ATLAS Deliverable 3.2

Total Page:16

File Type:pdf, Size:1020Kb

ATLAS Deliverable 3.2 ATLAS Deliverable 3.2 Water masses controls on biodiversity and biogeography Project ATLAS acronym: Grant 678760 Agreement: Deliverable Deliverable 3.2 number: Work Package: WP3 Date of 28.02.2019 completion: Author: Lea‐Anne Henry (lead for D3.2), Patricia Puerta (alphabetical, all contributors are also authors) Sophie Arnaud‐Haond, Barbara Berx, Jordi Blasco, Marina Carreiro‐Silva, Laurence de Clippele, Carlos Domínguez‐Carrió, Alan Fox, Albert Fuster, José Manuel Gonzalez‐ Irusta, Konstantinos Georgoulas, Anthony Grehan, Cristina Gutiérrez‐ Zárate, Clare Johnson, Georgios Kazanidis, Francis Neat, Ellen Contributors Kenchington, Pablo Lozano, Guillem Mateu, Lenaick Menot, Christian Mohn, Telmo Morato, Ángela Mosquera, Francis Neat, Covadonga Orejas, Olga Reñones, Jesús Rivera, Murray Roberts, Alex Rogers, Steve Ross, José Luis Rueda, David Stirling, Karline Soetaert, Javier Urra, Johanne Vad, Dick van Oevelen, Pedro Vélez‐Belchí, Igor Yashayaev This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 678760 (ATLAS). This output reflects only the author's view and the European Union cannot be held responsible for any use that may be made of the information contained therein. 1 Contents 1. Executive Summary ..................................................................................................................................... 3 2. Review: Influence of water masses on deep‐sea biodiversity and biogeography of the North Atlantic ........ 5 3. Case Studies on Effects of Hydrography and Oceanography on North Atlantic VME Biodiversity and Biogeography ................................................................................................................................................... 114 3.1 Faroe‐Shetland Channel (northeast Atlantic, UK): Biodiversity of deep‐sea sponge grounds in relation to oceanographic and anthropogenic activities .................................................................................................. 116 3.2 Mingulay Reef Complex (northeast Atlantic, UK): Impacts of the North Atlantic Oscillation and gyre dynamics on cold‐water coral reef biodiversity and biogeography ................................................................ 135 3.3 Flemish Cap and continental slope (northwest Atlantic, High Seas): Effects of sea temperature, food availability, and currents on macrofaunal species and phylogenetic diversity relative to fishing pressure ... 162 3.4 Alborán Sea to the Azores: influence of water mass properties on VME biodiversity and geography .... 179 3.5 Davis Strait, Rockall Bank, Azores: effects of organic matter supply on VME biodiversity ....................... 256 Appendix: Document Information .................................................................................................................. 278 2 1. Executive Summary The oceanographic and hydrographic conditions of the North Atlantic are predicted to dramatically change by this century’s end. The Atlantic Meridional Overturning Circulation (AMOC) is anticipated to slow, and many of the waters that currently bathe vulnerable marine ecosystems (VMEs) are predicted to be warmer, have reduced oxygen and food supply, and be more acidic. Among the many ways in which impacts of climate change on VMEs are being studied in ATLAS is the empirical approach, whereby effects of present day oceanographic variables are directly related to VME biodiversity through systematic review or statistical analyses. Deliverable 3.2 adopts this empirical approach: first, D3.2 reviews what is known about effects of oceanographic variables on VME biodiversity across the North Atlantic to derive a basin‐scale synoptic view of key ocean controls on system biodiversity; second, D3.2 examines the statistical significance of these variables in selected regional ATLAS Case Studies covering several Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our review concluded that VMEs in several ATLAS Case Study areas will likely be impacted by critical changes and multiple stressors, even without additional human activities from the Blue Economy. VMEs in the western North Atlantic that are predicted to experience critical changes in sea temperatures and food supply (Flemish Cap and Davis Strait) are also the Case Studies that the review and empirical analyses identified as having temperature and food supply playing significant roles in the occurrence of VMEs and biodiversity of their associated communities, which seem to depend on relatively cooler water at least on the Flemish Cap. Projected critical declines in oxygen, pH, and a shoaling of the aragonite saturation horizon for the Davis Strait however need further in‐depth investigations to ascertain impacts on future VMEs. Many VMEs in the mid‐ to eastern North Atlantic are also projected to experience multiple critical changes (Reykjanes Ridge, Norway, Faroe Shetland Channel, Rockall, Porcupine Seabight, Mingulay Reef Complex, and the Azores), which our review and empirical analyses strongly suggest will impact VMEs. Targeted studies at our eastern Atlantic Case Studies showed warmer oceans are likely to alter the biogeographic affinities of cold‐water coral communities at Mingulay, the biodiversity and density of sponge grounds in the Faroe Shetland Channel, while reductions in food supply could significantly reduce the density of octocorals and black corals at Rockall, and result in species loss of sponge grounds and coral gardens in the Azores. Deliverable 3.2 shows that a backdrop of climate change will narrow the margins for safe ecological and thus operational limits of existing and emerging ocean industries. It is understood that biodiversity enhances ecosystem resilience by contributing to both climate change mitigation and adaptation. Thus, we make the policy recommendation under the Convention on Biological Diversity Aichi Target 15 that regulatory frameworks for licensing and planning such as Environmental Impact Assessments and Strategic 3 Environmental Assessments explicitly incorporate climate change impacts to assist blue economy sectors to avoid, minimise, restore or offset biodiversity loss resulting from resource exploration or exploitation. 4 2. Review: Influence of water masses on deep‐sea biodiversity and biogeography of the North Atlantic Authors: Patricia Puerta, Covadonga Orejas, Marina Carreiro‐Silva, Clare Johnson Contributors: Lea‐Anne Henry, Telmo Morato, Georgios Kazanidis, José Luis Rueda, Javier Urra, Pablo Lozano, Ellen Kenchington, Igor Yashayaev, Dick van Oevelen, Lenaick Menot, David Stirling, José Manuel Gonzalez‐Irusta, Steve Ross, Christian Mohn, Alan Fox, Sophie Arnaud‐Haond, Anthony Grehan and J. Murray Roberts Acknowledgements: Luis Rodrigues, Carlos Domínguez‐Carrió 5 Summary Different water masses and their characteristic properties are major drivers of biodiversity and biogeography patterns in the deep sea. Circulation patterns and water mass characteristics along the North Atlantic have changed and re‐organized multiple times since the genesis of this ocean, affecting the composition and functioning of deep‐sea ecosystems. We reviewed the evolution of the North Atlantic circulation and water mass properties, such as temperature, salinity, oxygen or organic matter content, and their impacts on VMEs occurring from the continental shelves to the bathyal regions of the deep sea. Eleven case studies, spanning different features and habitats across the North Atlantic, have been included as examples to illustrate how different water masses shape VME biodiversity and biogeography. Finally, we forecasted conditions in several water mass properties to explore how these changes might affect VMEs and their associated deep‐sea benthic communities, with a particular focus on critical cumulative changes in the case study areas. This review and the assessment of future conditions might help identify areas likely to experience the biggest changes in oceanic properties to help us learn how to better manage the deep North Atlantic as deepwater industries develop. Setting the context: the North Atlantic Ocean In the North Atlantic Ocean, the Atlantic Meridional Overturning Circulation (AMOC) re‐ distributes warm saline water masses northwards. These water masses are compensated by a deeper southerly circulation of cooler fresher waters, accounting for 25 % of global heat transport. Climate models forecast a slowing or even disappearing of the AMOC by the end of the century, which will modify water masses characteristics and circulation patterns. Thus, warmer temperatures of 1 or 2 °C, reduced organic carbon fluxes (up to 50 %), ocean acidification, shoaling of the aragonite saturation horizon (above 1000 m) and deoxygenation are expected to significantly impact the deep‐ sea benthic communities and VMEs, and even compromise their survival. This review will show that most, if not all, of the areas encompassed by Case Studies in ATLAS will experience a critical change in at least one of the variables but since the potential impacts on their VMEs has remained poorly investigated, this part of the Deliverable 3.2 begins by reviewing how VMEs might be impacted by looking at contemporary controls on VME biodiversity and biogeography. 6 Oceanic Drivers of Deep‐sea Biodiversity and Biogeography Patterns Deep‐sea ecosystems have been traditionally considered vast habitats in the ocean characterised by stable and homogeneous environment (darkness and constant
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • A New Classification of the Chirostyloidea (Crustacea: Decapoda: Anomura)
    Zootaxa 2687: 56–64 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new classification of the Chirostyloidea (Crustacea: Decapoda: Anomura) KAREEN E. SCHNABEL1 & SHANE T. AHYONG2 1National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand. E-mail: [email protected] 2Australian Museum, 6 College Street, Sydney, NSW 2010 Australia. E-mail: [email protected] Abstract The high level classification of the Chirostyloidea Ortmann, 1892, is reviewed. Eumunididae Milne-Edwards & Bouvier, 1900, is resurrected for two genera formerly placed in the Chirostylidae Ortmann, 1892, Eumunida Smith, 1883, and Pseudomunida Haig, 1979, based on shared characteristics such as the dorsal carapace striation, presence of supraocular spines of the rostrum, dentition of the mandible, presence of an epipod and an annulated exopod flagellum of maxilliped 1. Three families are now included in the Chirostyloidea: Chirostylidae, Eumunididae and Kiwaidae. Diagnoses are provided for each family as well as a key to the families. The fossil record of the Chirostyloidea is discussed, with putative records of Eumunida in the fossil record referred to the galatheid genus Sadayoshia Baba, 1969. Key words: Galatheoidea, Chirostylidae, Eumunididae, Kiwaidae, adult somatic morphology, larval morphology, fossil record Introduction Recent focus on the phylogeny of Anomura has generated significant molecular phylogenetic information that has challenged the traditional understanding of the marine squat lobsters and porcelain crabs, the Galatheoidea, which comprised the Chirostylidae Ortmann, 1892, Galatheidae Samouelle, 1819, Porcellanidae Haworth, 1825, and Kiwaidae Macpherson, Jones & Segonzac, 2005 (e.g., Ahyong et al.
    [Show full text]
  • Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda
    Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda 6 April 2016 ATTENTION: Today we will be examining several preserved specimens from along the arthropod diversity and some exciting live specimens that you have not seen in the fieldtrip! Please keep all preserved specimens submerged. Examine using forceps and probes – be careful not to damage or remove the limbs of any specimen. And remember to return the specimen to its original spot in the lateral bench so your friends can find the animals properly labeled. • For each specimen, even when specific instructions are not given, make detailed observations and drawings and take notes on important characters in the evolution of arthropods, such as tagmata and adaptations to the specific environment where the organism lives. 1 Lab 8: Arthropoda OEB 51 Myriapoda With these living myriapods, take the opportunity to make a few notes on behavior – locomotory, hygienic (they frequently clean their antennae). CHOOSE ONE • Chilopoda (live) Do not handle these centipedes directly, as they are venomous (not deadly, but still). Watch these animals move, but don’t let them escape! Try to draw if you can. Compare to the large, preserved Scolopendra gigantea (MCZ specimen). Draw from the preserved for more morphological details. • Diplopoda (live) Contrary to centipedes, millipedes are docile (but they have deterrent substances, like cyanide compounds, which you might be able to smell after handling the specimens). Observe their movement. Make a sketch of the whole body and drawings of specific parts in more detail. • What is the most conspicuous difference between these two groups of myriapods? 2 Lab 8: Arthropoda OEB 51 Pycnogonida • Colossendeis colossea (Museum specimens, handle with care) • What characteristics of pycnogonids are not found in other arthropods? 3 Lab 8: Arthropoda OEB 51 Chelicerata • Xiphosura – Limulus (horseshoe crab).
    [Show full text]
  • Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3.
    [Show full text]
  • Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals
    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals Eric Pante1*¤, Scott C. France1, Arnaud Couloux2, Corinne Cruaud2, Catherine S. McFadden3, Sarah Samadi4, Les Watling5,6 1 Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America, 2 GENOSCOPE, Centre National de Se´quenc¸age, Evry, France, 3 Department of Biology, Harvey Mudd College, Claremont, California, United States of America, 4 De´partement Syste´matique et Evolution, UMR 7138 UPMC-IRD-MNHN- CNRS (UR IRD 148), Muse´um national d’Histoire naturelle, Paris, France, 5 Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 6 Darling Marine Center, University of Maine, Walpole, Maine, United States of America Abstract The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Proceedings of the United States National Museum
    descriptions of a new genus and forty-six new spp:cies of crusta(jeans of the family GALA- theid.e, with a list of the known marine SPECIES. By James E. Benedict, Assistant Curator of Marine Invertebrates. The collection of Galatheids in the United States National Museum, upon which this paper is based, began with the first dredgings of the U. S. Fish Commission steamer Albatross in 1883, and has grown as that busy ship has had opportunit}' to dredge. During the first period of its work many of the species taken were identical with those found by the U. S. Coast Survey steamer JBlake, afterwards described by A. Milne-Edwards, and in addition several new species were collected. During the voyage of the Albatross to the Pacific Ocean through the Straits of Magellan interesting addi- tions were made to the collection. Since then the greater part of the time spent by the Albatross at sea has been in Alaskan waters, where Galatheids do not seem to abound. However, occasional cruises else- where have greatly enriched the collection, notably three—one in the Gulf of California, one to the Galapagos Islands, and one to the coast of Japan and southward. The U. S. National Museum has received a number of specimens from the Museum of Natural History, Paris, and also from the Indian Museum, Calcutta. The literature of the deep-sea Galatheidie from the nature of the case is not greatly scattered. The first considerate number of species were described by A. Milne-Edwards from dredgings made by the Blake in the West Indian region.
    [Show full text]
  • Evolutionary Relationships Within the "Bathymodiolus" Childressi Group
    Cah. Biol. Mar. (2006) 47 : 403-407 Evolutionary relationships within the "Bathymodiolus" childressi group W. Jo JONES* and Robert C. VRIJENHOEK Monterey Bay Aquarium Research Institute, Moss Landing CA 95064, USA, *Corresponding Author: Phone: 831-775-1789, Fax: 831-775-1620, E-mail: [email protected] Abstract: Recent discoveries of deep-sea mussel species from reducing environments have revealed a much broader phylogenetic diversity than previously imagined. In this study, we utilize a commercially available DNA extraction kit to obtain high-quality DNA from two mussel shells collected eight years ago at the Edison Seamount near Papua New Guinea. We include these two species into a comprehensive phylogeny of all available deep-sea mussels. Our analysis of nuclear and mitochondrial DNA sequences supports previous conclusions that deep-sea mussels presently subsumed within the genus Bathymodiolus comprise a paraphyletic assemblage. This assemblage is composed of a monophyletic group that might properly be called Bathymodiolus and a distinctly parallel grouping that we refer to as the “Bathymodiolus” childressi clade. The “childressi” clade itself is diverse containing species from the western Pacific and Atlantic basins. Keywords: Bathymodiolus l Phylogeny l Childressi clade l Deep-sea l Mussel Introduction example, Gustafson et al. (1998) noted that “Bathymodiolus” childressi Gustafson et al. (their quotes), Many new species of mussels (Bivalvia: Mytilidae: a newly discovered species from the Gulf of Mexico, Bathymodiolinae) have been discovered during the past differed from other known Bathymodiolus for a number of two decades of deep ocean exploration. A number of genus morphological characters: multiple separation of posterior names are currently applied to members of this subfamily byssal retractors, single posterior byssal retractor scar, and (e.g., Adipicola, Bathymodiolus, Benthomodiolus, rectum that enters ventricle posterior to level of auricular Gigantidas, Idas, Myrina and Tamu), but diagnostic ostia.
    [Show full text]
  • Deep-Water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada
    Bull. Natl. Mus. Nat. Sci., Ser. A, 46(4), pp. 155–182, November 20, 2020 Deep-water Squat Lobsters (Crustacea: Decapoda: Anomura) from India Collected by the FORV Sagar Sampada Vinay P. Padate1, 2, Shivam Tiwari1, 3, Sherine Sonia Cubelio1,4 and Masatsune Takeda5 1Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Government of India. Atal Bhavan, LNG Terminus Road, Puthuvype, Kochi 682508, India 2Corresponding author: [email protected]; https://orcid.org/0000-0002-2244-8338 [email protected]; https://orcid.org/0000-0001-6194-8960 [email protected]; http://orcid.org/0000-0002-2960-7055 5Department of Zoology, National Museum of Nature and Science, Tokyo. 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan. [email protected]; https://orcid/org/0000-0002-0028-1397 (Received 13 August 2020; accepted 23 September 2020) Abstract Deep-water squat lobsters collected during five cruises of the Fishery Oceanographic Research Vessel Sagar Sampada off the Andaman and Nicobar Archipelagos (299–812 m deep) and three cruises in the southeastern Arabian Sea (610–957 m deep) are identified. They are referred to each one species of the families Chirostylidae and Sternostylidae in the Superfamily Chirostyloidea, and five species of the family Munidopsidae and three species of the family Muni- didae in the Superfamily Galatheoidea. Of altogether 10 species of 5 genera dealt herein, the Uro- ptychus species of the Chirostylidae is described as new to science, and Agononida aff. indocerta Poore and Andreakis, 2012, of the Munididae, previously reported from Western Australia and Papua New Guinea, is newly recorded from Indian waters.
    [Show full text]