Weather- and Soil Moisture-Based Landscape Irrigation Scheduling Devices

Total Page:16

File Type:pdf, Size:1020Kb

Weather- and Soil Moisture-Based Landscape Irrigation Scheduling Devices Weather- and Soil Moisture-Based Landscape Irrigation Scheduling Devices Technical Review Report – 5th Edition U.S. Department of the Interior Bureau of Reclamation Lower Colorado Region and Technical Service Center May 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. For copies of this report contact Reclamation’s Southern California Area Office in the Lower Colorado Region at 951-695-5310 or download at: http://www.usbr.gov/waterconservation/docs/SmartController.pdf. Weather- and Soil Moisture-Based Landscape Irrigation Scheduling Devices Technical Review Report – 5th Edition prepared by Southern California Area Office Lower Colorado Region Temecula, California and Water Resources Planning and Operations Support Group Technical Service Center Denver, Colorado U.S. Department of the Interior Bureau of Reclamation Lower Colorado Region and Technical Service Center May 2015 Weather- and Soil Moisture-Based Landscape Scheduling Devices Table of Contents page Introduction............................................................................................................1 Smart Irrigation Technology Overview...............................................................3 SWAT Testing ...................................................................................................3 U.S. Environmental Protection Agency WaterSense Program ..........................5 Reported Water Savings ....................................................................................6 No Rating of Products........................................................................................6 Weather-Based Irrigation Control System Principles ........................................7 Weather-Based Control Product Features and Comparison Criteria ..............9 Installation..........................................................................................................9 Stand-Alone Controller Versus Add-On Device ...............................................9 Irrigation Schedules and Run Time Calculation and Adjustment ...................10 Application Rates and Distribution Uniformity ...............................................10 Irrigation Run and Soak Cycles .......................................................................11 Landscape Establishment/Fertilizer and Syringe Programs ...........................11 Crop Coefficients .............................................................................................11 Rain Sensors and Gauges and Rain Interrupt or Delay....................................11 Other Sensors...................................................................................................12 Power Supply and Surge and Lightning Protection.........................................12 Station Circuit Rating, Wiring, and Terminal Wire Sizes ...............................12 Clock Mode Operation.....................................................................................13 Display and Data Review.................................................................................13 Nonvolatile Memory and Batteries ..................................................................13 Warranty and Reliability..................................................................................14 Weather-Based Product Descriptions ................................................................15 Accurate WeatherSet .......................................................................................15 Alex-Tronix......................................................................................................18 Brilliant Integrated Technologies ....................................................................21 Calsense ...........................................................................................................29 Cyber Rain .......................................................................................................36 ETwater Systems .............................................................................................40 Hunter Industries..............................................................................................48 HydroPoint.......................................................................................................52 Irrisoft ..............................................................................................................57 Irritrol...............................................................................................................63 OnPoint EcoSystems ........................................................................................67 Rachio ..............................................................................................................70 Rain Bird..........................................................................................................74 Raindrip............................................................................................................79 Rain Master......................................................................................................84 Signature Control Systems ...............................................................................89 Skydrop............................................................................................................93 Weathermatic ...................................................................................................95 i Soil Moisture-Based Irrigation Control System Principles ...........................103 Soil Moisture-Based Control Product Features and Comparison Criteria ..105 Soil Moisture Sensor Types...........................................................................105 Installation......................................................................................................107 Stand-Alone Versus Add-On Controller........................................................107 Irrigation Schedules and Run Time Calculation and Adjustment .................108 Single Versus Multiple Soil Moisture Sensors ..............................................108 Soil Temperature and Conductivity Measurement and Display ....................108 Soil Moisture Sensor Accuracy and Calibration............................................109 Power Supply and Surge and Lightning Protection.......................................109 Station Circuit Rating, Wiring, and Terminal Wire Sizes .............................110 Warranties and Reliability .............................................................................110 Soil Moisture-Based Product Descriptions ......................................................111 Acclima ..........................................................................................................111 Baseline..........................................................................................................115 Calsense .........................................................................................................121 Dynamax ........................................................................................................123 Hunter Industries............................................................................................127 IRROMETER ................................................................................................129 MorpH2O .......................................................................................................134 Rain Bird........................................................................................................136 UgMO Technologies......................................................................................138 References Cited.................................................................................................143 Attachments........................................................................................................145 Weather-Based Irrigation Technologies—Summary of Product Information and Features ................................................................................ A1 Weather-Based Irrigation Technologies—Summary of Product Information and Features (continued) ............................................................. A2 Soil Moisture-Based Irrigation Technologies—Summary of Product Information and Features ................................................................................ A3 Tables page Table 1.—WeatherSet Prices (Includes Solar and Rain Sensors) ..........................17 Table 2.—Brilliant Integrated Technologies Model Descriptions and Prices .......26 Table 3.—Comparative Study Test Report Tabulated Results ..............................28 Table 4.—Table Correlation Between Historical and Measured ET .....................32 Table 5.—Calsense Products Price Summary .......................................................35 Table 6.—Hunter Products Price Summary...........................................................51 Table 7.—WeatherTRAK Model Descriptions and Prices ....................................56 Table 8.—Summary of WeatherTRAK Demonstration Projects ..........................57 Table 9.—Irritrol Smart Dial Controller, Module, and Accessory
Recommended publications
  • UC Irvine UC Irvine Electronic Theses and Dissertations
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Investigating short-term response of soil moisture-temperature-CO2 interactions to weather anomalies Permalink https://escholarship.org/uc/item/9qv54265 Author Anjileli, Hassan Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE “Investigating short-term response of soil moisture-temperature-CO2 interactions to weather anomalies” THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Civil Engineering by Hassan Anjileli Thesis Committee: Professor Amir AghaKouchak, Chair Professor Kuolin Hsu Dr. Peter A. Bowler 2016 © 2016 Hassan Anjileli i Table of contents List of figures ................................................................................................................................. iii List of tables ................................................................................................................................... iv Acknowledgements ......................................................................................................................... v Abstract of the thesis ...................................................................................................................... vi 1 Introduction ............................................................................................................................. 1 2 Materials and Methods ...........................................................................................................
    [Show full text]
  • Precipitation and Cocorahs Data in MO
    Received: 6 August 2017 Accepted: 10 October 2017 DOI: 10.1002/hyp.11381 RESEARCH ARTICLE The importance of choosing precipitation datasets Micheal J. Simpson1 | Adam Hirsch2 | Kevin Grempler2 | Anthony Lupo2,3 1 Water Resources Program, School of Natural Resources, University of Missouri, 203‐T Abstract ABNR Building, Columbia, MO 65211, USA Precipitation data are important for hydrometeorological analyses, yet there are many ways to 2 Soil, Environmental, and Atmospheric Science measure precipitation. The impact of station density analysed by the current study by comparing Department, School of Natural Resources, measurements from the Missouri Mesonet available via the Missouri Climate Center and Commu- University of Missouri, Columbia, MO 65211, nity Collaborative Rain, Hail, and Snow (CoCoRaHS) measurements archived at the program USA website. The CoCoRaHS data utilize citizen scientists to report precipitation data providing for 3 Department of Natural Resources Management and Land Cadastre, Belgorod much denser data resolution than available through the Mesonet. Although previous research State National Research University, Belgorod, has shown the reliability of CoCoRaHS data, the results here demonstrate important differences 308015, Russia in details of the spatial and temporal distribution of annual precipitation across the state of Correspondence Missouri using the two data sets. Furthermore, differences in the warm and cold season Micheal J. Simpson, University of Missouri, Water Resources Program, School of Natural distributions are presented, some of which may be related to interannual variability such as that Resources, 203‐T ABNR Building, Columbia associated with the El Niño and Southern Oscillation. The contradictory results from two 65211, MO, USA. widely‐used datasets display the importance in properly choosing precipitation data that have Email: [email protected] vastly differing temporal and spatial resolutions.
    [Show full text]
  • Integrated Vineyard Precision Control System Pilot
    INTEGRATED VINEYARD PRECISION CONTROL SYSTEM PILOT FINAL REPORT TO WINE AUSTRALIA Project Number: UA 1802 Principal Investigator: PROFESSOR SETH WESTRA Research Organisation: UNIVERSITY OF ADELAIDE Date: 12 AUGUST 2019 Project Title: Integrated Vineyard Precision Control System Pilot Project Number: UA 1802 Date: 12 August 2019 Acknowledgments: The project has been supported by funding from the South Australian Wine Industry Development Scheme (SAWIDS), the Riverland Wine and Wine Australia. The contributions of Chris Byrne, The ‘Thinking 10’ Riverland Growers, Paul Dalby, Liz Waters and Paul Smith are gratefully acknowledged. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (June 2019). The authors advise that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, the University of Adelaide (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Signatures Issue No. Date of Issue Description Authors Approved 01 09/07/2019 Draft Final BB, KC, BO, VP, MQ, RRS, TR, JS, KT, WU, SW, SAW, HZ, ZS. SW Report 02 12/08/2019 Final Report BB, KC, BO, VP, MQ, RRS, TR, JS, KT, WU, SW, SAW, HZ, ZS.
    [Show full text]
  • Download Date 08/10/2021 00:06:14
    Instructions to the Marine Meteorological Observers of the U. S. Weather Bureau, 4th edition. Item Type Book Publisher Government Printing Office Download date 08/10/2021 00:06:14 Item License http://www.oceandocs.org/license Link to Item http://hdl.handle.net/1834/5222 �'w. B. No. 866 U. s.(pEPARTMENTOF AGRICULTURE) WEATHER BUREAU INSTRUCTIONS TO MARINE METEOROLOGICAL OBSERVERS rr;e �� 4 c -s::r­ ho,M - M, MARIME f'IVTS!ON CIRCULAR FOURTH EDITION lfMed /9).5" WASHINGTON GOVERNMENT PRINTING OFFIOlll 1926 Blank page retained for pagination ILLUSTRATIONS Pnlle Barograph, Richard's----------------------------------------------­ aro B meter: 33 Jlnerold------------------------�--------------------------------- ]darlne__________________________________________________________ _ 32 _ _ __ llalos ____ ______________________________ __________ _____________ _ __ 24 g lly rogrnph, Rlchard's--�-------------------------------------------- 51 _ ll _______________________ __ ygrometer, with stationary thermometers 40 h __________________________________________________ Payc rometer, sling 40 r The mograph--------------------------------------------------------- 3U Thermometer supports_ ·---------------------------------------------­ · 38 er Th mometer, water------------------------------------------------­ 37 ime T chart, showing·local time corresponding to Greenwich mean noon__ 41 Ve rniers____________________________________________________________ _ 90 a W b1ings,' fiag· and lantern displaY----------------------------------- 28 eat ________________________________
    [Show full text]
  • Climate Change and Global Warming, Introduction to Various Meteorological Equipments Subject: AGRICULTURE
    Class Notes Class: XI Topic: Climate change and global warming, Introduction to various meteorological equipments Subject: AGRICULTURE UNIT-II Climate change and global warming Climate change, also called global warming, refers to the rise in average surface temperatures on Earth. Temperature records going back to the late 19th Century show that the average temperature of the Earth's surface has increased by about 0.8C (1.4F) in the last 100 years. About 0.6C (1.0F) of this warming occurred in the last three decades. Satellite data shows an average increase in global sea levels of some 3mm per year in recent decades. The Greenland Ice Sheet has experienced record melting in recent years; if the entire 2.8 million cubic km sheet were to melt, it would raise sea levels by 6m. Satellite data shows the West Antarctic Ice Sheet is also losing mass, and a recent study indicated that East Antarctica, which had displayed no clear warming or cooling trend, may also have started to lose mass in the last few years. But scientists are not expecting dramatic changes. In some places, mass may actually increase as warming temperatures drive the production of more snows. The effects of a changing climate can also be seen in vegetation and land animals. These include earlier flowering and fruiting times for plants and changes in the territories (or ranges) occupied by animals. Causes of Global Warming Greenhouse Gases Some gases in the Earth's atmosphere act a bit like the glass in a greenhouse, trapping the sun's heat and stopping it from leaking back into space.
    [Show full text]
  • Weather Monitoring Instruments & Systems
    Weather Monitoring Instruments & Systems 2013 Catalog www.novalynx.com Table of Contents Applications 3 200-85000 Ultrasonic Anemometer ...................................... 54 System Design ......................................................................... 4 200-7000 WindSonic Ultrasonic Anemometer ..................... 55 Site Considerations .................................................................. 5 200-1390 WindObserver II Ultrasonic Anemometer ............ 56 Typical System Drawings ........................................................ 6 200-101908 Current Loop Wind Sensors.............................. 57 Typical System Drawings ........................................................ 7 200-102083 Wind Mark III Wind Sensors ............................ 58 Typical System Drawings ........................................................ 8 200-2020 Micro Response Wind Sensors ............................. 59 Weather Stations 9 200-2030 Micro Response Wind Sensors ............................. 60 110-WS-16 Modular Weather Station ................................... 10 200-WS-21-A Dual Set Point Wind Alarm ........................... 61 110-WS-16 Modular Weather Station ................................... 11 200-WS-23 Current Loop Wind Sensor ................................ 62 110-WS-18 Portable Weather Station.................................... 12 200-455 Totalizing Anemometer with 10-Min Timer ........... 63 110-WS-18 Portable Weather Station.................................... 13 200-WS-25 Wind Logger with Real-Time
    [Show full text]
  • Master Reference
    Master A term extractor for the World Meteorological Organization - a comparison of different systems MEJIA, Sofia Abstract At the World Meteorological Organization term extraction is currently done manually for certain publications. There is a need to extract terminology from larger publications and for the terminology database to contain more technical terms. We have evaluated two term extractos, MultiTrans Prism 5.5 and SynchroTerm 2014, following the EAGLES methodology combined with ISO SQuaRE series quality characteristics. The results show that MultiTrans Prism 5.5 fulfils better the requirements of users within the World Meteorological Organization. They also show that these two term extractors are far from accomplishing the task as a terminographer would. Reference MEJIA, Sofia. A term extractor for the World Meteorological Organization - a comparison of different systems. Master : Univ. Genève, 2016 Available at: http://archive-ouverte.unige.ch/unige:104950 Disclaimer: layout of this document may differ from the published version. 1 / 1 MA Thesis Sofía Magdalena Mejía A TERM EXTRACTOR FOR THE WORLD METEOROLOGICAL ORGANIZATION – A COMPARISON OF DIFFERENT SYSTEMS FTI, Université de Genève Département de traitement informatique multilingue MA Thesis Director: Prof. Marianne Starlander MA Thesis Jury: Prof. Lucía Morado Vázquez Academic year: 2015-2016; session: January 2016 - 2 - Acknowledgements I would like to thank first and foremost my thesis director, Marianne Starlander, for her infinite patience, her support and encouragement. For being always available and for the happiness she exudes. I am also grateful to Lucía Morado Vázquez for accepting to act as jury of this thesis. From the University of Geneva I would also like to thank Aurélie Picton and Donatella Pullitano for their generous advice on term extractors and for helping me and my director to shape this study.
    [Show full text]
  • Meteorological Systems for Hydrological Purposes
    WORLD METEOROLOGICAL ORGANIZATION OPERATIONAL HYDROLOGY REPORT No. 42 METEOROLOGICAL SYSTEMS FOR HYDROLOGICAL PURPOSES WMO-No. 813 Secretariat of the World Meteorological Organization – Geneva – Switzerland THE WORLD METEOROLOGICAL ORGANIZATION The World Meteorological Organization (WMO), of which 187* States and Territories are Members, is a specialized agency of the United Nations. The purposes of the Organization are: (a) To facilitate worldwide cooperation in the establishment of networks of stations for the making of meteorological observations as well as hydrological and other geophysical observations related to meteorology, and to promote the establishment and maintenance of centres charged with the provision of meteorological and related services; (b) To promote the establishment and maintenance of systems for the rapid exchange of meteorological and related infor- mation; (c) To promote standardization of meteorological and related observations and to ensure the uniform publication of observations and statistics; (d) To further the application of meteorology to aviation, shipping, water problems, agriculture and other human activi- ties; (e) To promote activities in operational hydrology and to further close cooperation between Meteorological and Hydrological Services; and (f) To encourage research and training in meteorology and, as appropriate, in related fields and to assist in coordinating the international aspects of such research and training. (Convention of the World Meteorological Organization, Article 2) The Organization
    [Show full text]
  • Winter Soil Respiration in a Humid Temperate Forest: the Roles of Moisture, Temperature, and Snowpack
    University of New Hampshire University of New Hampshire Scholars' Repository Institute for the Study of Earth, Oceans, and Earth Systems Research Center Space (EOS) 12-23-2016 Winter soil respiration in a humid temperate forest: The roles of moisture, temperature, and snowpack Alexandra R. Contosta University of New Hampshire, Durham, [email protected] Elizabeth A. Burakowski University of New Hampshire, Durham, [email protected] Ruth K. Varner University of New Hampshire, Durham, [email protected] Serita D. Frey University of New Hampshire, Durham, [email protected] Follow this and additional works at: https://scholars.unh.edu/ersc Recommended Citation Contosta, A. R., E. A. Burakowski, R. K. Varner, and S. D. Frey (2016), Winter soil respiration in a humid temperate forest: The roles of moisture, temperature, and snowpack, J. Geophys. Res. Biogeosci., 121, 3072–3088, https://dx.doi.org/10.1002/2016JG003450 This Article is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Systems Research Center by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PUBLICATIONS Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Winter soil respiration in a humid temperate forest: 10.1002/2016JG003450 The roles of moisture, temperature, and snowpack Key Points: Alexandra R.
    [Show full text]
  • Practical Manual
    PRACTICAL MANUAL on AGROMETEOROLOGY Dr. L.R. Yadav Dr. S.S. Yadav Dr. O.P. Sharma Dr. A. C. Shivran 2012 Department of Agronomy S.K.N. College of Agriculture (SK Rajasthan Agricultural University) Campus : Jobner – 303329 (Rajasthan) SKN COLLEGE OF AGRICULTURE (S.K.RAJASTHAN AGRICULTURAL UNIVERSITY: BIKANER) JOBNER-303329 Distt. - Jaipur (Raj.) Phone: 01425-254022 (O), 01425-254022 (Fax) 01425-254023(R) Dr. G.L. Keshwa Dean FOREWORD Weather and crop production are integral components of agriculture. During the era of global warming and climate change, the role of agrometeorology in agriculture has become more important in mitigating the challenges arised by climate change. Successful crop production depends on the prevailing weather conditions at different stages of crop growth. This manual has been prepared to enhance the understanding of undergraduate students regarding measurement of weather elements, their interpretation and role in crop production. Dr. L.R. Yadav, Dr. S.S. Yadav, Dr. O.P. Sharma and Dr. A.C Shivran deserve congratulation for bringing out this manual for benefit of students, readers and all those involved in the measurement of weather data. PREFACE Agriculture and weather are the essential components of the crop production. Crop production depends upon the prevailing weather conditions at different stages of crop growth. Precise measurements of weather elements ar e required to understand the proper interpretation in relation to crop growth and development. Recently, the course curricula of undergraduate classes has been reoriented according to IV Dean‘s committee of ICAR. The practical exercises of this manual are according to new syllabi of agrometerology course running in the UG programme.
    [Show full text]
  • Downloaded 10/10/21 09:06 PM UTC Bulletin American Meteorological Society 1059
    John F. Griffiths A Chronology ol llems of Department of Meteorology Texas A8cM University Meteorological interest College Station, Tex. 77843 Any attempt to select important events in meteorology The importance of some events was not really recog- must be a personal choice. I have tried to be objective nized until years later (note the correspondence by and, additionally, have had input from some of my Haurwitz in the August 1966 BULLETIN, p. 659, concern- colleagues in the Department of Meteorology. Neverthe- ing Coriolis's contribution) and therefore, strictly, did less, I am likely to have omissions from the list, and I not contribute to the development of meteorology. No would welcome any suggestions (and corrections) from weather phenomena, such as the dates of extreme hurri- interested readers. Naturally, there were many sources canes, tornadoes, or droughts, have been included in this of reference, too many to list, but the METEOROLOGICAL present listing. Fewer individuals are given in the more AND GEOASTROPHYSICAL ABSTRACTS, Sir Napier Shaw's recent years for it is easier to identify milestones of a Handbook of Meteorology (vol. 1), "Meteorologische science when many years have passed. 1 Geschichstabellen" by C. Kassner, and One Hundred i Linke, F. (Ed.), 1951: Meteorologisches Taschenbuch, vol. Years of International Co-operation in Meteorology I, 2nd ed., Akademische Verlagsgesellschaft Geest & Portig, (1873-1973) (WMO No. 345) were most useful. Leipzig, pp. 330-359. (1st ed., 1931.) B.C. 1066 CHOU dynasty was founded in China, during which official records were kept that in- cluded climatic descriptions. #600 THALES attributed the yearly Nile River floods to wind changes.
    [Show full text]
  • AGRO AUTOMATIC WEATHER STATION Surface Instrument Division Office of Climate Research and Services
    AGRO AUTOMATIC WEATHER STATION Surface Instrument Division Office of Climate Research and Services Definition of AWS An automatic weather station (AWS) is defined as a “meteorological station at which observations are made and transmitted automatically” (WMO, 1992a). [WMO Guide to Meteorological Instruments and Methods of Observation, No.8, 7th Edition Aug 2008] World Meteorological Organization, 1992a: International Meteorological Vocabulary. Second edition, WMO-No. 182, Geneva. History of AWS Background AWS in the international context AWS in IMD - since 1980s.. Earlier known as DCPs Upgradation during 1990s Proposal for installation of 125 AWS started in 2004. Commissioned during 2006-07. Proposal of 550 AWS in which 127 Agro AWS have been installed at AFMUs and some KVKs. Conditions for AWS site selection Meta data of AWS sites Selections of sensors as per AWS site requirement. Guidelines on technical aspects followed in conformity with WMO CIMO Guide AWS network of IMD 100 AWS of Sutron, USA make – PRBS type installed during 2006 and 2007. 5 are Agro based AWS- Anand, Dapoli, Kanpur, Pune and Rahuri 25 AWS of Astra, India make – PRBS type installed during 2006 and 2007. 550 AWS – (550 already installed) of Astra make – TDMA type installed all over India in 2009-2012. 127 are Agro based AWS NETWORK OF 125 AWS. NETWORK OF 550 AWS Network of AWS and Agro-AWS (phase I) Around 707 Automatic Weather stations and 1351 ARGs in IMD network State of art technology with 32 bit microprocessor TDMA type of transmission through satellite
    [Show full text]