Modeling and Design Empirical Formulas of Microstrip Ridge Gap Waveguide

Total Page:16

File Type:pdf, Size:1020Kb

Modeling and Design Empirical Formulas of Microstrip Ridge Gap Waveguide CORE Metadata, citation and similar papers at core.ac.uk Provided by Concordia University Research Repository Received July 17, 2018, accepted August 28, 2018, date of publication September 10, 2018, date of current version October 8, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2869718 Modeling and Design Empirical Formulas of Microstrip Ridge Gap Waveguide ABDELMONIEM T. HASSAN 1, MOHAMED A. MOHARRAM HASSAN 1,2, (Member, IEEE), AND AHMED A. KISHK 1, (Fellow, IEEE) 1Electrical and Computer Engineering Department, Concordia University, Montreal, QC H4B 1R6, Canada 2Electronics and Electrical Communications Engineering Department, Cairo University, Giza 12613, Egypt Corresponding author: Abdelmoniem T. Hassan ([email protected]) ABSTRACT Recently, interest in the microstrip ridge gap waveguide (MRGW) has increased due to the need for a self-packaged and low-loss structures for millimeter-wave applications. The MRGW consists of a grounded textured surface, which is artificially representing a perfect magnetic conductor surface loaded with a thin low dielectric constant substrate with a printed strip. This is topped with another dielectric substrate covered with a conducting plate at the top as a ground plane. Currently, the full-wave and optimization tools are used to design the MRGW structure. Consequently, an efficient modeling and design tool for the MRGW is proposed in this paper via curve fitting. Closed form empirical expressions for the effective dielectric constant, characteristic impedance, and the dispersion effect are provided. The developed expressions are generalized for arbitrarily chosen MRGW parameters. The expressions are verified with the full-wave solution. The results show the potential of the proposed approach in modeling the MRGW structure INDEX TERMS Gap waveguide, RGW, microstrip, printed RGW, curve fitting. I. INTRODUCTION bottom sides and two rows of metallized via holes on the The millimeter-wave frequency band is a potential candi- left and right sides [9]. SIW provides the same advantages date for various 5G applications [1]. This requires high gain as the conventional metallic waveguide. However, this guid- antennas in an array arrangement with an efficient feeding ing structure suffers from dielectric losses, which can be of network. Typically, conventional waveguides are used to cre- concern at mm-wave frequancy range. ate a slot antenna array with low loss and high gain [2]. All the aforementioned limitations can be overcome, espe- However, at millimeter-wave (mm-wave) frequencies, feed- cially in the mm-wave range, by using gap waveguide ing network design becomes more complicated and diffi- technology introduced in [10]–[12]. The ridge gap waveg- cult to manufacture, especially to maintain the electrical uide (RGW) concept is based on an air gap sandwiched contact between the different metal parts [3], [4]. On the between two parallel plates, where most of the fields are con- other hand, planar microstrip technologies are also used for fined. The bottom plate has a smooth continuous metal (ridge) implementing antenna array feeding network due to its low surrounded by textured surfaces acting as an Artificial Mag- cost, compactness, and ease of manufacturing [5]. However, netic Conductor (AMC). A smooth metal plate covers the bot- dielectric and radiation losses [6], as well as the possibil- tom plate with an air gap, acting as the signal ground plane. ity of coupling to surface waves, limit the use of such The gap between these two parallel plates should be smaller technology [7] at mm-wave frequencies. Surface waves and than a quarter wavelength at the highest frequency over an the spurious radiation of the feeding network affect the radi- operation band to stop the waves over the textured surface ation characteristic of antenna arrays, such as the sidelobe and only allow it to propagate between the parallel plates. level and antenna gain. Moreover, the substrate integrated The main advantages of this technology are the alleviation of waveguide (SIW) is another guiding structure that was intro- dielectric and radiation losses, surface wave suppression and duced in [8] and has been used at mm-wave frequencies. resolving the electrical contact issue between the metal plates Basically, SIW resembles the waveguide technology in a at high frequencies. The AMC implementation has been real- printable format. Electromagnetic waves in SIW propagate ized using different approaches. It can be implemented using through the dielectric material with metal on the top and a metal pin (bed of nails) [13] or using mushroom patches 2169-3536 2018 IEEE. Translations and content mining are permitted for academic research only. 51002 Personal use is also permitted, but republication/redistribution requires IEEE permission. VOLUME 6, 2018 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. A. T. Hassan et al.: Modeling and Design Empirical Formulas of MRGW on microstrip substrate [14], which is referred to as printed expressions [26], [27], empirical expressions for the MRGW RGW (PRGW) [15]. are obtained. The analysis procedure of the MRGW is veri- Creating arbitrary circuits that have bends and discontinu- fied using structures in different scenarios. The main contri- ities is challenging in the RGW and PRGW configurations butions of this work can be summarized as follows: as this disturbs the bed of nails and mushroom periodicity. 1) proposing analysis and synthesis formulas for the This requires adjusting the nails or the mushroom positions. MRGW to facilitate the design process in Sec. II; To avoid such a problem, elevating the ridge away from 2) introducing general expressions for the effective dielec- the bed of nails or mushroom surface was proposed without tric constant and characteristic impedance for several the need to connect the ridge surface to the ground using a possible configurations of the MRGW in Sec II-A; thin low dielectric constant substrate. As such, the period- 3) demonstrating the validity of the proposed formulas for icity of the bed of nails or mushroom is not disturbed, and various cases of the MRGW in Sec. III; and the signal is propagating in the air-filled guiding structure. 4) considering the material dispersion at high frequency Also, the air gap can be filled with a dielectric. In this into the design formulas in Sec. IV. case, a printed circuit with all the needed discontinuities can be used with its ground and then flipped to face the periodic texture. Such a structure is referred to as inverted microstrip line as the signal is propagating in the dielectric substrate of the microstrip line. The inverted microstrip struc- ture is considered as packaged microstrip line [16], which was treated in several publications [17]–[21]. These are very FIGURE 1. Microstrip Ridge Gap Waveguide (MRGW) structure with complicated structures to be analyzed and designed due to the Electromagnetic Band Gap (EBG) mushroom with arrows indicate the interaction between the periodic structure and the microstrip field lines of the quasi-TEM mode. line. However, they have received more attention because of merging the advantages of the metallic waveguides in term of II. MRGW STRUCTURE AND MODELING low losses with the advantages of microstrip technologies in MRGW can be considered as a parallel plate waveguide filled terms of compact size and ease of fabrication. Hence, it can with air or dielectric with thickness d and permittivity r1, be a preferred candidate for feeding network design at the or a microstrip line with possible air substrate. The inner mm-wave frequency range. conductor surface of the microstrip line is the surface of Here, we will consider this structure in its general form the ridge. The microstrip line (ridge) is elevated above the where we consider the possibility of filling above and below AMC surface by a dielectric spacer that has permittivity r2 of the stripline with arbitrary dielectric materials, which will and thickness t. The geometry of the MRGW is presented be referred to as MRGW. One of the main obstacles to design in Fig. 1, which can be seen as an inverted microstrip line the MRGW is the absence of closed-form expressions to enclosed with an AMC. The electric field is mostly within calculate or synthesize the characteristic impedance and the the air gap. However, some of the fringing field lines will effective dielectric constant. Therefore, the design of these be in the substrate. As a consequence, the propagating mode lines and components such as power dividers, delay lines, is not a pure transverse electromagnetic mode (TEM), but and hybrids is based on numerical tools. In [22] a study with quasi-TEM. In addition, the substrate material underneath two 90◦ bends was conducted beside a quadruplet bandpass the ridge is nonmagnetic with unity relative magnetic per- filter design implemented using MRGW technology without meability (i.e., µ D1). An attractive advantage of MRGW using closed form expressions. Other work using MRGW configurations with an air gap is that the effective dielectric for antenna array design was implemented to provide high constant is much smaller than the spacer dielectric constant. gain using optimization tools [23]. Using optimization tools Therefore, the loss tangent is substantially reduced, and the is time-consuming, especially for antenna array design. The component dimensions can be increased, which gives more design time can be reduced if closed-form expressions are flexibility in the design at
Recommended publications
  • Ec6503 - Transmission Lines and Waveguides Transmission Lines and Waveguides Unit I - Transmission Line Theory 1
    EC6503 - TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define – Characteristic Impedance [M/J–2006, N/D–2006] Characteristic impedance is defined as the impedance of a transmission line measured at the sending end. It is given by 푍 푍0 = √ ⁄푌 where Z = R + jωL is the series impedance Y = G + jωC is the shunt admittance 2. State the line parameters of a transmission line. The line parameters of a transmission line are resistance, inductance, capacitance and conductance. Resistance (R) is defined as the loop resistance per unit length of the transmission line. Its unit is ohms/km. Inductance (L) is defined as the loop inductance per unit length of the transmission line. Its unit is Henries/km. Capacitance (C) is defined as the shunt capacitance per unit length between the two transmission lines. Its unit is Farad/km. Conductance (G) is defined as the shunt conductance per unit length between the two transmission lines. Its unit is mhos/km. 3. What are the secondary constants of a line? The secondary constants of a line are 푍 i. Characteristic impedance, 푍0 = √ ⁄푌 ii. Propagation constant, γ = α + jβ 4. Why the line parameters are called distributed elements? The line parameters R, L, C and G are distributed over the entire length of the transmission line. Hence they are called distributed parameters. They are also called primary constants. The infinite line, wavelength, velocity, propagation & Distortion line, the telephone cable 5. What is an infinite line? [M/J–2012, A/M–2004] An infinite line is a line where length is infinite.
    [Show full text]
  • Waveguides Waveguides, Like Transmission Lines, Are Structures Used to Guide Electromagnetic Waves from Point to Point. However
    Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves (modes) are quite different. The differences in these modes result from the basic differences in geometry for a transmission line and a waveguide. Waveguides can be generally classified as either metal waveguides or dielectric waveguides. Metal waveguides normally take the form of an enclosed conducting metal pipe. The waves propagating inside the metal waveguide may be characterized by reflections from the conducting walls. The dielectric waveguide consists of dielectrics only and employs reflections from dielectric interfaces to propagate the electromagnetic wave along the waveguide. Metal Waveguides Dielectric Waveguides Comparison of Waveguide and Transmission Line Characteristics Transmission line Waveguide • Two or more conductors CMetal waveguides are typically separated by some insulating one enclosed conductor filled medium (two-wire, coaxial, with an insulating medium microstrip, etc.). (rectangular, circular) while a dielectric waveguide consists of multiple dielectrics. • Normal operating mode is the COperating modes are TE or TM TEM or quasi-TEM mode (can modes (cannot support a TEM support TE and TM modes but mode). these modes are typically undesirable). • No cutoff frequency for the TEM CMust operate the waveguide at a mode. Transmission lines can frequency above the respective transmit signals from DC up to TE or TM mode cutoff frequency high frequency. for that mode to propagate. • Significant signal attenuation at CLower signal attenuation at high high frequencies due to frequencies than transmission conductor and dielectric losses. lines. • Small cross-section transmission CMetal waveguides can transmit lines (like coaxial cables) can high power levels.
    [Show full text]
  • Wave Guides Summary and Problems
    ECE 144 Electromagnetic Fields and Waves Bob York General Waveguide Theory Basic Equations (ωt γz) Consider wave propagation along the z-axis, with fields varying in time and distance according to e − . The propagation constant γ gives us much information about the character of the waves. We will assume that the fields propagating in a waveguide along the z-axis have no other variation with z,thatis,the transverse fields do not change shape (other than in magnitude and phase) as the wave propagates. Maxwell’s curl equations in a source-free region (ρ =0andJ = 0) can be combined to give the wave equations, or in terms of phasors, the Helmholtz equations: 2E + k2E =0 2H + k2H =0 ∇ ∇ where k = ω√µ. In rectangular or cylindrical coordinates, the vector Laplacian can be broken into two parts ∂2E 2E = 2E + ∇ ∇t ∂z2 γz so that with the assumed e− dependence we get the wave equations 2E +(γ2 + k2)E =0 2H +(γ2 + k2)H =0 ∇t ∇t (ωt γz) Substituting the e − into Maxwell’s curl equations separately gives (for rectangular coordinates) E = ωµH H = ωE ∇ × − ∇ × ∂Ez ∂Hz + γEy = ωµHx + γHy = ωEx ∂y − ∂y ∂Ez ∂Hz γEx = ωµHy γHx = ωEy − − ∂x − − − ∂x ∂Ey ∂Ex ∂Hy ∂Hx = ωµHz = ωEz ∂x − ∂y − ∂x − ∂y These can be rearranged to express all of the transverse fieldcomponentsintermsofEz and Hz,giving 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ex = γ + ωµ Hx = ω γ −γ2 + k2 ∂x ∂y γ2 + k2 ∂y − ∂x w W w W 1 ∂Ez ∂Hz 1 ∂Ez ∂Hz Ey = γ + ωµ Hy = ω + γ γ2 + k2 − ∂y ∂x −γ2 + k2 ∂x ∂y w W w W For propagating waves, γ = β,whereβ is a real number provided there is no loss.
    [Show full text]
  • Uniform Plane Waves
    38 2. Uniform Plane Waves Because also ∂zEz = 0, it follows that Ez must be a constant, independent of z, t. Excluding static solutions, we may take this constant to be zero. Similarly, we have 2 = Hz 0. Thus, the fields have components only along the x, y directions: E(z, t) = xˆ Ex(z, t)+yˆ Ey(z, t) Uniform Plane Waves (transverse fields) (2.1.2) H(z, t) = xˆ Hx(z, t)+yˆ Hy(z, t) These fields must satisfy Faraday’s and Amp`ere’s laws in Eqs. (2.1.1). We rewrite these equations in a more convenient form by replacing and μ by: 1 η 1 μ = ,μ= , where c = √ ,η= (2.1.3) ηc c μ Thus, c, η are the speed of light and characteristic impedance of the propagation medium. Then, the first two of Eqs. (2.1.1) may be written in the equivalent forms: ∂E 1 ∂H ˆz × =− η 2.1 Uniform Plane Waves in Lossless Media ∂z c ∂t (2.1.4) ∂H 1 ∂E The simplest electromagnetic waves are uniform plane waves propagating along some η ˆz × = ∂z c ∂t fixed direction, say the z-direction, in a lossless medium {, μ}. The assumption of uniformity means that the fields have no dependence on the The first may be solved for ∂zE by crossing it with ˆz. Using the BAC-CAB rule, and transverse coordinates x, y and are functions only of z, t. Thus, we look for solutions noting that E has no z-component, we have: of Maxwell’s equations of the form: E(x, y, z, t)= E(z, t) and H(x, y, z, t)= H(z, t).
    [Show full text]
  • Microstrip Solutions for Innovative Microwave Feed Systems
    Examensarbete LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Magnus Petersson 2001-10-24 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings Universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiTH-ITN-ED-EX--2001/05--SE Microstrip Solutions for Innovative Microwave Feed Systems Examensarbete utfört i Mikrovågsteknik / RF-elektronik vid Tekniska Högskolan i Linköping, Campus Norrköping Magnus Petersson Handledare: Ulf Nordh Per Törngren Examinator: Håkan Träff Norrköping den 24 oktober, 2001 'DWXP $YGHOQLQJ,QVWLWXWLRQ Date Division, Department Institutionen för teknik och naturvetenskap 2001-10-24 Ã Department of Science and Technology 6SUnN 5DSSRUWW\S ,6%1 Language Report category BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LiTH-ITN-ED-EX--2001/05--SE C-uppsats 6HULHWLWHOÃRFKÃVHULHQXPPHUÃÃÃÃÃÃÃÃÃÃÃÃ,661 D-uppsats Title of series, numbering ___________________________________ _ ________________ Övrig rapport _ ________________ 85/I|UHOHNWURQLVNYHUVLRQ www.ep.liu.se/exjobb/itn/2001/ed/005/ 7LWHO Microstrip Solutions for Innovative Microwave Feed Systems Title )|UIDWWDUH Magnus Petersson Author 6DPPDQIDWWQLQJ Abstract This report is introduced with a presentation of fundamental electromagnetic theories, which have helped a lot in the achievement of methods for calculation and design of microstrip transmission lines and circulators. The used software for the work is also based on these theories. General considerations when designing microstrip solutions, such as different types of transmission lines and circulators, are then presented. Especially the design steps for microstrip lines, which have been used in this project, are described. Discontinuities, like bends of microstrip lines, are treated and simulated.
    [Show full text]
  • EMC Fundamentals
    ITU Training on Conformance and Interoperability for ARB Region CERT, 2-6 April 2013, EMC fundamentals Presented by: Karim Loukil & Kaïs Siala [email protected] [email protected] 1 Basics of electromagnetics 2 Electromagnetic waves A wave is a moving vibration λ Antenna V λ (m) = c(m/s) / F(Hz) 3 Definitions • The wavelength is the distance traveled by a wave in an oscillation cycle • Frequency is measured by the number of cycles per second and the unit is Hz . One cycle per second is one Hertz. 4 Electromagnetic waves (2) • An electromagnetic wave consists of: an electric field E (produced by the force of electric charges) a magnetic field H (produced by the movement of electric charges) • The fields E and H are orthogonal and are m oving at the speed of light 8 c = 3. 10 m/s 5 Electromagnetic waves (3) 6 E and H fields Electric field The field amplitude is l expressed in (V/m). E(V/m) Magnetic field The field amplitude is expressed in (A/m). d H(A /m) Power density Radiated power is perpendicular to a surface, divided by the area of ​​the surface. The power density is expressed as S (W / m²), or (mW /cm ²) , or (µW / cm ²). 7 E and H fields • Near a whip, the dominant field is the E field. The impedance in this area is Zc > 377 ohms. • Near a loop, the dominant field is the H field. The impedance in this area is Z c <377 ohms. 8 Plane wave 9 The EMC way of thinking Electrical domain Electromagnetic domain Voltage V (Volt) Electric Field E (V/m) Current I (Amp) Magnetic field H (A/m) Impedance Z (Ohm) Characteristic
    [Show full text]
  • Substrate Integrated Waveguide (SIW) Is a Very Promising Technique in That We Can Make Use of the Advantages of Both Waveguides and Planar Transmission Lines
    UNIVERSITÉ DE MONTRÉAL TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE YONG JU BAN DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ EN VUE DE L‟OBTENTION DU DIPLÔ ME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES (GÉNIE ÉLECTRIQUE) DÉCEMBRE 2010 © Yong Ju Ban, 2010. UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Ce mémoire intitulé: TUNABLE FERRITE PHASE SHIFTERS USING SUBSTRATE INTEGRATED WAVEGUIDE TECHNIQUE présenté par : BAN, YONG JU en vue de l‟obtention du diplôme de : Maîtrise ès sciences appliquées a été dûment accepté par le jury d‟examen constitué de : M. CARDINAL, Christian, Ph. D., président M. WU, Ke, Ph. D., membre et directeur de recherche M. DESLANDES, Dominic, Ph. D., membre iii DEDICATION To my lovely wife Jeong Min And my two sons Jione & Junone iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Prof. Ke Wu, for having accepted me and given me the opportunity to pursue my master study in such a challenging and exciting research field, and for his invaluable guidance and encouragement throughout the work involved in this thesis. I would like to thank Mr. Jules Gauthier, Mr. Jean-Sebastien Décarie and other staffs of Poly-Grames Research Center for their skillful technical supports during my study and experiments. I thank Zhenyu Zhang, Fanfan He and Anthony Ghiotto for their helpful discussions. And many thanks should be extended to Sulav Adhikari for his invaluable supports for my study and thesis. I also appreciate my colleagues Xiaoma Jiang, Nikolay Volobouev, Adrey Taikov, Marie Chantal, Parmeet Chawala, Jawad Abdulnour and Shyam Gupta in SDP for their understanding and endurance for my study.
    [Show full text]
  • CHAPTER-I MICROWAVE TRANSMISSION LINES the Electromagnetic Spectrum Is the Range of All Possible Frequencies of Electromagnetic
    CHAPTER-I MICROWAVE TRANSMISSION LINES The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation emitted or absolved. The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom as shown in Fig 1.1. The limit for long wavelengths is beyond one‟s imagination. One theory existing depicts that the short wavelength limit is in the vicinity of the Planck length. A few scientists do believe that the spectrum is infinite and continuous. Microwaves region forms a small part of the entire electromagnetic spectrum as shown in Fig 1.1. Microwaves are electromagnetic waves generally in the frequency range of 1 G Hz to 300 GHz. However with the advent of technology usage of higher end of the frequencies became possible and now the range is extended almost to 1000 G Hz. Fig:1.1: Electromagnetic Spectrum 1 Brief history of Microwaves • Modern electromagnetic theory was formulated in 1873 by James Clerk Maxwell, a German scientist solely from mathematical considerations. • Maxwell‟s formulation was cast in its modern form by Oliver Heaviside, during the period 1885 to 1887. • Heinrich Hertz, a German professor of physics carried out a set of experiments during 1887-1891 that completely validated Maxwell‟s theory of electromagnetic waves. • It was only in the 1940‟s (World War II) that microwave theory received substantial interest that led to radar development. • Communication systems using microwave technology began to develop soon after the birth of radar.
    [Show full text]
  • A Highly Symmetric Two-Handed Metamaterial Spontaneously Matching the Wave Impedance
    A highly symmetric two-handed metamaterial spontaneously matching the wave impedance Yi- Ju Chiang1 and Ta-Jen Yen1,2† 1 Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C. 2 Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, R.O.C. † E-mail: [email protected]; Tel: 886-3-5742174; Fax: 886-3-5722366 Abstract: We demonstrate a two-handed metamaterial (THM), composed of highly symmetric three-layered structures operated at normal incidence. Not only does the THM exhibit two distinct allowed bands with right- handed and left-handed electromagnetic responses, but posses a further advantage of being independent to the polarizations of external excitations. In addition, the THM automatically matches the wave impedance in free space, leading to maximum transmittances about 0.8 dB in the left-handed band and almost 0 dB in the right-handed band, respectively. Such a THM can be employed for diverse electromagnetic devices including dual-band bandpass filters, ultra-wide bandpass filters and superlenses. ©2008 Optical Society of America OCIS codes: (160.3918) Metamaterials; (350.3618) Left-handed materials; (260.5740) Resonance; (350.4010) Microwaves. References and links 1. J. D. Watson, and F. H. C. Crick, "Molecular Structure of Nucleic Acids," Nature 171, 737-738 (1953). 2. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Van der Marel, and A. Rich, "Molecular structure of a left-handed double helical DNA fragment at atomic resolution," Nature 282, 680- 686 (1979).
    [Show full text]
  • Transmission Lines TEM Waves
    Tele 2060 Transmission Lines • Transverse Electromagnetic (TEM) Waves • Structure of Transmission Lines • Lossless Transmission Lines Martin B.H. Weiss Transmission of Electromagnetic Energy - 1 University of Pittsburgh Tele 2060 TEM Waves • Definition: A Wave in which the Electric Field, the Magnetic Field, and the Propogation Direction are Orthogonal Use the “Right Hand Rule” to Determine Relative Orientation Thumb of Right Hand Indicates Direction of Propagation Curved Fingers of Right Hand Indicates the Direction of the Magnetic Field The Electric Field is Orthogonal ω β • Electric Field: e(t,x) = Emaxsin( t- x) V/m ω β • Magnetic Field: h(t,x) = Hmaxsin( t- x) A/m β=2π/λ ω=2πf=2π/T x is Distance Martin B.H. Weiss Transmission of Electromagnetic Energy - 2 University of Pittsburgh Tele 2060 TEM Waves λ • Note that =vp/f Same as Distance = (Speed * Time) in Physics vp is the Phase Velocity In Free Space, vp=c, the Speed of Light ==E µε • Wave Impedance: Z0 H = 1 • Phase Velocity: vp µε Martin B.H. Weiss Transmission of Electromagnetic Energy - 3 University of Pittsburgh Tele 2060 Transmission Constants • Electric Permittivity of the Transmission Medium (ε) ε = ε ε r 0 Where ε is r The Relative Permittivity Also the Dielectric Constant Typically Between 1 and 5 -12 ε = 8.85*10 (Farads/meter) 0 • Magnetic Permeability of the Transmission Medium (µ) µ=µ µ r 0 Where µ is the Relative Permeability r -7 µ = 4 *10 Henry/meter 0 Martin B.H. Weiss Transmission of Electromagnetic Energy - 4 University of Pittsburgh Tele 2060 Model of a Transmission Line L∆xR∆x ii-∆i ∆i v C∆xG∆xv-∆v ∆x Martin B.H.
    [Show full text]
  • The Design and Analysis of a Microstrip Line Which Utilizes
    THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Jerika Dawn Cleveland In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Electrical and Computer Engineering April 2019 Fargo, North Dakota North Dakota State University Graduate School Title THE DESIGN AND ANALYSIS OF A MICROSTRIP LINE WHICH UTILIZES CAPACITIVE GAPS AND MAGNETIC RESPONSIVE PARTICLES TO VARY THE REACTANCE OF THE SURFACE IMPEDANCE By Jerika Dawn Cleveland The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Benjamin D. Braaten Chair Dr. Daniel L. Ewert Dr. Jeffery Allen Approved: April 26, 2019 Dr. Benjamin D. Braaten Date Department Chair ABSTRACT This thesis presents the work of using magnetic responsive particles as a method to manipulate the surface impedance reactance of a microstrip line containing uniform capacitive gaps and cavities containing the particles. In order to determine the transmission line’s surface impedances created by each gap and particle containing cavities, a sub-unit cell that centers the gap and cavities was used. Shown in simulation, the magnetic responsive particles can then be manipulated to increase or decrease the reactance of the surface impedance based on the strength of the magnetic field present. The sub-unit cell with the greatest reactance change was then implemented into a unit cell, which is a cascade of sub-unit cells.
    [Show full text]
  • Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines
    Fields, Waves and Transmission Lines Fields, Waves and Transmission Lines F. A. Benson Emeritus Professor Formerly Head of Department Electronic and Electrical Engineering University of Sheffield and T. M. Benson Senior Lecturer Electrical and Electronic Engineering University of Nottingham IUI11 SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. First edition 1991 © 1991 F. A. Benson and T. M. Benson Originally published by Chapman & Hali in 1991 0412 363704 o 442 31470 1 (USA) Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the informaton contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication data Benson, F. A. (Frank Atkinson), 1921- Fields, waves, and transmission lines/F. A. Benson and T.
    [Show full text]