Solar Energy Technologies Program Deep Dive Presentation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program Hilary Kao
William & Mary Environmental Law and Policy Review Volume 37 | Issue 2 Article 4 Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program Hilary Kao Repository Citation Hilary Kao, Beyond Solyndra: Examining the Department of Energy's Loan Guarantee Program, 37 Wm. & Mary Envtl. L. & Pol'y Rev. 425 (2013), http://scholarship.law.wm.edu/wmelpr/vol37/iss2/4 Copyright c 2013 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository. http://scholarship.law.wm.edu/wmelpr BEYOND SOLYNDRA: EXAMINING THE DEPARTMENT OF ENERGY’S LOAN GUARANTEE PROGRAM HILARY KAO* ABSTRACT In the year following the Fukushima nuclear disaster in March 2011, the renewable and clean energy industries faced significant turmoil— from natural disasters, to political maelstroms, from the Great Recession, to U.S. debt ceiling debates. The Department of Energy’s Loan Guarantee Program (“DOE LGP”), often a target since before it ever received a dollar of appropriations, has been both blamed and defended in the wake of the bankruptcy filing of Solyndra, a California-based solar panel manufac- turer, in September 2011, because of the $535 million loan guarantee made to it by the Department of Energy (“DOE”) in 2009.1 Critics have suggested political favoritism in loan guarantee awards and have questioned the government’s proper role in supporting renewable energy companies and the renewable energy industry generally.2 This Article looks beyond the Solyndra controversy to examine the origin, structure and purpose of the DOE LGP. It asserts that loan guaran- tees can serve as viable policy tools, but require careful crafting to have the potential to be effective programs. -
Cadmium Telluride Photovoltaics - Wikipedia 1 of 13
Cadmium telluride photovoltaics - Wikipedia 1 of 13 Cadmium telluride photovoltaics Cadmium telluride (CdTe) photovoltaics describes a photovoltaic (PV) technology that is based on the use of cadmium telluride, a thin semiconductor layer designed to absorb and convert sunlight into electricity.[1] Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.[1][2][3] On a lifecycle basis, CdTe PV has the smallest carbon footprint, lowest water use and shortest energy payback time of any current photo voltaic technology. PV array made of cadmium telluride (CdTe) solar [4][5][6] CdTe's energy payback time of less than a year panels allows for faster carbon reductions without short- term energy deficits. The toxicity of cadmium is an environmental concern mitigated by the recycling of CdTe modules at the end of their life time,[7] though there are still uncertainties[8][9] and the public opinion is skeptical towards this technology.[10][11] The usage of rare materials may also become a limiting factor to the industrial scalability of CdTe technology in the mid-term future. The abundance of tellurium—of which telluride is the anionic form— is comparable to that of platinum in the earth's crust and contributes significantly to the module's cost.[12] CdTe photovoltaics are used in some of the world's largest photovoltaic power stations, such as the Topaz Solar Farm. With a share of 5.1% of worldwide PV production, CdTe technology accounted for more than half of the thin film market in 2013.[13] A prominent manufacturer of CdTe thin film technology is the company First Solar, based in Tempe, Arizona. -
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets. -
AS You Sow on Creating Greener Solar PV Panels
AS You Sow on Creating Greener Solar PV Panels Andrew Burger. March 28, 2012 Advocating solar PV manufacturers adopt a set of industry best practices, a new survey and report highlights the environmental benefits of using solar photovoltaic (PV) energy as compared to fossil fuels, while at the same time criticizing ongoing, outsized government support for fossil fuel production. “Even though there are toxic compounds used in the manufacturing of many solar panels, the generation of electricity from solar energy is much safer to both the environment and workers than production of electricity from coal, natural gas, or nuclear,” stated Amy Galland, PhD and research director at non-profit group As You Sow. “For example, once a solar panel is installed, it generates electricity with no emissions of any kind for decades, whereas coal-fired power plants in the U.S. emitted nearly two billion tons of carbon dioxide and millions of tons of toxic compounds in 2010 alone.” Based on an international survey of more than 100 solar PV manufac- turers, the best practices in As You Sow’s report, “Clean & Green: Best Practices in Photovoltaics” aim to protect the employee and community health and safety, as well as the broader environment. Also analyzed are investor considerations regarding environmental, social and govern- ance for responsible management of solar PV manufacturing business- es. The best practices listed were determined in consultation with sci- entists, engineers, academics, government labs and industry consult- ants. Solar PV CSR survey and report card “We have been working with solar companies to study and minimize the environmental health and safety risks in the production of solar panels and the industry has embraced the opportunities,” Vasilis Fthenakis, PhD and director of the National PV Environmen- tal Health and Safety Research Center at Brookhaven National Laboratory and director of the Center for Life Cycle Analysis at Columbia University, explained. -
Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ........................................................................... -
Laying the Foundation for a Bright Future: Assessing Progress
Laying the Foundation for a Bright Future Assessing Progress Under Phase 1 of India’s National Solar Mission Interim Report: April 2012 Prepared by Council on Energy, Environment and Water Natural Resources Defense Council Supported in part by: ABOUT THIS REPORT About Council on Energy, Environment and Water The Council on Energy, Environment and Water (CEEW) is an independent nonprofit policy research institution that works to promote dialogue and common understanding on energy, environment, and water issues in India and elsewhere through high-quality research, partnerships with public and private institutions and engagement with and outreach to the wider public. (http://ceew.in). About Natural Resources Defense Council The Natural Resources Defense Council (NRDC) is an international nonprofit environmental organization with more than 1.3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City; Washington, D.C.; Los Angeles; San Francisco; Chicago; Livingston and Beijing. (www.nrdc.org). Authors and Investigators CEEW team: Arunabha Ghosh, Rajeev Palakshappa, Sanyukta Raje, Ankita Lamboria NRDC team: Anjali Jaiswal, Vignesh Gowrishankar, Meredith Connolly, Bhaskar Deol, Sameer Kwatra, Amrita Batra, Neha Mathew Neither CEEW nor NRDC has commercial interests in India’s National Solar Mission, nor has either organization received any funding from any commercial or governmental institution for this project. Acknowledgments The authors of this report thank government officials from India’s Ministry of New and Renewable Energy (MNRE), NTPC Vidyut Vyapar Nigam (NVVN), and other Government of India agencies, as well as United States government officials. -
Design and Experiment of a Sun-Powered Smart Building Envelope with Automatic Control
Energy & Buildings 223 (2020) 110173 Contents lists available at ScienceDirect Energy & Buildings journal homepage: www.elsevier.com/locate/enb Design and experiment of a sun-powered smart building envelope with automatic control Qiliang Lin a, Yanchu Zhang a, Arnaud Van Mieghem b, Yi-Chung Chen c, Nanfang Yu d, Yuan Yang d, ⇑ Huiming Yin a, a Department of Civil Engineering and Engineering Mechanics, Columbia University, United States b Department of Electrical Engineering ESAT, Katholieke Universiteit Leuven, Belgium c Department of Electrical and Computer Engineering, Tennessee State University, United States d Department of Applied Physics and Applied Mathematics, Columbia University, United States article info abstract Article history: A novel sun-powered smart window blind (SPSWB) system has been designed and developed for the Received 26 February 2020 smart control of building envelopes to achieve the optimal internal comfort with minimum energy Revised 15 May 2020 expenditure. Its self-powered sensing, controlling, and actuation significantly simplify the installation Accepted 21 May 2020 and maintenance of the system. The energy is harvested by the attached thin-film photovoltaic cells, after Available online 29 May 2020 which it is voltage-regulated for the permanent storage into a rechargeable battery with 55% energy effi- ciency. The excessive heat absorbed by the solar cells is dissipated by a PVdF-HFP porous coating with Keywords: more than 9% temperature reduction. The smart control of the energy harvesting and the cooling is Smart building envelope achieved based on the blinds’ surface temperature by an Arduino-based sensing, controlling, and actuat- Window blinds Energy harvesting ing system, whose energy consumption is closely monitored. -
Lsoar Value Chain Value Chain
Solar Private companies in black Public companies in blue Followed by the founding date of companies less than 15 years old value chain (1 of 2) This value chain publication contains information gathered and summarized mainly from Lux Research and a variety of other public sources that we believe to be accurate at the time of ppggyublication. The information is for general guidance only and not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization nor Lux Research can accept responsibility for loss to any person relying on this publication. Materials and equipment Components and products Balance of system and installations Crystalline silicon photovoltaic GCL Silicon, China (2006); LDK Solar, China (2005); MEMC, US; Renewable Energy Corporation ASA, Norway; SolarWorld AG, Germany (1998) Bosch Solar Energy, Germany (2000); Canadian Solar, Canada/China (2001); Jinko Solar, China (2006); Kyocera, Japan; Sanyo, Japan; SCHOTT Solar, Germany (2002); Solarfun, China (2004); Tianwei New Energy Holdings Co., China; Trina Solar, China (1997); Yingli Green Energy, China (1998); BP Solar, US; Conergy, Germany (1998); Eging Photovoltaic, China SOLON, Germany (1997) Daqo Group, China; M. Setek, Japan; ReneSola, China (2003); Wacker, Germany Hyundai Heavy Industries,,; Korea; Isofoton,,p Spain ; JA Solar, China (();2005); LG Solar Power,,; Korea; Mitsubishi Electric, Japan; Moser Baer Photo Voltaic, India (2005); Motech, Taiwan; Samsung -
Bankrupt Companies
The List of Fallen Solar Companies: 2015 to 2009: S.No Year/Status Company Name and Details 118 2015 Enecsys (microinverters) bankrupt -- Enecsys raised more than $55 million in VC from investors including Wellington Partners, NES Partners, Good Energies and Climate Change Capital Private Equity for its microinverter technology. 117 2015 QBotix (trackers) closed -- QBotix had a two-axis solar tracker system where the motors, instead of being installed two per tracker, were moved around by a rail-mounted robot that adjusted each tracker every 40 minutes. But while QBotix was trying to gain traction, single-axis solar trackers were also evolving and driving down cost. QBotix raised more than $19.5 million from Firelake, NEA, DFJ JAIC, Siemens Ventures, E.ON and Iberdrola. 116 2015 Solar-Fabrik (c-Si) bankrupt -- German module builder 115 2015 Soitec (CPV) closed -- France's Soitec, one of the last companies with a hope of commercializing concentrating photovoltaic technology, abandoned its solar business. Soitec had approximately 75 megawatts' worth of CPV projects in the ground. 114 2015 TSMC (CIGS) closed -- TSMC Solar ceased manufacturing operations, as "TSMC believes that its solar business is no longer economically sustainable." Last year, TSMC Solar posted a champion module efficiency of 15.7 percent with its Stion- licensed technology. 113 2015 Abengoa -- Seeking bankruptcy protection 112 2014 Bankrupt, Areva's solar business (CSP) closed -- Suffering through a closed Fukushima-inspired slowdown in reactor sales, Ausra 111 2014 Bankrupt, -
Ab307 Application Summary Proposed Project Applicant App
AB307 APPLICATION SUMMARY PROPOSED PROJECT APPLICANT APP. RCVD. TYPE COUNTY SIZE Bordertown to California 120kV NV Energy 6/27/2012 Powerline Washoe 120 kV North Elko Pipeline Prospector Pipeline Comp. 7/11/2012 Nat Gas Pipeline Elko, Eureka Wild Rose ORNI 47 7/17/2012 Geothermal Mineral 30 MW New York Canyon New York Canyon LLC 8/14/2012 Geothermal Persh., Church. 70 MW Mountain View Solar Energy Mountain View Solar LLC 9/24/2012 Solar Clark 20 MW Mahacek to Mt. Hope 230kV Eureka Moly LLC 10/23/2012 Powerline Eureka 230 kV Moapa Solar Energy Center Moapa Solar LLC 11/5/2012 Powerline Clark 230 kV, 500 kV Pahrump Valley Solar Project Abengoa Solar Inc. 11/14/2012 Solar Clark, Nye 225 MW Copper Rays Solar Farm Element Power Solar Dev. LLC 11/26/2012 Solar Nye 180 MW Boulder City Solar Project Techren Solar 1/2/2013 Solar Clark 300 MW Townsite Solar Project KOWEPO America LLC/Skylar Res. LP 1/15/2013 Solar Clark 180 MW Copper Mountain Solar 3 CMS-3 LLC (Sempra Energy) 1/16/2013 Solar Clark 250 MW Crescent Peak Wind Crescent Peak Renewables LLC 1/23/2013 Wind Clark 500 MW Silver State Solar South Silver State Solar Power South LLC 1/23/2013 Solar Clark 350 MW Toquop Power Project Toquop Power Holdings LLC 1/23/2013 Fossil Fuel Lincoln 1,100 MW Hidden Hills 230kV Transmission Valley Electric Transmission Assoc. LLC 1/28/2013 Powerline Nye, Clark 230 kV Boulder Solar Project Boulder Solar Power LLC 1/25/2013 Solar Clark 350 MW ARES Regulation Energy Mgmt. -
Calculations for a Grid-Connected Solar Energy System Dr
az1782 June 2019 Calculations for a Grid-Connected Solar Energy System Dr. Ed Franklin Introduction Power & Energy Whether you live on a farm or ranch, in an urban area, or A review of electrical terminology is useful when discussing somewhere in between, it is likely you and your family rely solar PV systems. There are two types of electrical current. on electricity. Most of us receive our electrical power from a In residential electrical systems, Alternating Current (AC) local utility. A growing trend has been to generate our own is used. The current reverses direction moving from 0 volts electrical power. Solar energy systems have grown in popularity to 120 volts in one direction, and immediately, reversing the are available for residential, agricultural, and commercial direction. Typical residential voltages are 120 and 240. applications. In solar photovoltaic systems, Direct Current (DC) electricity Of the various types of solar photovoltaic systems, grid- is produced. The current flows in one direction only, and the connected systems --- sending power to and taking power current remains constant. Batteries convert electrical energy from a local utility --- is the most common. According to the into chemical energy are used with direct current. Current is Solar Energy Industries Association (SEIA) (SEIA, 2017), the the movement of electrons along a conductor. The flow rate number of homes in Arizona powered by solar energy in 2016 of electrons is measured in amperage (A). The solar industry was 469,000. The grid-connected system consists of a solar uses the capital letter “I” to represent current. The force or photovoltaic array mounted on a racking system (such as a pressure to move the electrons through the circuit is measured roof-mount, pole mount, or ground mount), connected to a in voltage (V). -
Solar Energy Grid Integration Systems “Segis”
SOLAR ENERGY GRID INTEGRATION SYSTEMS “SEGIS” Program Concept Paper October, 2007 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ 1 TABLE OF CONTENTS ................................................................................................................ 2 1) Executive Summary ............................................................................................................... 3 2) Vision ..................................................................................................................................... 3 3) Program Objective ................................................................................................................. 3 4) Program Scope ....................................................................................................................... 4 5) High PV Penetration and the Utility Distribution System ..................................................... 5 a) PV System Characteristics and Impacts 5 b) Implications for Utility Operations 6 c) Implications for Solar System Owners 9 6) Approaches to Enable High Penetration .............................................................................. 10 a) Today’s Distribution System 10 i) Mitigating Impact on Current Distribution Infrastructure: ...................................... 10 ii) Improving Value for the Solar Energy System Customer: ...................................... 11 b) Advanced Distribution Systems and