X86 Assembly Language Reference Manual

Total Page:16

File Type:pdf, Size:1020Kb

X86 Assembly Language Reference Manual x86 Assembly Language Reference Manual 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARCare licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license agreements. X Window System is a trademark of X Consortium, Inc. THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME. Please Recycle Contents Preface. xvii 1. Assembler Input . 1 Introduction . 1 Source Files in Assembly Language Format. 2 File Organization . 2 Statements. 3 Values and Symbol Types . 4 Expressions. 6 Expression Syntax . 7 Expression Semantics (Absolute vs. Relocatable) . 9 Machine Instruction Syntax . 10 Instruction Description . 12 Pseudo Operations . 14 General Pseudo Operations . 14 Symbol Definition Pseudo Operations . 19 iii 2. Instruction-Set Mapping . 21 Introduction . 22 Notational Conventions . 23 References . 26 Segment Register Instructions . 26 Load Full Pointer (lds,les, lfs, lgs, and lss) . 26 Pop Stack into Word (pop). 27 Push Word/Long onto Stack (push). 28 I/O Instructions . 29 Input from Port (in, ins) . 29 Output from Port (out, outs) . 31 Flag Instructions. 32 Load Flags into AH Register (lahf) . 32 Store AH into Flags (sahf). 33 Pop Stack into Flag (popf) . 33 Push Flag Register Onto Stack (pushf) . 34 Complement Carry Flag (cmc). 35 Clear Carry Flag (clc). 35 Set Carry Flag (stc). 36 Clear Interrupt Flag (cli) . 36 Set Interrupt Flag (sti) . 37 Clear Direction Flag (cld) . 37 Set Direction Flag (std) . 38 Arithmetic Logical Instructions . 38 iv x86 Assembly Language Reference Manual—November 1995 Integer Addition (add) . 38 Integer Add With Carry (adc) . 39 Integer Subtraction (sub) . 40 Integer Subtraction With Borrow (sbb) . 41 Compare Two Operands (cmp) . 42 Increment by 1 (inc). 43 Decrease by 1 (dec) . 44 Logical Comparison or Test (test) . 45 Shift (sal, shl, sar, shr) . 46 Double Precision Shift Left (shld) . 48 Double Precision Shift Right (shrd). 49 One’s Complement Negation (not) . 50 Two’s Complement Negation (neg). 50 Check Array Index Against Bounds (bound). 51 Logical And (and) . 52 Logical Inclusive OR (or) . 54 Logical Exclusive OR (xor) . 55 Multiply and Divide Instructions . 56 Signed Multiply (imul) . 57 Unsigned Multiplication of AL, AX or EAX(mul) . 58 Unsigned Divide (div). 60 Signed Divide (idiv) . 61 Conversion Instructions . 62 Convert Byte to Word (cbtw) . 62 Contents v Convert Word to Long (cwtl) . 63 Convert Signed Word to Signed Double Word (cwtd) . 63 Convert Signed Long to Signed Double Long (cltd) . 64 Decimal Arithmetic Instructions . 64 Decimal Adjust AL after Addition (daa) . 64 Decimal Adjust AL after Subtraction (das). 65 ASCII Adjust after Addition (aaa) . 65 ASCII Adjust after Subtraction (aas) . 66 ASCII Adjust AX after Multiply (aam) . 67 ASCII Adjust AX before Division (aad) . 68 Coprocessor Instructions. 69 Wait (wait, fwait) . 69 String Instructions . 69 Move Data from String to String (movs). 70 Compare String Operands (cmps) . 71 Store String Data (stos) . 72 The Load String Operand (lods) . 73 Compare String Data (scas) . 75 Look-Up Translation Table (xlat) . 76 Repeat String Operation (rep, repnz, repz) . 77 Procedure Call and Return Instructions . 78 Far Call — Procedure Call (lcall) . 78 Near Call — Procedure Call (call) . 79 Return from Procedure (ret) . 80 vi x86 Assembly Language Reference Manual—November 1995 Long Return (lret) . 81 Enter/Make Stack Frame for Procedure Parameters (enter) 82 High Level Procedure Exit (leave). 83 Jump Instructions. 83 Jump if ECX is Zero (jcxz). 83 Loop Control with CX Counter (loop, loopnz, loopz). 84 Jump (jmp, ljmp) . 85 Interrupt Instructions . 87 Call to Interrupt Procedure (int, into) . 87 Interrupt Return (iret) . 89 Protection Model Instructions . 90 Store Local Descriptor Table Register (sldt) . 90 Store Task Register (str). 90 Load Local Descriptor Table Register (lldt) . 91 Load Task Register (ltr). ..
Recommended publications
  • How Data Hazards Can Be Removed Effectively
    International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 116 ISSN 2229-5518 How Data Hazards can be removed effectively Muhammad Zeeshan, Saadia Anayat, Rabia and Nabila Rehman Abstract—For fast Processing of instructions in computer architecture, the most frequently used technique is Pipelining technique, the Pipelining is consider an important implementation technique used in computer hardware for multi-processing of instructions. Although multiple instructions can be executed at the same time with the help of pipelining, but sometimes multi-processing create a critical situation that altered the normal CPU executions in expected way, sometime it may cause processing delay and produce incorrect computational results than expected. This situation is known as hazard. Pipelining processing increase the processing speed of the CPU but these Hazards that accrue due to multi-processing may sometime decrease the CPU processing. Hazards can be needed to handle properly at the beginning otherwise it causes serious damage to pipelining processing or overall performance of computation can be effected. Data hazard is one from three types of pipeline hazards. It may result in Race condition if we ignore a data hazard, so it is essential to resolve data hazards properly. In this paper, we tries to present some ideas to deal with data hazards are presented i.e. introduce idea how data hazards are harmful for processing and what is the cause of data hazards, why data hazard accord, how we remove data hazards effectively. While pipelining is very useful but there are several complications and serious issue that may occurred related to pipelining i.e.
    [Show full text]
  • Also Includes Slides and Contents From
    The Compilation Toolchain Cross-Compilation for Embedded Systems Prof. Andrea Marongiu ([email protected]) Toolchain The toolchain is a set of development tools used in association with source code or binaries generated from the source code • Enables development in a programming language (e.g., C/C++) • It is used for a lot of operations such as a) Compilation b) Preparing Libraries Most common toolchain is the c) Reading a binary file (or part of it) GNU toolchain which is part of d) Debugging the GNU project • Normally it contains a) Compiler : Generate object files from source code files b) Linker: Link object files together to build a binary file c) Library Archiver: To group a set of object files into a library file d) Debugger: To debug the binary file while running e) And other tools The GNU Toolchain GNU (GNU’s Not Unix) The GNU toolchain has played a vital role in the development of the Linux kernel, BSD, and software for embedded systems. The GNU project produced a set of programming tools. Parts of the toolchain we will use are: -gcc: (GNU Compiler Collection): suite of compilers for many programming languages -binutils: Suite of tools including linker (ld), assembler (gas) -gdb: Code debugging tool -libc: Subset of standard C library (assuming a C compiler). -bash: free Unix shell (Bourne-again shell). Default shell on GNU/Linux systems and Mac OSX. Also ported to Microsoft Windows. -make: automation tool for compilation and build Program development tools The process of converting source code to an executable binary image requires several steps, each with its own tool.
    [Show full text]
  • Lecture Notes in Assembly Language
    Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling,
    [Show full text]
  • Computer Architecture and Assembly Language
    Computer Architecture and Assembly Language Gabriel Laskar EPITA 2015 License I Copyright c 2004-2005, ACU, Benoit Perrot I Copyright c 2004-2008, Alexandre Becoulet I Copyright c 2009-2013, Nicolas Pouillon I Copyright c 2014, Joël Porquet I Copyright c 2015, Gabriel Laskar Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being just ‘‘Copying this document’’, no Front-Cover Texts, and no Back-Cover Texts. Introduction Part I Introduction Gabriel Laskar (EPITA) CAAL 2015 3 / 378 Introduction Problem definition 1: Introduction Problem definition Outline Gabriel Laskar (EPITA) CAAL 2015 4 / 378 Introduction Problem definition What are we trying to learn? Computer Architecture What is in the hardware? I A bit of history of computers, current machines I Concepts and conventions: processing, memory, communication, optimization How does a machine run code? I Program execution model I Memory mapping, OS support Gabriel Laskar (EPITA) CAAL 2015 5 / 378 Introduction Problem definition What are we trying to learn? Assembly Language How to “talk” with the machine directly? I Mechanisms involved I Assembly language structure and usage I Low-level assembly language features I C inline assembly Gabriel Laskar (EPITA) CAAL 2015 6 / 378 I Programmers I Wise managers Introduction Problem definition Who do I talk to? I System gurus I Low-level enthusiasts Gabriel Laskar (EPITA) CAAL
    [Show full text]
  • The Von Neumann Computer Model 5/30/17, 10:03 PM
    The von Neumann Computer Model 5/30/17, 10:03 PM CIS-77 Home http://www.c-jump.com/CIS77/CIS77syllabus.htm The von Neumann Computer Model 1. The von Neumann Computer Model 2. Components of the Von Neumann Model 3. Communication Between Memory and Processing Unit 4. CPU data-path 5. Memory Operations 6. Understanding the MAR and the MDR 7. Understanding the MAR and the MDR, Cont. 8. ALU, the Processing Unit 9. ALU and the Word Length 10. Control Unit 11. Control Unit, Cont. 12. Input/Output 13. Input/Output Ports 14. Input/Output Address Space 15. Console Input/Output in Protected Memory Mode 16. Instruction Processing 17. Instruction Components 18. Why Learn Intel x86 ISA ? 19. Design of the x86 CPU Instruction Set 20. CPU Instruction Set 21. History of IBM PC 22. Early x86 Processor Family 23. 8086 and 8088 CPU 24. 80186 CPU 25. 80286 CPU 26. 80386 CPU 27. 80386 CPU, Cont. 28. 80486 CPU 29. Pentium (Intel 80586) 30. Pentium Pro 31. Pentium II 32. Itanium processor 1. The von Neumann Computer Model Von Neumann computer systems contain three main building blocks: The following block diagram shows major relationship between CPU components: the central processing unit (CPU), memory, and input/output devices (I/O). These three components are connected together using the system bus. The most prominent items within the CPU are the registers: they can be manipulated directly by a computer program. http://www.c-jump.com/CIS77/CPU/VonNeumann/lecture.html Page 1 of 15 IPR2017-01532 FanDuel, et al.
    [Show full text]
  • Flynn's Taxonomy
    Flynn’s Taxonomy n Michael Flynn (from Stanford) q Made a characterization of computer systems which became known as Flynn’s Taxonomy Computer Instructions Data SISD – Single Instruction Single Data Systems SI SISD SD SIMD – Single Instruction Multiple Data Systems “Vector Processors” SIMD SD SI SIMD SD Multiple Data SIMD SD MIMD Multiple Instructions Multiple Data Systems “Multi Processors” Multiple Instructions Multiple Data SI SIMD SD SI SIMD SD SI SIMD SD MISD – Multiple Instructions / Single Data Systems n Some people say “pipelining” lies here, but this is debatable Single Data Multiple Instructions SIMD SI SD SIMD SI SIMD SI Abbreviations •PC – Program Counter •MAR – Memory Access Register •M – Memory •MDR – Memory Data Register •A – Accumulator •ALU – Arithmetic Logic Unit •IR – Instruction Register •OP – Opcode •ADDR – Address •CLU – Control Logic Unit LOAD X n MAR <- PC n MDR <- M[ MAR ] n IR <- MDR n MAR <- IR[ ADDR ] n DECODER <- IR[ OP ] n MDR <- M[ MAR ] n A <- MDR ADD n MAR <- PC n MDR <- M[ MAR ] n IR <- MDR n MAR <- IR[ ADDR ] n DECODER <- IR[ OP ] n MDR <- M[ MAR ] n A <- A+MDR STORE n MDR <- A n M[ MAR ] <- MDR SISD Stack Machine •Stack Trace •Push 1 1 _ •Push 2 2 1 •Add 2 3 •Pop _ 3 •Pop C _ _ •First Stack Machine •B5000 Array Processor Array Processors n One of the first Array Processors was the ILLIIAC IV n Load A1, V[1] n Load B1, Y[1] n Load A2, V[2] n Load B2, Y[2] n Load A3, V[3] n Load B3, Y[3] n ADDALL n Store C1, W[1] n Store C2, W[2] n Store C3, W[3] Memory Interleaving Definition: Memory interleaving is a design used to gain faster access to memory, by organizing memory into separate memories, each with their own MAR (memory address register).
    [Show full text]
  • I386-Engine™ Technical Manual
    i386-Engine™ C/C++ Programmable, 32-bit Microprocessor Module Based on the Intel386EX Technical Manual 1950 5 th Street, Davis, CA 95616, USA Tel: 530-758-0180 Fax: 530-758-0181 Email: [email protected] http://www.tern.com Internet Email: [email protected] http://www.tern.com COPYRIGHT i386-Engine, VE232, A-Engine, A-Core, C-Engine, V25-Engine, MotionC, BirdBox, PowerDrive, SensorWatch, Pc-Co, LittleDrive, MemCard, ACTF, and NT-Kit are trademarks of TERN, Inc. Intel386EX and Intel386SX are trademarks of Intel Coporation. Borland C/C++ are trademarks of Borland International. Microsoft, MS-DOS, Windows, and Windows 95 are trademarks of Microsoft Corporation. IBM is a trademark of International Business Machines Corporation. Version 2.00 October 28, 2010 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of TERN, Inc. © 1998-2010 1950 5 th Street, Davis, CA 95616, USA Tel: 530-758-0180 Fax: 530-758-0181 Email: [email protected] http://www.tern.com Important Notice TERN is developing complex, high technology integration systems. These systems are integrated with software and hardware that are not 100% defect free. TERN products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices, or systems, or in other critical applications. TERN and the Buyer agree that TERN will not be liable for incidental or consequential damages arising from the use of TERN products. It is the Buyer's responsibility to protect life and property against incidental failure. TERN reserves the right to make changes and improvements to its products without providing notice.
    [Show full text]
  • Compiler Construction
    Compiler Construction Chapter 11 Compiler Construction Compiler Construction 1 A New Compiler • Perhaps a new source language • Perhaps a new target for an existing compiler • Perhaps both Compiler Construction Compiler Construction 2 Source Language • Larger, more complex languages generally require larger, more complex compilers • Is the source language expected to evolve? – E.g., Java 1.0 ! Java 1.1 ! . – A brand new language may undergo considerable change early on – A small working prototype may be in order – Compiler writers must anticipate some amount of change and their design must therefore be flexible – Lexer and parser generators (like Lex and Yacc) are therefore better than hand- coding the lexer and parser when change is inevitable Compiler Construction Compiler Construction 3 Target Language • The nature of the target language and run-time environment influence compiler construction considerably • A new processor and/or its assembler may be buggy Buggy targets make it difficult to debug compilers for that target! • A successful source language will persist over several target generations – E.g., 386 ! 486 ! Pentium ! . – Thus the design of the IR is important – Modularization of machine-specific details is also important Compiler Construction Compiler Construction 4 Compiler Performance Issues • Compiler speed • Generated code quality • Error diagnostics • Portability • Maintainability Compiler Construction Compiler Construction 5 Compiler Speed • Reduce the number of modules • Reduce the number of passes Perhaps generate machine
    [Show full text]
  • X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
    VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values..........................
    [Show full text]
  • Lecture Notes
    Lecture #4-5: Computer Hardware (Overview and CPUs) CS106E Spring 2018, Young In these lectures, we begin our three-lecture exploration of Computer Hardware. We start by looking at the different types of computer components and how they interact during basic computer operations. Next, we focus specifically on the CPU (Central Processing Unit). We take a look at the Machine Language of the CPU and discover it’s really quite primitive. We explore how Compilers and Interpreters allow us to go from the High-Level Languages we are used to programming to the Low-Level machine language actually used by the CPU. Most modern CPUs are multicore. We take a look at when multicore provides big advantages and when it doesn’t. We also take a short look at Graphics Processing Units (GPUs) and what they might be used for. We end by taking a look at Reduced Instruction Set Computing (RISC) and Complex Instruction Set Computing (CISC). Stanford President John Hennessy won the Turing Award (Computer Science’s equivalent of the Nobel Prize) for his work on RISC computing. Hardware and Software: Hardware refers to the physical components of a computer. Software refers to the programs or instructions that run on the physical computer. - We can entirely change the software on a computer, without changing the hardware and it will transform how the computer works. I can take an Apple MacBook for example, remove the Apple Software and install Microsoft Windows, and I now have a Window’s computer. - In the next two lectures we will focus entirely on Hardware.
    [Show full text]
  • Towards Scalable Multiprocessor Virtual Machines
    USENIX Association Proceedings of the Third Virtual Machine Research and Technology Symposium San Jose, CA, USA May 6–7, 2004 © 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Towards Scalable Multiprocessor Virtual Machines Volkmar Uhlig Joshua LeVasseur Espen Skoglund Uwe Dannowski System Architecture Group Universitat¨ Karlsruhe [email protected] Abstract of guests, such that they only ever access a fraction of the physical processors, or alternatively time-multiplex A multiprocessor virtual machine benefits its guest guests across a set of physical processors to, e.g., ac- operating system in supporting scalable job throughput commodate for spikes in guest OS workloads. It can and request latency—useful properties in server consol- also map guest operating systems to virtual processors idation where servers require several of the system pro- (which can exceed the number of physical processors), cessors for steady state or to handle load bursts. and migrate between physical processors without no- Typical operating systems, optimized for multipro- tifying the guest operating systems. This allows for, cessor systems in their use of spin-locks for critical sec- e.g., migration to other machine configurations or hot- tions, can defeat flexible virtual machine scheduling due swapping of CPUs without adequate support from the to lock-holder preemption and misbalanced load.
    [Show full text]
  • Introduction to X86 Assembly
    CS342 Computer Security Handout # 5 Prof. Lyn Turbak Monday, Oct. 04, 2010 Wellesley College Lab 4: Introduction to x86 Assembly Reading: Hacking, 0x250, 0x270 Overview Today, we continue to cover low-level programming details that are essential for understanding software vulnerabilities like buffer overflow attacks and format string exploits. You will get exposure to the following: • Understanding conventions used by compiler to translate high-level programs to low-level assembly code (in our case, using Gnu C Compiler (gcc) to compile C programs). • The ability to read low-level assembly code (in our case, Intel x86). • Understanding how assembly code instructions are represented as machine code. • Being able to use gdb (the Gnu Debugger) to read the low-level code produced by gcc and understand its execution. In tutorials based on this handout, we will learn about all of the above in the context of some simple examples. Intel x86 Assembly Language Since Intel x86 processors are ubiquitous, it is helpful to know how to read assembly code for these processors. We will use the following terms: byte refers to 8-bit quantities; short word refers to 16-bit quantities; word refers to 32-bit quantities; and long word refers to 64-bit quantities. There are many registers, but we mostly care about the following: • EAX, EBX, ECX, EDX are 32-bit registers used for general storage. • ESI and EDI are 32-bit indexing registers that are sometimes used for general storage. • ESP is the 32-bit register for the stack pointer, which holds the address of the element currently at the top of the stack.
    [Show full text]