Major Professor

Total Page:16

File Type:pdf, Size:1020Kb

Major Professor AN ABSTRACT OF THE THESIS OF Richard James DeRyckefor theM. S. in Oceanography (Name) (Degree) (Major) Date thesis is presented/( Title AN INVESTIGATION OF EVAPORATION FROM THEOCEAN OFF TH.E OREGON COAST, AND FROM YAQUINA BAY,OREGON Redacted for Privacy Abstract approved /(Major Professor) A weather station was established on the dock of the OregonState University Marine Science Center, Yaquina Bay, O:Legon.A total of 197weather observations was made from 30 June1966to 23 Septem- ber1966,with emphasis on the determination of the rate of evapora- tion from an evaporation pan and from atmometers. Sources of observational error were investigated and corrections applied as necessary.The daily variation in evaporation was deter- mined.The correlation between wind, vapor pressure, and evapora- tion was found.Atmometers were used to estimate the evaporation from the surface of Yaquina Bay, and the possibility of using atmo- meters at sea was investigated. AN INVESTIGATION OF EVAPORATION FROM THE OCEAN OFF THE OREGON COAST, AND FROM YAQUINA BAY, OREGON by RICHARD JAMES DERYCKE A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1967 APPROVED: Redacted for Privacy Prolèssor of Oceanography In Charge of Major Redacted for Privacy Chairman of Department of Oceanography Redacted for Privacy Date thesis is presented1/ Typed by Marcia Ten Fyck ACKNOWLEDGEMENT I wish to thank Dr. June G. Pattullo for her help and guidance throughout this project. My appreciation also goes to Mrs. Susan J. Borden for her help with problems on some of my computer programs, and to Mr. Duane Frdman at the Marine Science Center in Newport, Oregon, for his help in running salinities and in setting up the atmometers. Special thanks goes o my wife, Dennis, for her help in data processing and in typing up the rough drafts of the thesis. TABLE OF CONTENTS Page INTRODUCTION 1 EQUIPMENT USED 4 OBSERVATIONAL PROCEDURE AND DATA ANALYSIS 11 Observational Procedure 11 Determination and Correction of ObservationalError 14 Data Analysis 18 DISCUSSION OF RESULTS 20 The Evaporation Day 20 Evaporation Correlated to Wind Speed 25 Evaporation as a Function of Height Above the SeaSurface 25 Daily Evaporation Rate 27 Estimation of Sea Surface Evaporation UsingAtmometers 27 Equation of Evaporation 31 COMPARISONS WITH OTHER STUDIES 34 Reduction of Pan Evaporation to Sea Surface Evaporation 34 Average Daily Sea Surface Evaporation 34 Equation of Evaporation 35 SUMMARY 36 BIBLIOGRAPHY 38 APPENDICES 40 LIST OF FIGURES Figure Page 1 Location of the weather station. 5 2 Arrangement of atmometer and burette. 8 3 Average hourly temperature of the air, bay surface water, evaporation pan water, and average incoming radiation (Q). 12a 4 Schematic representation of the tilt of the surface water in the pan caused by a northwest wind. 1 6 5 Error produced by the wind blowing over the water surface of the evaporation pan.Some points signify more than one observation. 16 6 Average hourly vapor pressure of pan water, bay water and air.The average hourly relative humidity is also shown. 21 7 Average hourly cloud cover, pan evaporation and wind velocity. 22 8 Normal surface air pressure (in mb) over the North- east Pacific Ocean, based on U. S. Weather Bureau Normal Weather Chart (August). 24 9 Average pan evaporation observed at various wind speeds. 24 10 Atmometer evaporation rate (E ) vs height.Rate a at5.5rn100%. 26 11 Correlation between atmometer evaporation (E) and pan evaporation (E). 28 12 Estimated sea surface evaporation as a function of the sea surface water vapor pressure (e), air vapor pressure (ea), and wind speed (kt). 32 LIST OF TABLES Table Page 1 A comparison of the constants of evaporation as determined by the author, Rohwer (1931), and Kohier (1954). 35 A1' INVESTIGATION OF EVAPORATION FROM THE OCEAN OFF THE OREGON COAST, AND FROM YAQUINA BAY, OREGON INTRODUCTION The purpose of this study has been to investigate various methods of estimating evaporation from the surface of the sea and to estimate the evaporation from the sea off the Oregon coast.It is not possible, at present, to determine directly the amount of evaporation from the sea surface, as no technique for doing this has yet been devised. Two indirect methods of determining evaporation from the sea sur- face have been used.One method involves the use of heat budget computations and another uses evaporation pans. The heat budget method assumes that the temperature of the ocean in the region is unchanging and that there is a balance at the sea surface between solar radiation, heat conduction, back radiation and evaporative heat transfer.Sverdrup, Johnson, and Fleming (1942) have shown how the heat budget method may be used to esti- mate evaporation from the sea surface.Because it is not possible to determine solar radiatior, back radiation, and heat conduction with a great deal of accuracy, evaporation determined using the heat budget method is considered somewhat inaccurate. Another method of determining evaporation from the sea is to measure evaporation (E) fron an evaporation pan at a known ele- vation (Z) above the sea surface.Sea surface evaporation is then estimated from empirical relationships.This method is used in this study. Evaporation measurements were made in an evaporation pan above the surface of Yaquina Bay, Oregon.As Yaquina Bay is only a short distance from the PacificOcean (Figure 1),it is assumed that the physical factors affecting evaporation in the bay are not very different from those of the open ocean within a fewmiles of the bay. The physical fac:tors assumed to be nearly the same are: wind velocity, air vapor pressure, sea water vapor pressure, andair turbulence. One of the major problems in such a study is that an evaporation pan cannot be expected to evaporate atthe same rate as the bay sur- face below it.Several attempts were made in this study to make the pan's evaporative characteristics closer approximations to the evap- orative characteristics of the bay.An attempt has been made to cor- rect pan evaporation rates for the errors introduced by havingthe pan above the bay surface. The possibility of using atmorneters for evaporation measure- rnents at sea was investigated.The atmometer evaporates water from a porous porcelain sphere and can be used to measure the evaporativity of the atmosphere. Evaporation was first determined in an evaporation pan, and, using atrnometers, sea surface evaporation was estimated. 3 Observational errors were determined as part of the study.The relationship between evaporation and environmental factors was esti- mated and an eqLlation was written expressing the relationship. A comparison was made between the results of this study and the results of other studies in this field. Evaporation from the sea has been studied by Jacobs (1951), Wast (as discussed by Defant, 1961), Sverdrup (1951), and many others.Most of their studies involved the use of evaporation pans or heat budget computations. Laevastu (1960) has summarized the work of many individuals on the subject of evaporation.He also developed a method for correct_ ing evaporation rates for the effect of the change of wind velocity with height above the sea surface. Rohwer (1931) and Kohier (1954) studied evaporation from evap- oration pans on land.They developed equations expressing evapor- ation as a function of wind velocity and the difference between pan water vapor pressure and air vapor pressure.They also investi- gated many of the problems associated with the use of evaporation pans. Lane (1965) studied the climate and heat exchange at the air- sea interface off the Oregon coast.The factors affecting evaporation in the area were estimated as part of this study. 4 EQUIPMENT USED A small weather station was operated from 30 June, 1965 to 23 September, 1965 on the end of the dock at the Oregon State University Marine Science Laboratory near Newport, Oregon (Figure 1).This location was chosen to give the best available approximation to mar- me atmospheric conditions as they exist off the Oregon coast.It was assumed that the marine air flow was not greatly affected by the small amount of land between the weather station and the ocean. There were no significant obstructions to the air flow in the immedi- ate vicinity of the evaporation pan. The equipment used at the weather station consisted mainly of standard U. S. Weather Bureau instruments.The following is a description of the various items of equipment. (1)Evaporation pan An evaporation pan of four foot diameter was used.It was placed on a platform 5. 5 m above mean high water.A stilling well was placed in the pan.(Because the base of the stilling well was made of steel,it tended to rust very rapidly in the salt water.The stilling well base was painted twiceto prevent rusting; this effort met with a moderate degree of success. For this reason no evaporation data were gathered on the periods 7 July to 9 July and 24 July to 29 July.Even after the stilling IpA* LJ z 4 w WEATHER STATION o a o_______o naut. me NEWPORT 0 U- 0 4 YAQUINA a. BAY TOLEDO '2 Figure 1.Locatioo of the weather station. well base had been painted some rust accrued oit and on the bottom of the evaporation pan.) A hook gage calibrated in cm was used to measure the water level in the evaporation pan. It could be read with an accuracy of 0. 002 cm. (2) Rain gage A standard eight-inch non-recording rain gage was mounted near the evaporation pan.The measuring stick was calibrated in inches, and tenths. (3)Sling psychrometer A standard sling psychrometer was used to obtain the wet and dry bulb air temperatures.These were estimated to be accurate to 0.1°C.The relative humidity was determined from these readings.
Recommended publications
  • Precipitation and Cocorahs Data in MO
    Received: 6 August 2017 Accepted: 10 October 2017 DOI: 10.1002/hyp.11381 RESEARCH ARTICLE The importance of choosing precipitation datasets Micheal J. Simpson1 | Adam Hirsch2 | Kevin Grempler2 | Anthony Lupo2,3 1 Water Resources Program, School of Natural Resources, University of Missouri, 203‐T Abstract ABNR Building, Columbia, MO 65211, USA Precipitation data are important for hydrometeorological analyses, yet there are many ways to 2 Soil, Environmental, and Atmospheric Science measure precipitation. The impact of station density analysed by the current study by comparing Department, School of Natural Resources, measurements from the Missouri Mesonet available via the Missouri Climate Center and Commu- University of Missouri, Columbia, MO 65211, nity Collaborative Rain, Hail, and Snow (CoCoRaHS) measurements archived at the program USA website. The CoCoRaHS data utilize citizen scientists to report precipitation data providing for 3 Department of Natural Resources Management and Land Cadastre, Belgorod much denser data resolution than available through the Mesonet. Although previous research State National Research University, Belgorod, has shown the reliability of CoCoRaHS data, the results here demonstrate important differences 308015, Russia in details of the spatial and temporal distribution of annual precipitation across the state of Correspondence Missouri using the two data sets. Furthermore, differences in the warm and cold season Micheal J. Simpson, University of Missouri, Water Resources Program, School of Natural distributions are presented, some of which may be related to interannual variability such as that Resources, 203‐T ABNR Building, Columbia associated with the El Niño and Southern Oscillation. The contradictory results from two 65211, MO, USA. widely‐used datasets display the importance in properly choosing precipitation data that have Email: [email protected] vastly differing temporal and spatial resolutions.
    [Show full text]
  • Download Date 08/10/2021 00:06:14
    Instructions to the Marine Meteorological Observers of the U. S. Weather Bureau, 4th edition. Item Type Book Publisher Government Printing Office Download date 08/10/2021 00:06:14 Item License http://www.oceandocs.org/license Link to Item http://hdl.handle.net/1834/5222 �'w. B. No. 866 U. s.(pEPARTMENTOF AGRICULTURE) WEATHER BUREAU INSTRUCTIONS TO MARINE METEOROLOGICAL OBSERVERS rr;e �� 4 c -s::r­ ho,M - M, MARIME f'IVTS!ON CIRCULAR FOURTH EDITION lfMed /9).5" WASHINGTON GOVERNMENT PRINTING OFFIOlll 1926 Blank page retained for pagination ILLUSTRATIONS Pnlle Barograph, Richard's----------------------------------------------­ aro B meter: 33 Jlnerold------------------------�--------------------------------- ]darlne__________________________________________________________ _ 32 _ _ __ llalos ____ ______________________________ __________ _____________ _ __ 24 g lly rogrnph, Rlchard's--�-------------------------------------------- 51 _ ll _______________________ __ ygrometer, with stationary thermometers 40 h __________________________________________________ Payc rometer, sling 40 r The mograph--------------------------------------------------------- 3U Thermometer supports_ ·---------------------------------------------­ · 38 er Th mometer, water------------------------------------------------­ 37 ime T chart, showing·local time corresponding to Greenwich mean noon__ 41 Ve rniers____________________________________________________________ _ 90 a W b1ings,' fiag· and lantern displaY----------------------------------- 28 eat ________________________________
    [Show full text]
  • Climate Change and Global Warming, Introduction to Various Meteorological Equipments Subject: AGRICULTURE
    Class Notes Class: XI Topic: Climate change and global warming, Introduction to various meteorological equipments Subject: AGRICULTURE UNIT-II Climate change and global warming Climate change, also called global warming, refers to the rise in average surface temperatures on Earth. Temperature records going back to the late 19th Century show that the average temperature of the Earth's surface has increased by about 0.8C (1.4F) in the last 100 years. About 0.6C (1.0F) of this warming occurred in the last three decades. Satellite data shows an average increase in global sea levels of some 3mm per year in recent decades. The Greenland Ice Sheet has experienced record melting in recent years; if the entire 2.8 million cubic km sheet were to melt, it would raise sea levels by 6m. Satellite data shows the West Antarctic Ice Sheet is also losing mass, and a recent study indicated that East Antarctica, which had displayed no clear warming or cooling trend, may also have started to lose mass in the last few years. But scientists are not expecting dramatic changes. In some places, mass may actually increase as warming temperatures drive the production of more snows. The effects of a changing climate can also be seen in vegetation and land animals. These include earlier flowering and fruiting times for plants and changes in the territories (or ranges) occupied by animals. Causes of Global Warming Greenhouse Gases Some gases in the Earth's atmosphere act a bit like the glass in a greenhouse, trapping the sun's heat and stopping it from leaking back into space.
    [Show full text]
  • Weather Monitoring Instruments & Systems
    Weather Monitoring Instruments & Systems 2013 Catalog www.novalynx.com Table of Contents Applications 3 200-85000 Ultrasonic Anemometer ...................................... 54 System Design ......................................................................... 4 200-7000 WindSonic Ultrasonic Anemometer ..................... 55 Site Considerations .................................................................. 5 200-1390 WindObserver II Ultrasonic Anemometer ............ 56 Typical System Drawings ........................................................ 6 200-101908 Current Loop Wind Sensors.............................. 57 Typical System Drawings ........................................................ 7 200-102083 Wind Mark III Wind Sensors ............................ 58 Typical System Drawings ........................................................ 8 200-2020 Micro Response Wind Sensors ............................. 59 Weather Stations 9 200-2030 Micro Response Wind Sensors ............................. 60 110-WS-16 Modular Weather Station ................................... 10 200-WS-21-A Dual Set Point Wind Alarm ........................... 61 110-WS-16 Modular Weather Station ................................... 11 200-WS-23 Current Loop Wind Sensor ................................ 62 110-WS-18 Portable Weather Station.................................... 12 200-455 Totalizing Anemometer with 10-Min Timer ........... 63 110-WS-18 Portable Weather Station.................................... 13 200-WS-25 Wind Logger with Real-Time
    [Show full text]
  • Master Reference
    Master A term extractor for the World Meteorological Organization - a comparison of different systems MEJIA, Sofia Abstract At the World Meteorological Organization term extraction is currently done manually for certain publications. There is a need to extract terminology from larger publications and for the terminology database to contain more technical terms. We have evaluated two term extractos, MultiTrans Prism 5.5 and SynchroTerm 2014, following the EAGLES methodology combined with ISO SQuaRE series quality characteristics. The results show that MultiTrans Prism 5.5 fulfils better the requirements of users within the World Meteorological Organization. They also show that these two term extractors are far from accomplishing the task as a terminographer would. Reference MEJIA, Sofia. A term extractor for the World Meteorological Organization - a comparison of different systems. Master : Univ. Genève, 2016 Available at: http://archive-ouverte.unige.ch/unige:104950 Disclaimer: layout of this document may differ from the published version. 1 / 1 MA Thesis Sofía Magdalena Mejía A TERM EXTRACTOR FOR THE WORLD METEOROLOGICAL ORGANIZATION – A COMPARISON OF DIFFERENT SYSTEMS FTI, Université de Genève Département de traitement informatique multilingue MA Thesis Director: Prof. Marianne Starlander MA Thesis Jury: Prof. Lucía Morado Vázquez Academic year: 2015-2016; session: January 2016 - 2 - Acknowledgements I would like to thank first and foremost my thesis director, Marianne Starlander, for her infinite patience, her support and encouragement. For being always available and for the happiness she exudes. I am also grateful to Lucía Morado Vázquez for accepting to act as jury of this thesis. From the University of Geneva I would also like to thank Aurélie Picton and Donatella Pullitano for their generous advice on term extractors and for helping me and my director to shape this study.
    [Show full text]
  • Meteorological Systems for Hydrological Purposes
    WORLD METEOROLOGICAL ORGANIZATION OPERATIONAL HYDROLOGY REPORT No. 42 METEOROLOGICAL SYSTEMS FOR HYDROLOGICAL PURPOSES WMO-No. 813 Secretariat of the World Meteorological Organization – Geneva – Switzerland THE WORLD METEOROLOGICAL ORGANIZATION The World Meteorological Organization (WMO), of which 187* States and Territories are Members, is a specialized agency of the United Nations. The purposes of the Organization are: (a) To facilitate worldwide cooperation in the establishment of networks of stations for the making of meteorological observations as well as hydrological and other geophysical observations related to meteorology, and to promote the establishment and maintenance of centres charged with the provision of meteorological and related services; (b) To promote the establishment and maintenance of systems for the rapid exchange of meteorological and related infor- mation; (c) To promote standardization of meteorological and related observations and to ensure the uniform publication of observations and statistics; (d) To further the application of meteorology to aviation, shipping, water problems, agriculture and other human activi- ties; (e) To promote activities in operational hydrology and to further close cooperation between Meteorological and Hydrological Services; and (f) To encourage research and training in meteorology and, as appropriate, in related fields and to assist in coordinating the international aspects of such research and training. (Convention of the World Meteorological Organization, Article 2) The Organization
    [Show full text]
  • Practical Manual
    PRACTICAL MANUAL on AGROMETEOROLOGY Dr. L.R. Yadav Dr. S.S. Yadav Dr. O.P. Sharma Dr. A. C. Shivran 2012 Department of Agronomy S.K.N. College of Agriculture (SK Rajasthan Agricultural University) Campus : Jobner – 303329 (Rajasthan) SKN COLLEGE OF AGRICULTURE (S.K.RAJASTHAN AGRICULTURAL UNIVERSITY: BIKANER) JOBNER-303329 Distt. - Jaipur (Raj.) Phone: 01425-254022 (O), 01425-254022 (Fax) 01425-254023(R) Dr. G.L. Keshwa Dean FOREWORD Weather and crop production are integral components of agriculture. During the era of global warming and climate change, the role of agrometeorology in agriculture has become more important in mitigating the challenges arised by climate change. Successful crop production depends on the prevailing weather conditions at different stages of crop growth. This manual has been prepared to enhance the understanding of undergraduate students regarding measurement of weather elements, their interpretation and role in crop production. Dr. L.R. Yadav, Dr. S.S. Yadav, Dr. O.P. Sharma and Dr. A.C Shivran deserve congratulation for bringing out this manual for benefit of students, readers and all those involved in the measurement of weather data. PREFACE Agriculture and weather are the essential components of the crop production. Crop production depends upon the prevailing weather conditions at different stages of crop growth. Precise measurements of weather elements ar e required to understand the proper interpretation in relation to crop growth and development. Recently, the course curricula of undergraduate classes has been reoriented according to IV Dean‘s committee of ICAR. The practical exercises of this manual are according to new syllabi of agrometerology course running in the UG programme.
    [Show full text]
  • Downloaded 10/10/21 09:06 PM UTC Bulletin American Meteorological Society 1059
    John F. Griffiths A Chronology ol llems of Department of Meteorology Texas A8cM University Meteorological interest College Station, Tex. 77843 Any attempt to select important events in meteorology The importance of some events was not really recog- must be a personal choice. I have tried to be objective nized until years later (note the correspondence by and, additionally, have had input from some of my Haurwitz in the August 1966 BULLETIN, p. 659, concern- colleagues in the Department of Meteorology. Neverthe- ing Coriolis's contribution) and therefore, strictly, did less, I am likely to have omissions from the list, and I not contribute to the development of meteorology. No would welcome any suggestions (and corrections) from weather phenomena, such as the dates of extreme hurri- interested readers. Naturally, there were many sources canes, tornadoes, or droughts, have been included in this of reference, too many to list, but the METEOROLOGICAL present listing. Fewer individuals are given in the more AND GEOASTROPHYSICAL ABSTRACTS, Sir Napier Shaw's recent years for it is easier to identify milestones of a Handbook of Meteorology (vol. 1), "Meteorologische science when many years have passed. 1 Geschichstabellen" by C. Kassner, and One Hundred i Linke, F. (Ed.), 1951: Meteorologisches Taschenbuch, vol. Years of International Co-operation in Meteorology I, 2nd ed., Akademische Verlagsgesellschaft Geest & Portig, (1873-1973) (WMO No. 345) were most useful. Leipzig, pp. 330-359. (1st ed., 1931.) B.C. 1066 CHOU dynasty was founded in China, during which official records were kept that in- cluded climatic descriptions. #600 THALES attributed the yearly Nile River floods to wind changes.
    [Show full text]
  • AGRO AUTOMATIC WEATHER STATION Surface Instrument Division Office of Climate Research and Services
    AGRO AUTOMATIC WEATHER STATION Surface Instrument Division Office of Climate Research and Services Definition of AWS An automatic weather station (AWS) is defined as a “meteorological station at which observations are made and transmitted automatically” (WMO, 1992a). [WMO Guide to Meteorological Instruments and Methods of Observation, No.8, 7th Edition Aug 2008] World Meteorological Organization, 1992a: International Meteorological Vocabulary. Second edition, WMO-No. 182, Geneva. History of AWS Background AWS in the international context AWS in IMD - since 1980s.. Earlier known as DCPs Upgradation during 1990s Proposal for installation of 125 AWS started in 2004. Commissioned during 2006-07. Proposal of 550 AWS in which 127 Agro AWS have been installed at AFMUs and some KVKs. Conditions for AWS site selection Meta data of AWS sites Selections of sensors as per AWS site requirement. Guidelines on technical aspects followed in conformity with WMO CIMO Guide AWS network of IMD 100 AWS of Sutron, USA make – PRBS type installed during 2006 and 2007. 5 are Agro based AWS- Anand, Dapoli, Kanpur, Pune and Rahuri 25 AWS of Astra, India make – PRBS type installed during 2006 and 2007. 550 AWS – (550 already installed) of Astra make – TDMA type installed all over India in 2009-2012. 127 are Agro based AWS NETWORK OF 125 AWS. NETWORK OF 550 AWS Network of AWS and Agro-AWS (phase I) Around 707 Automatic Weather stations and 1351 ARGs in IMD network State of art technology with 32 bit microprocessor TDMA type of transmission through satellite
    [Show full text]
  • National Association of County Agricultural Agents
    National Association of County Agricultural Agents Proceedings 102nd Annual Meeting and Professional Improvement Conference July 9-13, 2017 Salt Lake City, Utah TABLE OF CONTENTS PAGE REPORT TO MEMBERSHIP...........................................................................................................................................................................................1-24 POSTER SESSION APPLIED RESEARCH......................................................................................................................................................25-42 EXTENSION EDUCATION......................................................................................................................................................................................43-84 AWARD WINNERS.................................................................................................................................................................................................................85 Ag Awareness & Appreciation Award..................................................................................................................86-89 Excellence in 4-H Programming...................................................................................................................................89-94 Search for excellence in croP production.............................................................................................95-99 search for excellence in farm & ranch financial management.........................99-101
    [Show full text]
  • Weather Monitoring Instruments & Systems
    Weather Monitoring Instruments & Systems 2013 Catalog www.novalynx.com Table of Contents Applications 3 200-85000 Ultrasonic Anemometer ...................................... 54 System Design ......................................................................... 4 200-7000 WindSonic Ultrasonic Anemometer ..................... 55 Site Considerations .................................................................. 5 200-1390 WindObserver II Ultrasonic Anemometer ............ 56 Typical System Drawings ........................................................ 6 200-101908 Current Loop Wind Sensors.............................. 57 Typical System Drawings ........................................................ 7 200-102083 Wind Mark III Wind Sensors ............................ 58 Typical System Drawings ........................................................ 8 200-2020 Micro Response Wind Sensors ............................. 59 Weather Stations 9 200-2030 Micro Response Wind Sensors ............................. 60 110-WS-16 Modular Weather Station ................................... 10 200-WS-21-A Dual Set Point Wind Alarm ........................... 61 110-WS-16 Modular Weather Station ................................... 11 200-WS-23 Current Loop Wind Sensor ................................ 62 110-WS-18 Portable Weather Station.................................... 12 200-455 Totalizing Anemometer with 10-Min Timer ........... 63 110-WS-18 Portable Weather Station.................................... 13 200-WS-25 Wind Logger with Real-Time
    [Show full text]
  • Conference Proceedings 2016 UCOWR/NIWR Annual Water Resources Conference
    Conference Proceedings 2016 UCOWR/NIWR Annual Water Resources Conference June 21-23, 2016 Hilton Pensacola Beach Hotel Pensacola Beach, FL Table of Contents Presenter Index ...................................................................................................................................................... 2 Plenary Sessions .....................................................................................................................................................6 Session 1, Impact of Irrigation Strategies to Reduce Overdraft of MS Alluvial Aquifer ..........................................8 Session 2, Transdisciplinary Bridges to Watershed Science and Human Systems in Texas ...................................10 Session 3, Finding Wetland Ecosystem Services Within Existing Drainage Ditch Networks I ...............................12 Session 4, Emerging Issues in Coastal Water Resources Management I ..............................................................14 Session 5, Sea Grant and Water Institutes: Research and Partnerships Investigating the Land Sea Interface .....16 Session 6, Agricultural Irrigation Practices ...........................................................................................................18 Session 7, International River Modeling ...............................................................................................................20 Session 8, Finding Wetland Ecosystem Services Within Existing Drainage Ditch Networks II ..............................21 Session 9, Emerging
    [Show full text]