The 6Th Deep-Sea Biology Symposium in Copenhagen

Total Page:16

File Type:pdf, Size:1020Kb

The 6Th Deep-Sea Biology Symposium in Copenhagen THE 6TH DEEP-SEA BIOLOGY SYMPOSIUM IN COPENHAGEN rlrst an apology, this is not a review of the proceedings, if that is whst you want then please borrou a copy of the programme from a friend. Rathey, this is a collection of thoughts on the meeting as a whole; perhaps- useful to those who will organise the nest meeting, or in starting a discussion on what we think our meetings should be like. Be certain that this meeting was an undoubted success both scientificalll- and socially. The organisers deserve a great vote of thanks for their ef- forts. Torben Wolff of course merits special mention for his leadership, at all times leading from the front he made sure ue missed nothing. Ke are also grateful to the three other organisers, Ole Tendal, Jorgen Kirkegaard and Reinhardt ?l. Kristensen, as well as to the very efficient secretaries and students for their assistance. The success of the meeting o~edniuch to its atmosphere. Informalit)- and openness are adrnirablequalities, but they .also bring with them other useful i xiits. Tinieliness is iniportant to a meeting of this type. By emphasising the iiovel the meeting beconles more accessible to the newcomer. The availabi l 'l tl- ( f the meeting to all, particularlq- students, \;as a question raised briefil- Copenhagen. It is perhaps mainly the responsibilitb- of ~uper\~isorsto ei1- ( Jre that students are recruited to these meetings [as larvae are-entrained in the uake of seaniounts, Mul.lineaux]. Judging by the size of some student parties at the meeting this is certainly being done.with some success. The general accessibility of the meet- ing can perhaps be gauged by the ratio of attending authors to total' participants: 75% [a rather higher rate than spawners in an orange roughy aggregation, Newton] . The majority had single authorships, though many c.30% had t~o,often on both talk and poster {a non-random pairing? cf some eclzinoids, Young] . It should come as 110 surprise that the prize for the niaxiniuni authorships, at seven a piece, goes to the now immortal pairing - of Gage & Tyler (available at all good bookshops). Posters were given some prominence at the meeting, about 1/3 of all contribu- tions. Presenting posters remains a pro- blem ; a1though on display throughout the meeting and given their own specific hour, the instinct of participants to feed during the available 'free-time' Kas strong [a need not lost on some deep-sea echinoids, Campos]. One other potential problem relates to video and/or slide dominated presentations. With a number of very- notable excep- tions, the science behind some of these presentations got a little lost in ' the welter of visual images and species names [even more names are to be expected through the use of genetics, France, Vrijenhoek]. The timetabling and forum for all of these visually-based presentations should not over-tax their potential audience [S tress, Hawkins] . The key to the success of the Copenhagen meeting, apart from the efforts of the organisers and participants, was its diversity. Biodiversity may be an increasing concern for the future [Paterson], maintaining or enhancing the diversity achieved in Copenhagen should certainly concern us. Participants from 18 countries attended the meeting. The democratic selection of the next venue hopefully indicates that it will be similarly accessible. Topic rich- ness was high, from taxonomy [Dahms] to technology [Bagley]. Size diversity -[the importance of large rare organisms, Gerlach] in the presentations so helped; introductory talks to larger projects [DEEPSEAS and DISCOL, Rice and Thiel] and the more novel techniques [molecular biology, Felbeck] i 'ed understanding and allo~edsubsequent speakers to proceed quickly to trieir results. ~erhapsonly one element was missing from the habitat mosaic [: 1- grove] of this meeting - the open patch - the chance for the opportunistic recru2.tment of minds and bodies. Brian Bett IOSDL The Symposium was attended by a total of 141 participants from altogether 18 countries: Germany 31; UK 26; USA 22; Denmark 20; France and Russia 10; Japan 3; Australia, Belgium, Canada, Greece, Israel, Norway, Spain, and Sweden 2 each; Austria, Iceland, and Ireland 1 each. Reception at the Copenha- gen Town Hall (Bob Hessler phot . ) C C v, Q, 0 PI I Q, Q, Q, > U E: 5 W .d m Z Q Q, .. z: 2 31 0 m 3 - r.2 - U c 3 h c m v, m0 ' rc C ,lc, 0. E: Q, cra, Q, CQ, m.rc 3 .d X'O C'C) C Q,V) .d C 0 V)D u-4 . Q,.d h 3 mma, U 0 > 9 >> Q, E m 3 I0 r, WQ - Q E H ,-l U 0 3 3'C) Q, mU 0 m G Gu n A 0 S m C( u L W a, C .d .,-! 'U 2 U I= mrl C 'C) '3 3 c, Q, .d mmc .+ 0 U S a, m h E C 0 a .d .rl U 0 c, .n C L U R c L .rc -d G C - a, m C L .d tiw W a, P 3 c, E-,+W m 'C EC3 a,U.r( Q, m EJ-'P &m& m m G k .rc G I - m W V 0 k r.m SL > m W 0 Z c, GUO a, 0 -h 0 rt m mOl NO C C m Q, .d mmn: k U X U ECV CWG 3 N 0 U .d -A cl f: kc,O L m C0 8E EE E l-' .,-l Q, OWL a,?d Um ioumm Vl U i U C U *,m m rl .,-l .h 4 m .d .ri 3 V).n uc~u m m ..c &U Q a 0 > OCE m Q, um~a U Q, k -d Q a, G3 .c( CCQ, S m . m am- WC 'C) 0 - Q, >S Ssm I >m C Faer -7 U3QLJJ Q a, U CD 0 C3 Yt' c m E -m C C .d .r!c,r um . m aeb Qml m 0 m UU ualo o QEa,OO U'C) Q -d Q, L.,+ ma au a, a, .rr $25, m c, mmm m C "0.d -rcmuc 3 Pa, V) m l l0 km0 mc, krt sot: c a,a m r( ar c, c,Ja kQ, a, maL.- c! CO L E l OUE CCk VC LJrt UUU uCQ, o a am0 0aJm a, U OUZ~ "Uf .d 3 CPU u>o .a 3 .UmnL 2 - ffi a U O v, L4 - n: . a) c c, @IS tr L 00 .C *c,F IY .ri a, .h . AA c V'dE S mm c,uSx~n U L rc mm U 94a 3Ea, f? m m D mz.d a a, .dZU mu nxa, U 2L.n I C 'C) $14 3 ,151 .~rn.rl ado z -z m -z c, '7 Q, U C tJD 'r( 5 m C m C m h .d k A Q, I0 C k W c, -,-l m W 7 3 Q, c, urt CD m m 4 c, C U cc .a, 0 - V) Q, C4 ma, a0 W I= U mU TI .A L> k D m m W WPm -0 P 3 Q, 'J c, 01 CZ ou PL C 0 k mu Q, a, o c,m k -h k C3 C 2 E .rlO C ma, > -m c, c13 Ca, rc U -4 Q, Q, c, Q, mu a> r( 4 PC HE: WC.d .rl .d k c, m 0 c, kE ..c, m -Q, C m UC U k W E I $2 U .A 0 0 W .d . -74 3 c, m rt au U cr: m> r@ m L mm .rl3 U Q, U IW h c, .do an -. c- m .A 7m Q,U W Q, I C m E .rc *a,4 WC Q 3 0 - CW a0V) Q, E mc, 0.d QC -4 8-l Q, E L0 LV - m L"Um 'C) a 3 .d .? m WC .doh m OC /a m.dm k 0 5, m CQ; cls C L Q, QV)U ." r 'C) mc .rcC 0 a3 C3mm &C m 2 -?'l 0 3 J .X m a, 70h .rc .d 0. Em UL a H- *mm tn-dk d 'U a, cu .d cl I. m umu alum m I 4 so zc *U 2: Q,f kmc, k Q, Q, U c, '3 1 -U01 .,-id JJ c m U0mm Q,UC* - UC aJSL \U&h cn 0 L- -C -m0 Ehm Gm0 7 A (LE m0 U.dU$nP 3aa7 E->V) 4 V) Q,km m 4 C>N rc URIC m 329 3 OPm 0 m .Q, 1 m Vl .A k Q, CO C WQ, ru c, trm w 'U &m d CL, U 0 rl J 3 cl R &H 0- h er: A. Godfroy, A.L. Tredan, J.G. Larwood Tertiary to recent evolution of Ostracoda on seamounts E. Xntoine, Preliminary characterization of anaerobic sulfur depen- G. Raguenes dent ultrathermophilic archaebacteria isolated from L.S. ~ullin6aus Retention of henthic invertebrate larvae in flows near & G. Barbier hydrothermal vents in the North Fiji Basin Fieberling Guyot C.M. Turley, Effects of pressure on microorgal~isms associated with P,. ?lackie, aggregates: implications on remineralization of organic A.H. Taylor matter and a preliminary model & M. Carstens M.N. Sokolova Comparative characteristics of the deep-sea macrobenthos on the floor of the Pacific, Indian and Atlantic Oceans C.R. Smith, B.A. Bennett, (presented hy O.N.
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
    Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida:
    [Show full text]
  • An Integrative Systematic Framework Helps to Reconstruct Skeletal
    Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States
    NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R. P. Stone, K. W. Conway, D. J. Csepp, J. V. Barrie U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center January 2014 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stone, R. P., K. W. Conway, D. J. Csepp, and J. V. Barrie. 2013. The boundary reefs: glass sponge (Porifera: Hexactinellida) reefs on the international border between Canada and the United States. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-264, 31 p. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-264.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-264 The Boundary Reefs: Glass Sponge (Porifera: Hexactinellidae) Reefs on the International Border Between Canada and the United States by R.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • An Upper Miocene Hexactinellid Sponge from the Puente Shale, Orange County, California J
    J. Paleont., 70(6), 1996, pp. 908-913 Copyright © 1996, The Paleontological Society 0022-3360/96/0070-0908S03.00 AN UPPER MIOCENE HEXACTINELLID SPONGE FROM THE PUENTE SHALE, ORANGE COUNTY, CALIFORNIA J. KEITH RIGBY AND YVONNE ALBI Room 210 Page School, Department of Geology, Brigham Young University, Provo, Utah 84602, and 7001 Vista Del Mar Lane, Playa del Rey, California 90293 ABSTRACT—Well-preserved, laterally flattened, farreid hexactinellid sponges of the new species Farrea rugosa have been recently discovered in the upper Miocene Puente Shale in the Peralta Hills in southeastern Anaheim, Orange County, California. This is the first farreid sponge reported from the Miocene of California and is one of the few Miocene sponges reported from North America. The cluster is of upward bifurcating, moderately complex sponges in which branches are regularly rugose and skeletons are each a single layer of dictyid net, with aborted proximal and distal rays in the otherwise laterally fused quadruled skeleton of original silica. The sponges occur in pinkish brown sandy siltstone in the limited exposure beneath older alluvium that blankets much of the local area. INTRODUCTION nifera include several species of Bolivina d'Orbigny, 1839, and NEARLY COMPLETE cluster of laterally flattened farreid hex- single species of Eponides de Montfort, 1808, Pseudoparella A actinellid sponges has been collected from the Upper Mio- Cushman and Ten Dam, 1948, and Suggrunda Hoffmeister and cene Puente Shale, probably the Yorba Member, in the Peralta Berry, 1937, according to Richmond (1952). These beds were Hills area of eastern Anaheim, Orange County, California (Fig- exposed in a shallow ditch at the time the collections were made, ure 1).
    [Show full text]
  • Deep-Ocean Climate Change Impacts on Habitat, Fish and Fisheries, by Lisa Levin, Maria Baker, and Anthony Thompson (Eds)
    ISSN 2070-7010 FAO 638 FISHERIES AND AQUACULTURE TECHNICAL PAPER 638 Deep-ocean climate change impacts on habitat, fish and fisheries Deep-ocean climate change impacts on habitat, fish and fisheries This publication presents the outcome of a meeting between the FAO/UNEP ABNJ Deep-seas and Biodiversity project and the Deep Ocean Stewardship Initiative. It focuses on the impacts of climatic changes on demersal fisheries, and the interactions of these fisheries with other species and vulnerable marine ecosystems. Regional fisheries management organizations rely on scientific information to develop advice to managers. In recent decades, climate change has been a focus largely as a unidirectional forcing over decadal timescales. However, changes can occur abruptly when critical thresholds are crossed. Moreover, distribution changes are expected as populations shift from existing to new areas. Hence, there is a need for new monitoring programmes to help scientists understand how these changes affect productivity and biodiversity. costa = 9,4 mm ISBN 978-92-5-131126-4 ISSN 2070-7010 FA 9 789251 311264 CA2528EN/1/09.19 O Cover image: Time of emergence of seafloor climate changes. Figure 7 in Chapter 8 of this Technical Paper. FAO FISHERIES AND Deep-ocean climate change AQUACULTURE TECHNICAL impacts on habitat, fish and PAPER fisheries 638 Edited by Lisa Levin Center for Marine Biodiversity and Conservation and Integrative Oceanography Division Scripps Institution of Oceanography University of California San Diego United States of America Maria Baker University of Southampton National Oceanography Centre Southampton United Kingdom of Great Britain and Northern Ireland Anthony Thompson Consultant Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations Rome Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 FAO.
    [Show full text]
  • Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast
    SCCWRP #1171 OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast October 2020 Authors: Matthew Poti1,2, Sarah K. Henkel3, Joseph J. Bizzarro4, Thomas F. Hourigan5, M. Elizabeth Clarke6, Curt E. Whitmire7, Abigail Powell8, Mary M. Yoklavich4, Laurie Bauer1,2, Arliss J. Winship1,2, Michael Coyne1,2, David J. Gillett9, Lisa Gilbane10, John Christensen2, and Christopher F.G. Jeffrey1,2 1. CSS, Inc., 10301 Democracy Ln, Suite 300, Fairfax, VA 22030 2. National Centers for Coastal Ocean Science (NCCOS), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, 1305 East West Hwy SSMC4, Silver Spring, MD 20910 3. Oregon State University, Hatfield Marine Science Center, 2030 Marine Science Drive, Newport, OR 97365 4. Institute of Marine Sciences, University of California, Santa Cruz & Fisheries Ecology Division, Southwest Fisheries Science Center (SWFSC), NOAA National Marine Fisheries Service (NMFS), Santa Cruz, CA 95060 5. Deep Sea Coral Research & Technology Program, NOAA NMFS, 1315 East West Hwy, Silver Spring, MD 20910 6. Northwest Fisheries Science Center (NWFSC), NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 7. Fishery Resource Analysis and Monitoring Division, NWFSC, NOAA NMFS, 99 Pacific St, Bldg 255-A, Monterey, CA 93940 8. Lynker Technologies under contract to the NWFSC, NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 9.
    [Show full text]
  • New Species of Black Corals (Cnidaria:Anthozoa: Antipatharia) from Deep-Sea Seamounts and Ridges in the North Pacific
    Zootaxa 4868 (4): 543–559 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4868.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:435A24DF-6999-48AF-A307-DAFCC5169D37 New species of black corals (Cnidaria:Anthozoa: Antipatharia) from deep- sea seamounts and ridges in the North Pacific DENNIS M. OPRESKO1 & DANIEL WAGNER2,* 1Department of Invertebrate Zoology, U.S. National Museum of Natural History, Smithsonian Institution, Washington, DC 20560. 2Conservation International, Center for Oceans, Arlington, VA. *Corresponding Author: 1 [email protected]; https://orcid.org/0000-0001-9946-1533 2,* [email protected]; https://orcid.org/0000-0002-0456-4343 Abstract Three new species of antipatharian corals are described from deep-sea (677–2,821 m) seamounts and ridges in the North Pacific, including Antipathes sylospongia, Alternatipathes venusta, and Umbellapathes litocrada. Most of the material for these descriptions was collected on expeditions aboard NOAA Ship Okeanos Explorer that were undertaken as part of the Campaign to Address Pacific Monument Science, Technology, and Ocean Needs (CAPSTONE). One of the main goals of CAPSTONE was to characterize the deep-sea fauna in protected waters of the U.S. Pacific, as well as in the Prime Crust Zone, the area with the highest known concentration of commercially valuable deep-sea minerals in the Pacific. Species descriptions and distribution data are supplemented with in situ photo records, including those from deep-sea exploration programs that have operated in the North Pacific in addition to CAPSTONE, namely the Hawaii Undersea Research Laboratory (HURL), the Ocean Exploration Trust (OET), and the Monterey Bay Aquarium Research Institute (MBARI).
    [Show full text]
  • Axioidea of the World and a Reconsideration of The
    Axioidea of the World and a Reconsideration of the Callianassoidea (Decapoda, Thalassinidea, Callianassida) CRUSTACEANA MONOGRAPHS constitutes a series of books on carcinology in its widest sense. Contri- butions are handled by the Series Editor(s) and may be submitted through the office of KONINKLIJKE BRILL Academic Publishers N.V., P.O. Box 9000, NL-2300 PA Leiden, The Netherlands. Series Editors for the current volume: J.C. VON VAUPEL KLEIN, P.O. Box 30, NL-3720 AA Bilthoven, The Netherlands; e-mail: [email protected] and C.H.J.M. FRANSEN, c/o National Museum of Natural History, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands; e-mail: [email protected] Editorial Committee: N.L. BRUCE, Wellington, New Zealand; Mrs. M. CHARMANTIER-DAURES, Mont- pellier, France; Mrs. D. DEFAYE, Paris, France; H. DIRCKSEN, Stockholm, Sweden; J. FOREST,Paris, France; R.C. GUIA¸SU, Toronto, Ontario, Canada; R.G. HARTNOLL,PortSt.Mary,IsleofMan; E. MACPHERSON, Blanes, Spain; P.K.L. NG, Singapore, Rep. of Singapore; H.-K. SCHMINKE,Old- enburg, Germany; F.R. SCHRAM, Langley, WA, U.S.A.; G. VA N D E R VELDE, Nijmegen, Netherlands; H.P. WAGNER, Leiden, Netherlands; D.I. WILLIAMSON, Port Erin, Isle of Man. Published in this series: CRM 001 - Stephan G. Bullard Larvae of anomuran and brachyuran crabs of North Carolina CRM 002 - Spyros Sfenthourakis et al. The biology of terrestrial isopods, V CRM 003 - Tomislav Karanovic Subterranean Copepoda from arid Western Australia CRM 004 - Katsushi Sakai Callianassoidea of the world (Decapoda, Thalassinidea) CRM 005 - Kim Larsen Deep-sea Tanaidacea from the Gulf of Mexico CRM 006 - Katsushi Sakai Upogebiidae of the world (Decapoda, Thalassinidea) CRM 007 - Ivana Karanovic Candoninae (Ostracoda) from the Pilbara region in Western Australia CRM 008 - Frank D.
    [Show full text]