How to Teach the Standard Model 1.What Is Fundamental and What Are Interactions 2

Total Page:16

File Type:pdf, Size:1020Kb

How to Teach the Standard Model 1.What Is Fundamental and What Are Interactions 2 How to teach the Standard Model 1.What is Fundamental And What are Interactions 2. Nomenclature 3.Building Particles 4.Interactions 1.What is Fundamental Fundamental 2. Nomenclature An Analogy with Taxonomy • Kingdom Animalia (Protista - * see note below) • Phylum Ciliophora • Class Ciliatea • Subclass Rhabdophorina • Order Hymenostomatida • Suborder Peniculina • Family Parameciidae • Genus Paramecium • Species aurelia, bursaria, or caudatum .............. Kingdom 1. Fermions (()matter) 2. Bosons (forces) Kingdom 1. Fermions Phylum Phylum Quarks Lepton Phylum Quarks 1. Family 2. Family 3. Family up (+2/3) charm (+2/3) top (+2/3) down (-1/3) strange(-1/3) bottom (- 1/3) Quark Phylum Leptons 1. Family 2.. Family 1. Family electron (-1) muon (-1) tau (-1) electron muon tau neutrino (0) neutrino (0) neutrino (0) leptons Kingdom 2. Bosons (forces) Phylum 1. Gravity 2. Electromagnetic 3.Strong 4.weak Phylum 1. Graviton Gravity Phylum 2.Electromagnetic Electromagnatic Phylum 3. Weak Weak Phylum 4. Strong Strong Summary of Things to Know 1. Kingdom Names 2. Phylum Names 3. Names and Charges of particles in each Phylum and Family BUILDING PARTICLES Hadrons Hadrons • Quarks are confined in Hadrons • Hadrons are either • A) Mesons Pair of quark and anti- quark B) Baryons -made up of three quarks Mesons • Mesons: made up of a pair of quark and anti- quark. • A few examples of types of mesons 1) pion 2) Kaon 3) rho 4) B-zero 5) eta-c Baryons • Made up of three quarks or three anti-quarks. • Examples of baryons •1))p proton • 2) antiproton • 3) neutron • 4) lambda • 5) omega Why we’re here! Particle Physics Timeline • 2500 years of particle progress in under 60 slides…guaranteed! Democritus (late 5th Century B.C.) • Supposed that the cosmos consisted of “atoms and the void” , i.e. very small indivisible particle and empty space. Aristotle (384 –322 B.C.) • Opposed atomism. Supposed the cosmos consisted of a plenum of infinitely divisible particles: Earth, Water, Air, Fire on Earth and Aether in the heavens. R. Boscovic Rudjer Bošković (1711‐1787) Croatia 5000 dinara note (1992). A mathematician and astronomer, Bošković imagined atoms as point sources of force that repel each other at small separations (making liquids and solids difficult to compress) and attract at larger separations (making solids difficult to pull apart). Rene Descartes (1596 ‐ 1650) • Followed Aristotle in believing the Cosmos is full of invisible particles. Supposed those particles whirling in vortices are responsible for gravity of Earth and planetary motion. Daniel Bernoulli • Daniel Bernoulli in Hydrodynamica (1738) proposed that a gas is a collection of very many very small particles (ll)(molecules) in constant motion that exert pressure by collisions –the first kinetic theory of gasses. John Dalton (1766 ‐ 1844) Proposed the idea of the “chemical atom” in New System of Chemical Philosophy (1808‐1827) and gave first set of relilative atomic weights based on combining proportions of elements in compounds. James Clerk Maxwell • James Clerk Maxwell in 1866 developed a statistical kinetic theory of gases that related molecular motion to gas temperature. Wilhel m Roentgen • Wilhelm Röntgen in 1895 discovered x‐ rays, a previously unknown radiation that traveled in straight lines and gave shdhadow pictures of bones within the skin. Röntgen received the first Nobel Prize in Physics in 1901. Early Particle Physics J.J. Thomson at work on his eltlectron discovery. Ernest Rutherford (1871 –1937) • Named α and β radiation based on absorption of rays, explored radioactive decay series, proposed atomic transmutation in radioactive elements (1902), showed α particles are He nuclei, developed nuclear model of atom (1910) based on α particle scattering, demonstrated artific ia l transmutation (proton ejdjected when α collide d wihith N nucleus, measured nuclear size. Rutherford’ s Experiment Henri Becquerel • Henri Becquerel discovered natural radioactivity in1896 while searching for x‐ rays produced from phosphorescent uranium salts. He received the Nobel Prize in Physics in 1903. Albert Einstein (1879 –1955) • His 199505 pppaper on the photoelectric effect ppproposed that light energy comes in “quantum” units (later called photons). The energy of a photon is E = hf, where f = frequency of the light and h = Planck’s constant. Robert Millikan • Robert Millikan demonstrated the quantization of electric ‐19 charge (qe = 161.6 x 10 C) in 1910 and in 1915 verified Einstein’s phlihotoelectric theory based on energy carryyging photons. He received the Nobel Prize in Physics in 1923. Victor Hess • Victor Hess discovered the existence of cosmic rays, high energy particles from space, as a result of measurements in balloon flights 1911‐ 1913. He received the NblNobel PiPrize in 1936. C.T.R. Wilson • Charles Thomson Rees Wilson invented the cloud chamber in 1896 to examine the formation of clouds. In 1911 he made the first phhhotographs of tracks of α particles, β pp,articles, and electrons. He received the Nobel Prize in 1927. Niels Bohr Niels Henrik David Bohr (1885-1962) Denmark 500 kroner note (1999). Bohr established the first quantum theory of atomic structure in 1912 to explain atomic spectral lines and the periodic table . He received the 1922 Nobel Prize for Physics for that work. His liquid drop model later explained nuclear fission. Henry Moseley • Henry Moseley in 199313 found a pattern of characteristic x‐rays from cathodes of different materials that reflected the number of proton positive charges (atomic number) in the cathode materials. He was killed at Gallipoli in 1915 during WW I. James Chadwick • James CCadwchadwick studied with Ernest Rutherford at CbidCambridge, investigated β decay, and in 1932 demonstrated the existence of the neutron. He received the Nobel Prize in 1935. Arthur Compton • Arthur Compton studied the scattering of x‐rays from electrons in metals and in 1922 developed evidence for the existence of photons proposed by Einstein to explain the photoelectric effect. He received the Nobel Prize in 199727. Louis de Broglie • Louis de Broglie proposed that particles were characterized by wave properties in his doctoral thesis of 1924, an idea subsequently verifie d by the eltlectron diffraction results of Davisson and Germer and by G. P. Thomson. He received the Nobel Prize in 1929. Werner Heisenberg • German physicist and one of the founders of quantum mechanics. He is most well‐known for discovering one of the centltral priilinciples of modern physics, the Heisenberg uncertainty principle. He received the Nobel Prize in Physics in 1932. Max Born • German ppyhysicist and mathematician. He won the 1954 Nobel Prize in Physics for the formulation of the now‐standard iiinterpretation of the probability density function for ψ*ψ in the Schrödinger equation of quantum mechanics. Erwin Schroedinger • An Austri an ‐ Irish physicist who achieved fame for his contribut ions to quantum mechanics, especially the Schrödinger equation, for which he received the NblNobel PiPrize in 1933. Enrico Fermi Italia n ppyscsthysicist most noted for his work on the development of the first nuclear reactor, and for his contributions to the development of quantum theory and particle physics.He won the 1938 NblNobel PiPrize in Physics P.A.M. Dirac • British theoretical physicist and a founder of the field of quantum mechanics. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrödinger. Clinton Davisson • American ppyhysicist who confirmed the De Broglie hypothesis that all matter has a wave‐ like nature through the discovery of electron diffraction. He shared the Nobel Prize in Physics in 1937 with George Paget Thomson. George P. Thomson A Nobel‐Prize‐winning, (1937)English physicist who discovered the wave properties of the electron by electron diffraction. He was the son of Nobel Prize winning physicist J. J. Thomson and Rose Elisabeth Paget, the daughter of the Professor of Medicine at Cambridge Wolfgang Pauli An Austrian theoretical physicist noted for his work on the theory of spin, and in particular the discovery of the exclusion principle, He received the Nobel Prize in Physi cs in 1945. He had been nominated for the prize by Enstein. E.O. Lawrence • An American physicist best known for his invention, utilization, and improvement of the cyclotron. He was awarded the Nobel Prize in Physics in 1939. Robert Van de Graaff • Ameecarican ppyscsthysicist and designer of the Van de Graaff generator. In 1929, he developed his first generator (80,000 volts); by 1933, he had constructed a much larger generator, capable of generating 7 million volts. John Cockroft & E. Walton • Winners of the 1951 Nobel Prize in Physics for the development of the accelerator that bears their name. Carl Anderson • Carl Anderson discovered the positron in 1932 by examining tracks of cosmic ray particles in a cloud chamber. Continuing cosmic ray research with his cloud chamber, he and his first graduate student, Seth NddNeddermeyer, discovere d the muon in 1936, the year that Anderson received the Nobel Prize P. Cherenkov • Pavel Čerenkov in 1934 observed the blue glow proddduced in a bottle of water bombarded by fast‐moving particles from a radioactive source. This Čerenkov effect results from light emitted when particles travel through a medium faster than light travels in the medium, analogous to a sonic boom shock wave produced when an object travels through air faster than sound travels in air. Čerenkov received the Nobel Prize in 1958. H. Yukawa • Hideki Yukawa in 1935 published a field theory of nuclear forces in which he predicted the existence of a new particle, later identified wihith the pion that was first observed by Cecil Powell in 1947. Yukawa received the Nobel Prize in 1949. Seth Neddermeyer • Seth Neddermeyer, while a graduate student with Cark Anderson, participated in the discovery of cloud chamber tracks that led to the discovery of the muon in 1936. Neddermeyer later championed the development of the iliimplosion mechihanism for exploding plutonium nuclear bombs in the Manhattan Project during WW II.
Recommended publications
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • The Donald A. Glaser Papers, 1943-2013, Bulk 1949-2003
    http://oac.cdlib.org/findaid/ark:/13030/c8n01cbt No online items Finding Aid for the Donald A. Glaser Papers, 1943-2013, bulk 1949-2003 Bianca Rios and Mariella Soprano California Institute of Technology. Caltech Archives ©2017 1200 East California Blvd. Mail Code B215A-74 Pasadena, CA 91125 [email protected] URL: http://archives.caltech.edu/ Finding Aid for the Donald A. 10285-MS 1 Glaser Papers, 1943-2013, bulk 1949-2003 Language of Material: English Contributing Institution: California Institute of Technology. Caltech Archives Title: The Donald A. Glaser papers creator: Glaser, Donald Arthur Identifier/Call Number: 10285-MS Physical Description: 15.97 Linear feet (41 boxes) Date (inclusive): 1918-2016, bulk 1949-2003 Abstract: Donald Arthur Glaser (1926 – 2013) earned his PhD in Physics and Mathematics from the California Institute of Technology in 1950 and won the 1960 Nobel Prize in Physics for his invention of the bubble chamber. He then changed his research focus to molecular biology and went on to co-found Cetus Corporation, the first biotechnology company. In the 1980s he again switched his focus to neurobiology and the visual system. The Donald A. Glaser papers consist of research notes and notebooks, manuscripts and printed papers, correspondence, awards, biographical material, photographs, audio-visual material, and born-digital files. Conditions Governing Access The collection is open for research. Researchers must apply in writing for access. General The collection is fully digitized and will be made available online by the beginning of 2018. Conditions Governing Use Copyright may not have been assigned to the California Institute of Technology Archives.
    [Show full text]
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • Muonium Gravity Seminar Wichita-6-17
    Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with..
    [Show full text]
  • Modern Physics, the Nature of the Interaction Between Particles Is Carried a Step Further
    44.1 Some Properties of Nuclei 1385 are the same, apart from the additional repulsive Coulomb force for the proton– U(r ) (MeV) proton interaction. 40 Evidence for the limited range of nuclear forces comes from scattering experi- n–p system ments and from studies of nuclear binding energies. The short range of the nuclear 20 force is shown in the neutron–proton (n–p) potential energy plot of Figure 44.3a 0 r (fm) obtained by scattering neutrons from a target containing hydrogen. The depth of 1 567432 8 the n–p potential energy well is 40 to 50 MeV, and there is a strong repulsive com- Ϫ20 ponent that prevents the nucleons from approaching much closer than 0.4 fm. Ϫ40 The nuclear force does not affect electrons, enabling energetic electrons to serve as point-like probes of nuclei. The charge independence of the nuclear force also Ϫ60 means that the main difference between the n–p and p–p interactions is that the a p–p potential energy consists of a superposition of nuclear and Coulomb interactions as shown in Figure 44.3b. At distances less than 2 fm, both p–p and n–p potential The difference in the two curves energies are nearly identical, but for distances of 2 fm or greater, the p–p potential is due to the large Coulomb has a positive energy barrier with a maximum at 4 fm. repulsion in the case of the proton–proton interaction. The existence of the nuclear force results in approximately 270 stable nuclei; hundreds of other nuclei have been observed, but they are unstable.
    [Show full text]
  • The Federal Government: a Nobel Profession
    The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery.
    [Show full text]
  • From the Executive Director Kathryn Sullivan to Receive Sigma Xi's Mcgovern Award
    May-June 2011 · Volume 20, Number 3 Kathryn Sullivan to From the Executive Director Receive Sigma Xi’s McGovern Award Annual Report In my report last year I challenged the membership to consider ormer astronaut the characteristics of successful associations. I suggested that we Kathryn D. emulate what successful associations do that others do not. This FSullivan, the first year as I reflect back on the previous fiscal year, I suggest that we need to go even further. U.S. woman to walk We have intangible assets that could, if converted to tangible outcomes, add to the in space, will receive value of active membership in Sigma Xi. I believe that standing up for high ethical Sigma Xi’s 2011 John standards, encouraging the earlier career scientist and networking with colleagues of diverse disciplines is still very relevant to our professional lives. Membership in Sigma P. McGovern Science Xi still represents recognition for scientific achievements, but the value comes from and Society Award. sharing with companions in zealous research. Since 1984, a highlight of Sigma Xi’s Stronger retention of members through better local programs would benefit the annual meeting has been the McGovern Society in many ways. It appears that we have continued to initiate new members in Lecture, which is made by the recipient of numbers similar to past years but retention has declined significantly. In addition, the the McGovern Medal. Recent recipients source of the new members is moving more and more to the “At-large” category and less and less through the Research/Doctoral chapters. have included oceanographer Sylvia Earle and Nobel laureates Norman Borlaug, Mario While Sigma Xi calls itself a “chapter-based” Society, we have found that only about half of our “active” members are affiliated with chapters in “good standing.” As long Molina and Roald Hoffmann.
    [Show full text]
  • OLC Denies FOIA Request for Opinion on Executive Orders
    FEDERATION OF AMERICAN SCIENTISTS Board of Sponsors 1725 DeSales Street NW, 6th floor [email protected] (Partial List) Washington, DC 20036 www.fas.org *Sidney Altman Phone: (202) 546-3300 Fax: (202) 675-1010 Bruce Ames F.A.S. *Philip W. Anderson *Kenneth J. Arrow *Julius Axelrod *David Baltimore Frank von Hippel Hal Feiveson Henry C. Kelly Paul Beeson Chairman Secretary-Treasurer President *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop *Nicolaas Bloembergen *Norman Borlaug *Paul Boyer March 11, 2008 *Owen Chamberlain (202)454-4691 Morris Cohen *Stanley Cohen [email protected] Mildred Cohn *Leon N. Cooper Elizabeth Farris *E. .J. Corey Paul B. Cornely Office of Legal Counsel *James Cronin *Johann Deisenhofer Room 5515, 950 Pennsylvania Avenue, NW Carl Djerassi Ann Druyan Department of Justice *Renato Dulbecco John T. Edsall Washington, DC 20530-0001 Paul R. Ehrlich By fax: 202-514-0563 George Field *Val L. Fitch Jerome D. Frank *Jerome I. Friedman Dear Ms. Farris: *John Kenneth Galbraith *Walter Gilbert *Donald Glaser *Sheldon L. Glashow This is a request under the Freedom of Information Act. Marvin L. Goldberger *Joseph L. Goldstein *Roger C. L. Guillemin We request a copy of an Office of Legal Counsel opinion from the George *Dudley R. Herschbach *Roald Hoffmann W. Bush Administration pertaining in part to the efficacy of executive John P. Holdren *David H. Hubel orders. *Jerome Karle Nathan Keyfitz *H. Gobind Khorana *Arthur Kornberg In particular, Senator Sheldon Whitehouse stated on the Senate floor on *Edwin G. Krebs *Willis E. Lamb December 7 that he had examined an OLC opinion which included, *Leon Lederman *Edward Lewis according to his notes, the following statement or something resembling it: *William N.
    [Show full text]
  • 10.8 News 612 Mh
    NEWS NATURE|Vol 442|10 August 2006 Views collide over fate of accelerator Its parts have been dismembered, its roof is leaking, and a wall is missing. Now activists and scientists are squabbling over whether to com- pletely raze the Bevatron — one of the most important particle accelerators ever built. The remains of the Bevatron, which was decommissioned more than a decade ago, take up prime real estate on the Lawrence Berkeley LAB. NATL BERKELEY LAWRENCE National Laboratory’s campus in Berkeley, Cali- fornia. Scientists at the lab want to tear it down to make way for fresh projects. But locals, many of whom oppose the demolition because of con- cerns about the possible release of contaminants, say they want to see it made into a museum. On 3 August, the city council’s Landmarks and Preservation Commission dealt a blow to those wanting landmark status for the accelera- tor by voting to recognize the Bevatron’s legacy without protecting the building. Nevertheless, landmark advocates have vowed to continue fighting. “It’s truly a landmark, a very unique building,” says Mark Divided: physicists up. Community members have expressed fears McDonald, who sits on the hope to reclaim the that razing the Bevatron would involve moving City of Berkeley’s Peace and space but local groups large amounts of loose asbestos through the city Justice Commission. “Some- want landmark status of Berkeley. Environmentalists also fear that body called it the world’s for the Bevatron. lead and other contaminants from the build- largest yurt.” The Bevatron, ing site could escape into the water table.
    [Show full text]
  • James W. Rohlf Boston University
    Institute for Theoretical and Experimental Physics, Moscow, 3 December 2003 20 The Quest for 10− Meters James W. Rohlf Boston University Rohlf/ITEP – p.1/76 ITEP Forces and Distance Rohlf/ITEP – p.2/76 ITEP Discovery of the electron 1897 J. J. Thompson ...birth of the spectrometer! Note: The charge to mass depends on the speed, which is hard to measure! The ingenuity of the experiment was to add a magnetic field to cancel the electric deflection. Rohlf/ITEP – p.3/76 ITEP Electron e/m J.J. Thomson The electron gets acceleration 2 vy vyvx vx tan θ a = t = L = L with B field on and no deflection, E vx = B e a Etanθ m = E = LB2 E is field that produces deflection θ B is field that produces no deflection. Rohlf/ITEP – p.4/76 ITEP Classical electron radius Big trouble at a distance where electrostatic potential energy exceeds electron mass energy: ke2 2 r > mc This occurs when ke2 1:44 eV nm 15 r < = · 3 10− m mc2 0:511 MeV ' × Rohlf/ITEP – p.5/76 ITEP Rutherford scattering 1909 The detector consisted of a fluorescent screen and Hans Geiger looking through a microscope for light flashes. This experience is, no doubt, what motivated him to invent the Geiger counter! Rohlf/ITEP – p.6/76 ITEP Cross section definition transition rate σ = incident flux effective area of target Examples: 28 2 nuclear barn (b) = 10− m ∼ pp (high energy) 50 mb ∼ W/Z0 discovery at SPS nb ∼ rare processes at LHC fb ∼ Rohlf/ITEP – p.7/76 ITEP Rutherford scattering dσ 2 ~c 2 1 d cos θ α (E ) (1 cos θ)2 ∼ k − (∆p)2 = 2(mv)2(1 cos θ) − dσ = 2πbdb Can only happen if: force is 1/r2 • nucleus is pointlike • J=1, m=0 photon • Rohlf/ITEP – p.8/76 ITEP Davisson-Germer discovering electron waves “We have become accustomed to think of the atom as rather like a solar system..
    [Show full text]
  • Otto Stern Annalen 22.9.11
    September 22, 2011 Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Konrad Röntgen, Ernest Rutherford, Max von Laue, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]