL CASERÍO ALTO PONGOYA EN CHIMBAN PROVINCIA DE CHOTA DEPARTAMENTO DE CAJAMARCA” CONTENIDOS CAPITULO I: PROBLEMA DE LA INVESTIGACIÓN. CAPITULO II: MARCO TEÓRICO. CAPITULO III: MARCO METODOLÓGICO. CAPITULO IV: PROPUESTA DE LA INVESTIGACIÓN. CAPITULO V: ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS. CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES. AUTOR: Bach. KEVIN ARNOLD TARRILLO VÁSQUEZ --------------------------------- --------------------------------------- PRESIDENTE SECRETARIO ---------------------------------- ------------------------------------- MIEMBRO ASESOR LAMBAYEQUE – PERÚ Enero del 2019 DEDICATORIA Dedico éste Proyecto de Tesis a: Dios ya que gracias a Él he llegado a concluir una de mis metas la cual es concluir con mi carrera. -
Andres Meesak Päikeseelekter TE2018.Pdf
Päikeseenergeetika Eestis aprill 2018 Andres Meesak Eesti Päikeseelektri Assotsiatsioon Motivaatorid taastuvenergia lahenduste kasutuselevõtuks • Regulatiivsed – ma pean – (hoonete energiatõhususe nõuded, nõue piirata KHG emissiooni, ...) • Majanduslikud – see on mulle kasulik – (sääst igakuistelt energiakuludelt) • Maailmavaatelised – ma tahan säästa keskkonda Juba aastaid näitavad Eurobaromeetri uuringud (2008., 2009., 2011. ja 2014. aasta küsitlusvoorud), et eestlased on eurooplaste seas üks kliimamuutusi kõige vähem tähtsustavaid rahvaid. Justkui elaksime siin Euroopa perifeerias metsade varjus vanajumala selja taga puutumatuna globaalselt üha kriitilisemaks muutuvast magevee probleemist, põudadest, sagenevatest kuumalainetest ja üleujutustest. Kati Orru, Tartu Ülikooli keskkonnasotsioloog EPL 10.12.2015 Euroopa Liidu Hoonete energiatõhususe direktiiv (2010/31/EL): 01.01.2019 kõik riigi poolt kasutatavad uusehitised 01.01.2021 KÕIK uusehitised KAS LIGINULL VÕI NULLENERGIA HOONED Alates 2021 lisandub aastas ~ 25MW tootmisvõimsust uusehitiste näol, mis toodavad aastas ~ 20-25 GWh elektrit Euroopa Liidu Hoonete energiatõhususe direktiiv (2010/31/EL): Päikeseenergeetika Eestis 2018 Päikeseenergeetika Eestis 2017 - Installeeritud koguvõimsus ca. 19MW - Installeeritud 2017 ca. 7MW +50% +27% +45% +51% +59% +60% - Kokku tootjaid ca. 1100 - Suurimad jaamad 1MW (Kärdla, Kareda) - Valdavalt kuni 15kW erapaigaldised - Fortum Eesti kavandab Tartusse Raadile 50MW võimsusega jaama Aasta keskmine juurdekasv 48% ETEK Taastuvenergia aastaraamat 2017 -
RE-Powering America's Land Initiative: Project Tracking Matrix April 2016
RE-Powering America’s Land Initiative: April 2016 Project Tracking Matrix The U.S. Environmental Protection Agency (EPA) recognizes the overall environmental RE-Powering America’s benefit of siting renewable energy projects on contaminated properties. Through Land Initiative the RE-Powering America’s Land Initiative, EPA is encouraging renewable energy development on current and formerly contaminated lands, landfills, and mine sites To provide information on renewable energy on when such development is aligned with the community’s vision for the site. contaminated land projects not currently appearing Using publically available information, RE-Powering maintains a list of completed in this document, email [email protected]. renewable energy installations on contaminated sites and landfills. To date, the To receive updates, newsletters, and other RE-Powering Initiative has identified 179 renewable energy installations on 171 information about the RE-Powering program, contaminated lands, landfills, and mine sites1, with a cumulative installed capacity of click the banner below. just over 1,124 megawatts (MW) and consistent growth in total installations since the inception of the RE-Powering Initiative. Approximately 60% of these installations are Subscribe large-scale systems with a project capacity of 1 MW or more, either exporting energy EPA’s RE-Powering Listserv onto the utility grid or offsetting onsite energy demands. This document provides summary statistics of known installations and discusses emerging trends. In addition to the completed sites listed here, EPA is tracking more than 50 renewable energy projects on contaminated or disturbed properties in various stages of planning, approval, or construction. These include a 1.1-MW solar project under construction on a Meriden, CT landfill; a 2.25-MW solar project under construction on a coal ash landfill in Beloit, WI; and an 18.6-MW solar installation underway at the U.S. -
U.S. PV Market IEA PVPS Programme Workshop Wednesday, September
Tom Kimbis, Vice President, Strategy & External Affairs, SEIA Justin Baca, Senior Research Manager, SEIA Andrew Krulewitz, Solar Analyst, GTM Research March 29, 2012 © 2012 SEIA © 2012 SEIA About SEIA • Founded in 1974 • U.S. National Trade Association for Solar Energy • 1,000+ member companies from around the world • Members from across 50 states • Largest companies in the world as well as small installers • 14 official SEIA Chapters across the country • Our Mission: Build a strong solar industry to power America • Our Goal: 10 gigawatts (GW) of annual installed solar capacity in the U.S. by 2015 © 2012 SEIA Solar in America: Strong and Getting Stronger • 100,000 American workers in solar – double the number in 2009. • Employed at 5,600 companies – most of them small businesses – across all fifty states. • The fastest growing energy sector, and one of the fastest growing sectors of the U.S. economy – with 109% growth in PV installations in 2011. • More than 4,460 MW of installed solar electric capacity today across the U.S. © 2012 SEIA What the Future Holds– Looking Ahead • In 2012, we’ll see near-term challenges for the industry, especially for manufacturers • Since the beginning of 2010, 52 new U.S. solar manufacturing facilities have begun operations across America • By 2014-15, the U.S. is projected to become one of the world’s largest solar market alongside surging Chinese market. © 2012 SEIA Solar Market Insight: Year in Review 2011 • Detailed data on markets in top 23 states available in full report. • Free executive summary provides national aggregate data on installations, pricing, manufacturing and demand forecasts. -
Photovoltaics Outlook for Minnesota
Photovoltaics Outlook for Minnesota Saving dollars, not polar bears Steve Campbell [email protected] University of Minnesota Department of Electrical and Computer Engineering Outline • Why solar? • Solar technologies and how they work • Utility versus distributed generation • On the horizon Types of Solar Power Photovoltaics Concentrated Solar Power The Lede We are rapidly approaching an era when the choice to install solar energy will be primarily driven by cost, even without subsidies. One can expect to see significant distributed and utility-scale deployment over the next decade. Large-scale energy storage is an unsolved problem. There’s Power and There’s Power • A solar installation is rated in the power it would produce in watts at a standard level of illumination: AM1.5. • To compare different technologies, one uses the levelized cost of energy (LCOE) must take into account many factors – Availability – Operating costs – Depreciation Cost of Electricity in the US • Grid Parity depends of location – Hawaii – West Texas – Parts of CA depending on usage Trends for PV Modules • Price drops as efficiency and manufacturing improve • They will be free in three more years 04/03/13 Solar Cell Module Spot prices High ($/Wp) Low($/Wp) Si Module 0.99 0.55 Thin Film Module 0.94 0.52 Jelle et al. Solar Energy Mater. Sol. Cells 100, 69-96 (2012). The Result of Falling Costs PV production doubles every ~ 2.5 years At the current rate, we will have 1 TW of capacity in 10 years and ~4 TW in 20 years. The later would be about 15% of the total energy supply. -
Shining Cities 2020
Shining Cities 2020 The Top U.S. Cities for Solar Energy Shining Cities 2020 The Top U.S. Cities for Solar Energy Written by: Adrian Pforzheimer and Elizabeth Ridlington, Frontier Group Ben Sonnega and Emma Searson, Environment America Research & Policy Center May 2020 Acknowledgments Environment Texas Research & Policy Center sincerely thanks Spencer Fields, Toyah Barigye, Nathan Phelps and Nicholas Kasza for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone working for cities, counties, states, utilities and nonprofits who went out of their way to provide us with data for this report. Thanks to Abi Bradford, formerly of Frontier Group, for her support in launching this year’s report, and to Frontier Group intern Hannah Scholl for her tireless assistance with the research for the project. Thanks also to Tony Dutzik, Susan Rakov, Gideon Weissman, R.J. Cross, and Linus Lu of Frontier Group for editorial support. Environment Texas Research & Policy Center thanks our funders for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment Texas Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2020 Environment Texas Research & Policy Center. This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives 3.0 Unported License. To view the terms of this license, visit creativecommons.org/licenses/by-nc-nd/3.0. Environment Texas Research & Policy Center is a 501(c)(3) organization. -
Shining Cities 2016
Shining Cities 2016 How Smart Local Policies Are Expanding Solar Power in America Shining Cities 2016 How Smart Local Policies Are Expanding Solar Power in America Written by: Kim Norman, Frontier Group Rob Sargent and Bret Fanshaw, Environment America Research & Policy Center April 2016 Acknowledgments Environment California Research & Policy Center sincerely thanks Kevin Steinberger, Natural Resources Defense Council, and Annie Lappé, Vote Solar, for their review of drafts of this document, as well as their insights and suggestions. Thanks to everyone who went out of their way to provide us with data for this report. Thanks also to Tony Dutzik and Gideon Weissman of Frontier Group for editorial support and to ESRI for their grant of ArcGIS software that we used for our data analysis in this report. Environment California Research & Policy Center thanks the Tilia Fund, the Barr Foundation, the John Merck Fund, Fred & Alice Stanback, the Scherman Foundation, the Arntz Family Foundation, Kendeda Founda- tion, Fund for New Jersey and Gertrude and William C. Wardlaw for making this report possible. The authors bear responsibility for any factual errors. The recommendations are those of Environment California Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2016 Environment California Research & Policy Center. Some Rights Reserved. This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives 3.0 Unported License. To view the terms of this license, visit creativecommons.org/licenses/by-nc-nd/3.0. Environment California Research & Policy Center is a 501(c)(3) organization. -
Market Impact Analysis Psc Ref#:409444
PSC REF#:409444 Public Service Commission of Wisconsin RECEIVED: 04/15/2021 2:05:23 PM MARKET IMPACT ANALYSIS KOSHKONONG SOLAR ENERGY CENTER DANE COUNTY, WISCONSIN April 13, 2021 Koshkonong Solar Energy Center LLC c/o Invenergy LLC One South Wacker Drive – Suite 1800 Chicago, Illinois 60606 Attention: Aidan O’Connor, Associate - Renewable Development Subject: Market Impact Analysis Koshkonong Solar Energy Center Dane County, Wisconsin Dear Mr. O’Connor, In accordance with your request, the proposed development of the Koshkonong Solar Energy Center in Dane County, Wisconsin, has been analyzed and this market impact analysis has been prepared. MaRous & Company has conducted similar market impact studies for a variety of clients and for a number of different proposed developments over the last 39 years. Clients have ranged from municipalities, counties, and school districts, to corporations, developers, and citizen’s groups. The types of proposals analyzed include commercial developments such as shopping centers and big-box retail facilities; religious facilities such as mosques and mega-churches; residential developments such as high- density multifamily and congregate-care buildings and large single-family subdivisions; recreational uses such as skate parks and lighted high school athletic fields; and industrial uses such as waste transfer stations, landfills, and quarries. We also have analyzed the impact of transmission lines on adjacent residential uses and a number of proposed natural gas-fired electric plants in various locations. MaRous & Company has conducted numerous market studies of energy-related projects. The solar- related projects include the following by state: ⁘ Wisconsin - Badger Hollow Solar Farm in Iowa County, Paris Solar Energy Center in Kenosha County, Darien Solar Energy Center in Rock County and Walworth County, and Grant County Solar in Grant County.