<<

"ABLE OF CONTENTS

Page

INTRODUCTION ..~**********..~...~*~~.~...~~~~1

GORDA RIDGE LEASE AREA ...... 2

RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ...... 9

34T.4 GAPS ...... r6 ACKNOWLEDGEMENT ...... I8

APPENDIX 1. found on the Gorda Ridge or within the lease area ...... 36

RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including ...... 55 BENTHOS

THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC :

INTRODUCTION

Presently, only two published studies discuss the ecology of benthic on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity. Using rock dredges and small collectors, Clague et al. ( f 984) also collected many spicules, anemones of the Actinauge, black of the Antipatharia, worm tubes, unidentified , an unidentified stalked crinoid from the family Hyocrinfdae, and the Dytaster gilberti. Some of the other animals collected include an octopod, pelecypod fragments and an inarticulate . These are not animals specifically associated with hydrothermal vents but the overall high abundance of the fauna indicated an abundance of food that may be vent-related. More importantly, the high abundance of agglutinating benthic foramfniferans in muds wi # the chemical evidence of hydrothermal activity appears to reflect proximity to hydrothermal vents {CLague et al. t 9843 .

The Vast majority of the research in the Gorda Ridge Lease Area was perfarmed off the Newport transect line (an east-west transect extending to approximately 128' W longitude) at the northernmost region of the lease area. Much of this research was done at Oregon State University and all the Atomic Energy Commission studies and theses from OSU related to benthic ecology on Caseadia Abyssal Plain are included in this section. The only taxonomic groups that have been studied in any detail are the polychaetes ( Hancock 7 969; Fauchald and Hancock 7 981 ) , the amph ipods (Dick inson 7 976 ; Dickinsan and Carey 1978) and the Echinodermata (Carey 1972a; KyCe 7971 ; McCauley f 967 1, wi th particular emphasis on the holothurians (Carney and Carey 1976; Carney 7977; Carey and Carney 1982). A few other studles review the depth distribution of all major groups and these are important sources for the species list found in Appendix 1 (Carey and dlspach 7966; McCauley 1972; Pereyra and Alton 19721. BENTHOS

There is a paucity of data concerning the benthos of the Gorda Ftidge, with most of the research occurring in the northern region of the lease area. Only a few groups are adequately covered and most of the research is descriptive, with emphasis on and community structure. Little or no data are available on community processes, on the behavior of benthic organisms, and particularly an the smaller rneiofauna and microfauna present in the sedinents.

Taxonomy and Systematics

The papers listed below discuss the taxonomy of the various invertebrate groups and some evolutionary aspects. There is iittle mention af distribution, abundance ar community structure. The majority of this work in the Gorda Ridge lease area has been done off the Newport transect line (44' 39' N) by researchers from Oregon State University. Only the Polychaeta IFauchald and Hancock 1981 ; Hancock 19 693 and the Echinodermata (Kyte 1977 ; McCauley 1967; McCauley and Carey 1967) are covered adequately for this geographic area.

a. Phylum Annelida Class PoLychaeta: Fauchald and Hanceck 1981 Hancock 7969

b . Phylum Arthropoda Crustacea Class Eurnalacostraca: Ambler 1980

c. Phylum Class : Bernard 1974

d, Phylum Echinodermata Class Ophiuroidea: Kyte 1971 Class Echinoidea: McCauley and Carey 1967

Communi ty Structure

The diversity CStander 19701, depth of occurrence (Alton 1972) and species composition of macrofaunal (Carey 1966; McCauley 1972) of many phyla are discussed in the general papers. The general papers are sources for the species list found in the Appendices and the research effort is concentrated in the northernmost part of the lease area off the Newport transect line. A more specific report (Carney and Carey 19821, indicated that the diversity of holothurians is highest at a lower bathyal-abyssal depth of 3500 rn and catch size decreases with depth. However all other taxonomic groups are poorly described. Data on community processes, such as consumption, also are lacking for the lease area. a. General: Alton 1972 Carey and Alspach 1966 McCauley 1972 Stander 1970

o. 3?ec if ic Taxonomic Groups i. Phylum Echinodermata Class Holothuroidea: Carney and Carey 1922

Distribution

Pereyrs ar,b Al:on :'372) is one af t,?e best refererces fsr cats sz tze depth aiscribution of tne major epifaunal (2arcicularly cne ) on the abyssal ?lains north of tne Gorda Ridge. More s~ecific papers discuss the depth distribution of amphipods (Dickinson 1976; 3ick inson and Carey 1978), of tanner crabs (Pereyra ' 9661, of scaphopods (3ruce and Carey 1969) and of holothurians (Carney and Carey 1976; 3ufforc 1967). All these specific studies were conducted off the Newport transect line on Cascadia and Tufts Abyssal Plains. These studies have defined four Sathymetric provinces off the coast of Oregon, two of which are in the lease area at depths of more than 2000 m (Carney and Carey 1976). The zammarid amphipod assemblages at a nearshore and an offshore station both st 2900 m depth on Cascadia Plain are very different (Dickinson and Carey '979). Data on most phyla are lacking for the Gorda Ridge itself and the surrounaing areas.

a. General: Pereyra and Alton 1972

b. Spec if ic Taxonomic Croups

i. Phylum Arthropoda Subphylum Crustacea Class Eumalacostraca: Dick inson 1976 Dick inson and Carey 1978 Pereyra 1966

ii. Phylum Mollusca Class Scaphopoda: Bruce and Carey 1969

ii i. Phylum Echinodermata Class Holothuroidea: Carney and Carey 1976

Abundance

The studies that discuss the abundance of macrofaunal invertebrates are once again concentrated on the Newport transect line. Carey (1981) sampled an east-west transect across Cascadia and Tufts Ab ssal Plains. The biomass of macro-infauna ranges from a low of 1 g wet wt/mq on Eastern Tufts Plain to a high of 8 g wet wt/m2 at the base of the continental slope. The numerical density ranged from a low of 200-500 animals/m2 on the abyssal plains to a high of 1500 animals/m2 at the slope base. In all the samples, BENTHOS the polychaetes comprlse at least 60% and up to 89$ of the animals Collected, wrth the , malnly , representing another 2-25%. "re! and Stander (1968) ciscuss the technique of using bottom pnotograpnj for estrnatlng aacrofsunal sbundance while Carney (1976) fohnd that the aoundance of holothurians on Cascadla and Tufts Abyssal Plalns is related ta depth. 3ata on other phyla, as well as areas closer to the Sorda 91dge, are lacging.

a. Seneral: Carey 1987 Carey and Stander 1968

3 S;EC ~f -3 T3xozo~;c irwps i. ??ylhm 3cn;r1ccermaca :lass ,5010truro:aea: Carney '3'6

Feeding Ecology

The only group studiea in detail are the asteroids. Carey (1972a) and Carey et al. (1967) found that predators decrease in relative abundance from 67% to O%, deposit feeders decrease from 33% to 14%, and the omnivores increase from 0% to 71% with increasing depth from shallow waters tc~the abyssal plains. The general conclusion is that deep-sea asteroids are facultative feeders and cotain their food from the , from live prey, and from animal remains. This research was conducted off the Newport transect line. No other data on the feeding ecology of macrofaunal invertebrates has been found for the lease area.

a. Phylum Echinodermata

i. Class Asteroidea: Carey 1972a Carey et al. 1967

Animal-Sediment Interactions

Studies of animal-sediment interactions all indicate that the organic content and the ?article size of the sediment are very important in deteraining the abundance of infauna (Carey 1365; Carey and Paul 1968). Criggs et al. (1969) studied these interactions on Cascadia Abyssal Plain and particularly in Cascadia Channel and they found that the total number of macroinfauna was four times greater in the channel than on the abyssal plain, probably due to the increased organic content and smaller particle size of the sediments in the channel. No specific taxonomic group has been studied in the lease area.

a. General: Carey 1965 Carey and Paul 1968 Criggs et al. 1969 BENTHOS

Bhysiolog ical and Biochemical Processes

Contrary to the rich data on the physiology and of vent-associated animls, no data are available on these processes for any phylum in the lease area.

Radioecolog ical Studf es

As a part of an intense effort by the U.S. Atomic Energy

a. General: Carey 1963 Carey 7 972c Carey and Cutshall 1973

b. Spec if ic Taxonomic groups Phylum Echinodermata Class Asteroidea: Carey 1969

General Scope

These studies review important physical, chemical, and biological data from cruises off the Columbia River estuary. The data refer to the effect of the Columbia River effluent. One important geological study, Griggs ( f 969 1, was included because It studied the sedimntology of Cascadia Channel which is related to other benthic studies on Cascadia and Tufts Abyssal Plains.

a. Oceanographic data: Anonymous 1966, Vol. 1, 11, Iff. Fleming et al. 1967

b. Geological: Griggs I969

RELATED STUDIES IN THE NORTH PACIFIC

Some studies outside the lease area are included in this review because they discuss important deep-sea processes and animals that most likely also occur in the lease area. The taxonomic papers review deep-sea animls found off Washington or Bri tish Columbia (Dunn 7982; Banse f 979; Dickinson 1983; Johnson et al, 797Q; Alton 1966; Lambert 19843. A11 species mentioned in these papers can be found in Appendix 2.

The most important studies in this section are those of Smith et al. (19791, Smith et al. (19831, and Smith and Baldwin It984a) that report values of benthic community oxygen consumption in the central and eastsrn North Pacific Ocean; aurnett (7977) and Snider et al. (1 984) that discuss the nannobiota and meiofauna of deep-sea sediments in the central North Pacific ; and those of Lngram and Hessler 11 983) and Smf th and aaldwin (1984b) that studied the distributional and behavioral ecology of scavenging amphipods in the deep-sea below the central hrth Pacific gyre.

Yany cthef studies on deep-sea Senthic ecology could have been included but only those mentioned here have any relevance to tne Sorda Ridge environment. The relevance of these studies can also be questioned because they are related to deep-sea processes and animals of abyssal plains rather than tectonically active ridges. Nevertheless, the processes they describe may occur in very simf lar ways in the lease area.

Taxonomy and Systematics

Only a few invertebrate groups are represented in these papefs which deal mainly with the taxonomy and evolutionary position of the animnals, Dunn (79821 studied the deep-sea anemone Paraphelliactis pabista off British Columbia. Dickinson (7983) worked on the systematics and distribution of the arnpeliscid amphipod genera Byblis and Haploops off British Columbia and Lambert (7984) surveyed the deep-sea holothurians off British Columbia. Banse (7979) reviewed the ampharetid polychaetes off British Columbia and the coast of Washington. Alton (1966) described the asteroid species Asthenactis fisheri off the coast of Washington. Johnson et al. (1974) used genetic techniques to differentiate five species of pandalid from the deep sea off Washington.

a. Phylum Coelenterata Class : Dunn 1982

b. Phylum Anne1 ida Class Polychaeta: Banse 1979

c. Phylum kthropoda Subphylum Cmstacea Class Eumalacos traca: Dick inson f 983 Johnson et al. 1974

d . Phylum Echinodermata Class Asteroidea: Alton 1966 Class Holothuroidea: Lamber 1984 BENTHOS

Communi ty Dynamics

Papers that deal with community dynamics outside the lease area are those of Smith et al. (79793, Smith et al. (19831, and Sml th and. Baldwin (1984a). This research was conducted with a free-vehicle grab respirometer. The study of community oxygen consumption and nutrient exchange was done on an east-west tranaect from San Diego to Hawaii, south of the lease area but at deep-sea depths in the central and eastern North Pacific. Smith et al. (7979) found no difference in community oxygen consumption between txo depths (1193 m and 3815 m) but differences in nutrient exchange between sediments and overlying water. At 1193 m, arninonia, nitrite 2nd phosphate are reisased to the water and nitrate is taken up by the sedlrzents. At 3875 n, all nitrogenous compounds are evolved and phosphate is :.?ken up, Smith et al. (7983) found that community oxygen consumption, ~acrofaunalabundance and biomass, and surface sedimnt organic carbon and total nitrogen all increase along a gradient of increasing primary production from west to east along the transect, Nitrogenous nutrient exchange rates are highly variable and show no east-uest trends. Smith and Baldwin (198ha) reported, for the first time, seasonality in biological rates in the deep sea. At both abyssal stations samples, community oxygen consumption is highest in early summer and decreases to the lowest rates in late autumn and winter. No other data that might be important for community processes in the lease area have been found.

Distribution

Two general papers discuss quantitative sampling, distribution and biomass estimates oZ nannobiota, rnicrobfota, and meiafauna in the deep-sea central North Pacific. Burnett (1977) found that the microbiota of the abyssal central North Pacific consists of , flagellates, amoebae, testate cells, large , and yeast-like cells at abundance3 from 16,500 to 26,900 crnm2. The majority of these organisms are restricted to a surface layer about 5 mm thick, Snider et al. (7984) found nannobfota and rneiofauna as deep as 5.5 cm in the sediments, but 90% of the numbers and biomass are in the top 3 cm. comprised 86.6% of the meiofaunal biomass.

Another important taxonomic group studied is the scavenging amphfpods, particularly Eurythenes ~ryllus(Ingram and Hessler 1983; Smith and Baldwin 1934b. Again, this research is in the central North Pacific, to the south and west of She lease area. Ingram and Hessler (19831 discovered two groups of scavenging amphipods: a pelagic gsmp of smaller amphipods. . comprised of Paralicella caperesca, Para1icella tenuipes, and Orchomene gerulicorbis and a demersal group of larger amphipods with Eurythenes ~ryllusas the only component. All these amphipods are known to exploit food falls and to use chemorecep t ion and possibly rnechanorece~t ion to f lnd their food. Smith and Baldwin (-7984b) caught ~uritbenesgryllis up to 1400 m above the bottom in the deeper, more oligotrophie stations of the central gyre. Maximum catch rates were at 50 m or less above the bottom and larger amphipods Mere caught at higher altitudes above the bottom. These scavenging amphipods may be equally abundant and important in the Gorda Ridge lease area. Little else BENTHOS is known ?13ot~itne distribution of other taxa in areas close to the lease area.

a. ;eneral: aurnett 1977 Snider et al. 1984

5. Spec if lc Taxonomic Groups Phylgm Ar thropoda Subphylum Crustacea Class Eusalacostraca: 1r.gram and Eessier 1983 Smitn and 3aldwin '5345

Aside from the papers already aentioned in the distribution sect ion (8urnett 1377; Snider et al. 1984), there are no specific papers that ?ertain to the aSundance of important taxonomic groups in areas close to the Gorda Ridge.

Feeding Ecology

There are no specific papers dealing with the feeding ecology of important taxonomic groups in areas closely related to the lease area.

Physiological and Biochemical Processes

There are no data on these processes in areas closely related to the Corda Ridge lease area.

Radioecclogical Studies

Carey et al. (1973) studied the effects of munition dumping on benthic invertebrate abundance and composition on the Nitinat deep-sea fan off the coast 3f Xaskinqtan, north of the lease area. There were no general trends in faunal composition or abundance that could be directly attributed to the dumping but their conclusions were not definite because no pre-dumping studies had been undertaken. There were some indications of local environmental changes in heavy metal content of the sediments and some faunal changes in the debris area. The work by Cross ( '966, 1968), using zincs5 as a radioactive metabolic tracer, showed tnat the shallo-water amphipod Anonyx spp. absorbs zinc6' from its most affected when the radionuclide is in high concentration in the sediments. There is also a temperature dependence in the zinc accumulation and elimination rates. accumulation and elimination rates.

a. General: Carey et ai. 1973

b. Spec if ic Taxonomic Groups Phylum Arthropoda Subphylum Crustacea Class Eumalacostraca: Cross 1966, '968

HYDROTHERMAL VENTS

Although the presence of hydrothermal vents has yet to be confirzed =n the Gorda Ridge, data gathered on the YC.4.A cruise of .J.?ril/?ee sers. come.;. Also, rocent st~ci?~t?e sa5Cd~"ti~s zone off the coast of 3regon and iashington have reyealed t:?e preserce cf vent-type coxinunities (Suess et ai., in press; Kulm et a:., un?ub. ms.). The biological communities that have been discovered include a vesicomyid clam that is probably , a gutless clam of tke genus Solemya and a vestinentiferan worm, Lamellibrachia barhami. Thus the preliminary information suggests that there may be hydrothermal vents on the Gorda Ridge and that there are vent/seep biological communities in the lsase area, at Least in the northern regicn off Newport. This means that the research done at other hydrothermal sites, such as the Galapagos ?if:, 2'0:d and : 3ON on the East 2acif ic Rise, and the Juan de Fuca Ridge, will Se useful in understanding the biology and physiology of vent-associated organisms.

T3e hydrothermal vent references included in this section reflect research conducted for the most part in the last 10 years. The studies can be categorized in three ways: (1) systematic and taxonomic studies of the macrofaunal organisms, such as the pogonophoran worm (Jones 1980, 1981, !984), the large white clam Calyptogena magnifica (Zoss and Tl~rner1980), the galatheid and brachyuran crabs around tne vents ('dilliams 1980; Xilliams and Chase 1982; Williams and Van Dover 1983) and the chemoautotrophic present in hydrothermal waters (3aross et al. 1980; Jannasch and Wirsen 7981; Jannasch 1984); (2) descriptive work discussing the community structdre of vent-associated organisms (Grassle "382, 1984a, 198bb; Hessler and Smithey 1984; Lonsdale 7977; (3) physiological and biochemical studies concerning the vent organisms' adaptations to pressure, temperature, toxic chemicals (sulfides), and the chemosynthetic food web of the vents (Arp and Childress 1981a, 1981 b; Mickel 1982; Soinero '984; Felbeck 1985).

Taxonomy and Systematics

Much of the research on hydrothermal vent organisms is focussed on the taxonomy and description of the animals associated with the vents. The papers consist of work on all vents from the Eastern Pacific, i.e., Galapagos, 13'N, and 21 ON, with the new volume edited by M.L. Jones (in press) also including the biology of vent animals from the Juan de Fuca Ridge. The main taxonomic groups that have been analyzed are the bacteria (Baross et al. 1980; Harwood et al. 1982; Jannasch and Wirsen 1981 and BENTHOS

others listed Selow), the polychaetes (Desbruyeres and Lavbier 1980, 1982; FauchalC 7982; Maciolek 1981 and others listed below; , the pogonophorans, particularly Riftia pachyptila (Jones 1980, 1987, 73841, the crustaceans, particularly the Eumalacestracans (Hessler 1984; Williams I980 qnd others), and the malluscs (Boss and Turner 7980: Fretter et al. 7981:- Kenk and Wilson in press!. The clam Calyptogena magnifica is associated with hydrothermal activity and is one of the largest vesicomyid clams, while the gastropod Weomphalus fretterae is not related to any living prosobranch and may represent an important link in gastropod evolution. A few other taxa have Seen investigated but much more research is needed to identify all vent related organisms.

a* Bactaria: aaross et a?. :363 fiarwood et al. 7982 Jannaach and Wirsen !98? ;ones et al. 1983 Ruby et al. 1981 Stahl et al. 1984

b. Phylum Coelenterata Class Anthozoa: unknown

c. Phylum Annelida Class Hirud inea : Burreson 7 981 Class Polychaeta: Pesbruyeres and Laubier 1980, 1982 Fauchald 7982 Haymon et al. 1984 Maciolek 1981 Pettibone 1983, 1984, 1985 Zottoli 7983

d. Phylum Pogonophora: Jones 1980, 1981, 1984 Tunnicliffe and Juniper 7983

e. Phylum Arthropods Subphylum Chelfcerata Class Rcarlna: Krantz 1982 Subphylum Crustacea Class Cirsipedia: Newrnan 1979 Class Copepoda: Humes and Dojiri 1980 Class Eumafacostraca: Hessler 1984 Williams 1980 Williams and Chase 1982 Williams and Van Dover 1983

f . Phylum Mollusca Class Bivalvia: Boss and Turner 1980 Kenk and Wilson in press Class Gastropods: Fretter et al. 1987 McLean 1987

g. Phylum Hemfchordata Class Enteropneusta: Woodwick and Sensenbaugh 1985 BENTHOS

h, Phylum Chordata Class Osteichthyes: Cohen and Haedrich 1983

Community Dynamics

Xuch of the information on hydrothermal vents concerns the community structure of the organisms. Some of t5e more general 7apera discuss the discov~ryof unusual communities of animals in the deep-sea associated w!:n hydrotheraal fluid venting and their relation'to a chemosynthetic f3od 762'. saurce !:orliss ~t 31. 1gR3; 2esbruyeres et al. $982; Znrignt st a,. - dd Galz~agosBiology Expeb i tion Participants 1979; ,:,rassle r952) . Locsdzle <:377) reported the high stanainq crop of sus?ension feeding mazro3ectncs near hydrothermal vents and related this high abundance to the increased food supply near hydrotheraal plumes in bottom water. Desbruyeres and Laubier (19841 review all the data on the priaary consumers of Eastern Pacific hydrothermal vents, with an emphasis on the four most important species Riftia pachyptila, Calyptogena magnifica, the mytilid Bathymodiolus thermophilus and the dlvinella pompejana. Paul et al. (1 98h) discuss the discovery of -es at the Florida Escargrnent, A recent; papes by ~rnith (1985a)' reports some --in situ rates of cxygen consumption, He reports that diffuse warm-water effluent al~ng crevices in pillow lava formations are densely populated with ep i~enthic megafauna, that vent and non-vent are dominated by the calanoid copepod, Isaacsicalanus paucisetus, end that wefght-specific oxygen consumption rates of plankton from vent and non-vent areas are of similar magni tude (7 468 4-26 IJ o2 (,g dry wt)-'dl1. These oxygen consumption rates are one to two orders of magnitude lower than published rates for surface-water plankton.

The spec if ic taxonomic groups covered include the bacteria , the bivalve aolluscs, particularly Calyptogena iflagnifica and Sathymodiolus thermophilus. from the Galapagos Rift vents, and the gastropod Neomphaulus fretterae. The work on bacteria is focused on their growth at high temperatures (Baross and Derning 79831, their activity in high temperature and high sulfur environments (Karl et al. 7984; Tuttle et al. 19831, and their importance as chemoliChaauCotrophic primary producers at the vents (Baross et al. 1982; Felbeck and Somero 1982; Jannasch 7984a, 1984b; Jannasch and Wirsen 7979; Karl et al. 1980). Finally the potential of hydrothermal vents as a site for the origin of is reviewed by Corliss et al. E1980).

The more detailed research on the bivalves near hydrothermal vents reviews the growth rates of the rnytilkd mussel Bathymodiolus thermophilus the vesicomyid clam Calyptogena rnagnifica. As an example, Turekian and Cochran (1981) found that the vesicomyid clam from the Galapagos Rift vents grows about 4 cm per year with an age of 3 or 4 years xhile Rhoads et al. (7981) found that the mussel grows about 1 crn per year with an approximate lifetime of 19 years. Some research has also been done on the larval development and dispersal of bivalves at vents and it is suggested that the mussel may have a planktotrophic stage for better dispersal while the clam Calyptogena magniffca and many other gastropods have a nonplanktotrophic larval stage (Lutz et al. 7980, 1984, in press; Turner and Lutz 7984; Turner BENTHOS

et al,, in press). The research on Neomphalus fretterae by McLean (1381 1 indicates that Chis gastropod is close to many archaeogastropods and may be an ultimata expression of a basic plan that occurred only once in evolution. Little data :n the community structure of the other vent-associated aninals are available but new photographic evidence on Eastern Pacific vents may provide data on other vents and on the crustaceans living in and around the vents (3.2. Xessler pers. cornm,).

a. General: Cohen and Haedrich I983 Corliss et al. 1979 Desbsuyeres and Laubier 192-4 Zesbruyeres et al. 1982 Znrignt et a: 198' Galapagos 3iology Exped. Psrt. 7979 Crassle 1982, 1984a and b Hessler 1981 Lonsdale 1977 Paul et al. 7984 Turner 1981

i. Oxygen Consumption: Smith 7384

b. Specific Taxonomic Groups

i. Bacteria: Baross and Derning 1983 Baross et al. I982 Corliss et al. 1980 Felbeck and Somero I982 Jannasch 1984a and b Jannasch and Wirsen 1979 Karl et al. 7980, 1984 Tuttle et al. 1983

ii. Phylum Mollusca

Class Bivalvia: Fatton and Raux f981a and b Fatton et al. 1982 Lutz et al. 1980; 1984; in press Rhoads et al. 7981; 1982 Roux et al. I982 Smith 'f985b Turekian et al. 1979; 1983 Tusekfan and Cochran 7987 Turner and Lutz 1984 Turner et al. in press

Class : McLean 1981 BENTHOS

Distribution

General references on the distribution of ve;:t organisms include Corliss et al. (1979), Crane and Sallard (79801, and Hessler and.Smithey (1984). In general, animals such as the vestimentiferan, limpets, clams, a , an anemone and the mussel live in the mouth of the vents, where the temperature is several degrees above ambient. Other organisms like the serpulid polychaetes, a second anemone, a galatheid crab and a turid gastropod are abundant around the vents but avoid the vent openings. Finally, a third group consisting of a siphonophore, a brachiopod, a third species of anemone, entesopneusts, another shrimp, and In ophiurgid rezain at the periphery of the vent field. A few other ?tobile species, suck zs vent fish, Srachyurzn crabs, other galatheid crabs, and am?hi?ods, zre xost abundant at vent openings but are also found in non-vent areas. %st vent field species are endemic. The main food sources are symbiotic chenoautotrophic bacteria, suspended bacteria ejected from the vents, bacteria settled out from the vents, and bacteria growing as a film on the substratum surrounding the vent fields. tittle is known of the plank ton associated with these vents but the top of the food chain is represented by scavengers, mainly eumlacostracan crustaceans, some of which may be carnivorous.

Abundance

There are no references that discuss the abundance per se of vent-associated organisms. Some of the general papers on community structure give an indication of the relative abundance of Riftia pachyptila and Calyptogena magnffica at different vent sites (Desbruyeres and Laubier 1984; Grassle !982, 1984a, T984b 3. There ase no papers that parallel the ones discussed in this section for the Gosda ~idgelease area-or its close surrounding areas.

Feeding Ecology

Though many of the papers on vent organisms discuss feeding mechanisms, the studies Here based on physiological, enzymatic, and biochemical results. These will be discussed in the sepafate section on Physiological and aiochemical Processes. The only paper resembling those discussed for the other areas reviewed is the one by Van Praet (in press) which was unavailable for comment,

Animal-Sediment Interactions

There are no references related to hydrothermal vents that discuss the interaction between benthic animals and the sediments. BENTHOS

Physiological and Biochemical Processes

3ne of 2-12 major thrusts in research on hydrothermal vent animals has Seen to stddg their physiological and biochemical adaptations for life in a high pressure, elevated temperature, and potentially chemically toxic env ironrnent . The techniques used include th f n-sect ion ing !I istolog ical research, transmission electron microscopy, enzymology, and the use of N'~/N" and C1'/C'* ratios to determine the physiology and biochemistry of feeding of vent-associated organisms. The general papers review the evidence for chemoautotrophy in vent oacteria, the dse of sulfide 3s an energy source l?ry et al. 79831, and the symbiztlc relationship Setiieen sulfide-cxitizing sactsria and the =~~stir.entiferaEuora zni 5iv3;w molluscs livicg in tke vent openings iFe:beck et 31. f9B1; Eand and 3omera 7383; Somero 1984). Rau's work (79.5tb) suggested tkat organic nitrogen or nutritional importance to vent animals is initially synthesized within the vent environment wi th some evidence of N2 fixation,

The main specific taxonomic groups reviewed are the bacteria {Cavanaugh 1983; Fisher et al. 1983; Ruby and Jannasch '982 and others), the vestirnentiferan Riftia pachyptila (Arp and Childress 1981a, 1983; Felbeck 1981; Nelson et aL. 7984 and many others), the Srachyuran crab Bythograea thermydron (Arp and Childress 1981b; Mickel 1982; Xickel and Childress 79d21, and the bivalves Calyptogena nagnifica 1Arp et al. 1984; Childress and Mickel 7982; Roesijadi and Crecelius '334 and others) and aathymodiolus thermophflus (Rau et a1 7979; Williams et a1 1981). Some of the most important results include: (1) the existence of chernoautotrophic symbiotic bacteria in many of the vent animals (Cavanaugh 1983; Cavanaugh et al. 1981; Felbeck 73873; (2) the genetic similarity, based on RNA sequences, of the prokaryotic symbiont3 of Riftia pachyptila, Calyptogena magniflca, and a shallow-water bivalve, Solemya velum (Stahl et al. 1984; (3) the of the vent vestimentiferan worm and the vent crab Bythograea thermydron has a high oxygen affinity, s small effect oT on oxygen affinity and a high oxygen carrying capacity (brp and Childress 1381a and b; Terwilliger et al. 1980; Wi ttenberg et al. 1981 ; (4) the C' 3/~12ratios of vent , vent clams and vent vestirnentiferans are all depleted relative to the tissues of other marine ~rganismswhich suggests a chemosynthetic rood source, either by symbiotic arrangement with chemoauteCrophic sulfide-oxidizing bacteria or by ingestion of vent bacteria ejected in vent fluids or growing on microbial mats IRau et al. 1979; Southward et al. 1987; Xillfams et al. 1981).

A few other faxa have been investigated vith results on the presence of chernosynthetic symbiotic bacteria in oligochaetes (Felbeck et al. 19831, in polychaete worms near hydrothermal vents (Desbruyeres et al. 7 983 ; Laubier et al. 1983, in press), and in shallow-water coastal hydrothermal vent gastropods (Stein 7984).

a. General: Felbeck et al. 198? Fry et al. 1983 Hand and Sornero 1983 Zau T9BIb Sornero 7984 BENTHOS

b. Specific Taxonomic Groups

1. 3acteria: Baross and Deming 1983 Cavanaugh 1383 Felbeck and Somero 1982 Fiscner et al. 1983 Jannasch and Wirsen 1979 2uoy and Jannasch 1982 Stahl et al. 1984 Trent et al. 1984

ii. Phylum Anneliaa

Cizss bljcnaeta: 3esorcyeres st al. 7363 Feloeck et al. 1983 Laubier et al. 1983 Laubier et al in press

iii. Phylum Pogonophora: Arp and Childress 1981a, 1983 Blum and Fridovich 1984 Cavanaugh et al. 1981 Felbeck 1 981 , ! 985 Nelson et al. 1984 Poweil and Somero 1983 Rau 1981a Southward et al. 1981 Terwilliger et al. 1983 Williams et al. 1981 Yittenberg et al. 1981

iv. Phylum Arthropoda Subphylum Crustacea Class Eurnalacostraca: Arp and Childress '9810 Mickel 1982 Mickel and Childress 1982 v. Thy lum Mollusca

Class Bivalvia: Arp et al. 1984 Blum and Fridovich 1984 Childress and Mickel 1982 Felbeck 1983 Rau 1981a Rau and Hedges 1979 Roesijadi and Crecelius 1984 Terwilliger et al. 1983 Williams et al. 1981

Class Gastropoda: Stein 1984 BNTHOS

Rad ioeculogical Studies

No szudies on the effects of radionuclides or heavy metals have been done for aninals from hydrothefmal vent habitats. Thus there are no references paralleling the radioecological studies done in the northern part of the Lease area.

General Scope

These studies review some of the important geologicai, chemical, and general oceanographic data on hydrother~alvents. 3allard (1977; revi3ws the general oceanograpnic data concerning the Galapagos 2Fft venfs while Lonsdale 1!9Sa) dces the same for the hot vents of the Sea of Cortez. The work by Edmond j7982) and Edmond et al, If9821 discusses the chemistry of Galapagos hydrothermal vents, particularly the deposition of sulfides and the effects of the plume, while Normark et al. (1982) reviews similar data far the Juan de Fuca Ridge. The importance of sinking particulate matter and the advection of organic material near vents was studied by Cobler and Dymond ( 1980) and Comi ta et al. ( 19841 .

a, Oceanographic data: Sallard 7977 Cobler an$ Diamond 1980 Comita ec al. 1984 Edmond 1382 Edmond et al. 1982 Elvers et al. 1974 Lonsdale 1 98 4 Normark et al. 1982

DATA GAPS

Based on the literature reviewed, it is apparent that only limited data exist concerning the benthos of the Gorda Ridge and the immediate surrounding area. There are only two published studies (Fowler and Kulm 1970; Clague et ale 1984) that deal with the benthos of the Gorda Ridge and only the foraminiferana are discussed in detail. Virtually everything else needs to be assessed, including the taxonomy of the Infauna (both meiofauna and macrofauna), the potential hydrothermal cowmunitfes, community structure, biomass, abundance, distribution, trophic relationships, reproduction and response to disturbances. There are also no data on animal-sediment interactions on and close to the Gosda Ridge, nor any information on heavy metal and radionuclide concentrations in potentially important regions of the Gorda Ridge.

Areas within the lease area have been studied in more detail but there are still major gaps in our knowledge of the benthos in the lease area. The region to the north and east of the Ridge, Cascadia Abyssal Plain specifically, has been studied in detail for the major macro- and megafaunal animals. However, data on nannobiota, meiofauna, and important community processes such as oxygen consumption, nutrient fluxes, feeding ecology, BENTHOS trophic dynamics, and reproduction are lacking. AT1 other regions adjacent to the Gorda Ridge and within the lease area have been poorly studied.

Finally, even with all the information known about hydrothermal vent communities, much more research needs to be done to understand fully the ecology of these unique assemblages. More research is needed concerning the taxonomy of vent organisms, the overall community structure including data on abundance and distribution, the physiological adaptations to vent env isonmen ts, geographic extent of these unusual reep-sea hab i tats, reproductive and dispersal patterns, and the response of the organisns to disturbance.

In summary, little is known zbout the Senthcs of the ~Iorda3i659 and tne surrounding region. Research focusing on the areas outlined be;ow will be useful in gaining insight and knowledge about benthic community processes at Gorda 3idge.

Taxonomy and Systematics

Many of the major taxonomic groups have not been studied including: bacteria, anemones and other coelenterates, pogonophoran Gorms, chelicerates (particulary pycnogonids), crustaceans (particularly copepods, cirripedes, and eumalacostracans), polychaetes, molluscs, and gastropods in general, and nannobiota and rneiofaunal-size organisms.

Cornmun ity Dynamics

Data on the diversity and density of all major phyla are lacking, with the exception of holothur f ans on Cascad la Abyssal Plain. Community processes such as oxygen consumption and nutrient fluxes have also not been studied in the lease area.

The depth distribution of most major phyla has been researched quite extensively on Cascadia Abyssal Plain but data are lacking for the Gorda Ridge and other regions of the lease area. Research is also needed on the horfzontal scales of distribution of organisms living in the lease area, particularly for those organisms on the Ridge per se.

Abundance

The only data available discuss the abundance of infaunal animals on Cascadfa Plain and of the holothurians on both Cascadia and Tufts Abyssal Plains. All other taxonomic groups are unstudied and no data exist for the other regions of the lease area or for the Ridge itself. Reproductive biology is an especially important process fop which no data exist. BENTHOS

Feeding Ecology

Data ar2 needed on the feeding ecology of all taxa in the lease area. Nothing is Anown about the feeding of the sessile fauna surrounding the Ridge, nor on the scavenging amphipods that may be present in the area. Again, the only region with any coverage is the Newport transect line, so all other regions of the lease area must be studied.

Animal-Ssdiment Interact ions

Yo speclf'ic taxonomic graup has Seen studied ic the llase area, Li ttLe is known about the sediments around tne Gorda Ftidge and less about the aginals living in cr on them. 3esearch in this field is particularly important due to the possibility of najor sediment disturbances on and around the Ridge. Data are needed on the particle size of the sediments and their organic content, on the rates of bioturSation, and on the physical characteristics of the benthic boundary layer, especially the spatial and temporal variations in current speeds.

Physiological and Biochemical Processes

In light of the recent evidence suggesting active hydrothermal venting at the Gorda Ridge, there is the possiblity that vent-related benthic communities will be present. If so, research will be needed on the taxonomy, genetics, and physiology of all animals found on the Gorda Ridge. There are some data on the animals found at the subduction zone off Oregon [Suesa et al., in press; Kuulrn eC al., unpub. ma.) but this is the only physiological information on vent-related or any other fauna in the lease area.

Radioecological Studies

Again the research is concentrated on the Newport transect line, in the northernmost region of the lease area, and nothing is known for any other regions of the lease area, including the Gorda Ridge. Basic research on heavy metal concentrat ion and rad ionuclide content of the sediments should be undertaken to provide good background data for future reference.

Many of the references included in this report were gathered through an lxhaustive computer search using the following data bases: Aquatic Sciences and Fisheries Abstracts, Biological Abstracts, National Technical Information Service, and National Environmental Data Referral Service. In addition to the computer search, information and references were obtained from the Atomic Energy Commission Reports and from theses from the College of Oceanography at Oregon State University. The Columbia River effluent cruise reports were obtained on loan from the School. of Oceanography df the University of Washington. Finally, we obtained some other data and references through personal contacts at Tetra Tech Inc., at Scripps Institution of Oceanography, and particularly at Oregon State University.

We would Ilke to thank Marilyn Win, head Librarian at the hark 0. Hatfield Marine Science Center in Newport, Oregon for all her efforts in compiling the computer data bases and in obtaining much-needed reports. Miriam Ludwig, librarian at the Patvllo Study, College of Eceanography, Oregon State University was most helpful in the search for the AEC reports and in permitting us to keep theses for an extended period of time. We would like to thank Qr. E.W. Sague of Tetra Tech Inc. for provrding l~swith some additional references. 3r. L.D. aibee and Dr. 3. 7oll:er gzv2 3 seminar on the tectonics and geochemistry of tfie Corda 3idge and shared same new information cn hydrothermal activity in the Narrow Gate regior?. ;r. c.- Suess provided us with copies of two important and otherwise unavailable papers on the vent communities associated with the subduction zone off Oregon. Dr. R.R. Hessler from the Scripps Institution of Qceangraphy discussed the potential for new discoveries at vent sites in the eastern Pacif fc.

Oregon State University, Corvallis, Or., Ref. No. 80-8, 17 pages.

Baross, ,.,.,- \ Y.3. Lilley, and L.I. Gordon. 1982. Is the C34, 3 and CO venting from submarine hydrothermal systems produced gy tkermophilic bacteria? Nature -298: 366-368.

3aross, J.A., and J.W. Deming.- 1983. Growth of 'Slack smoker' oacteria at temperatures of at least 250'~. Nature -303: 123-426.

.,.a ,-na 7.. 1q7", . Sectibr=,?.c?..?cf the :astern Pac lf ln [3i';zl';la, Ar!cralacesrr.a ta j . .;llzn 3ancccx Yonographs in %r in? 31,=.loyy, Nc. 3, ';niversity of Soutnern , Los Xnge;os, Ca., 273 pages. alum, 2. and I. Friaovich. 1984. Enzymatic defenses against axygen toxicity in the hydrothernal vent animals Riftia ?achyptila and Calyptogena nagnifica. Arch. Siochem. aiophys. 228: 617-620.

Boss, K.J., and R.D. Turner. 1980. The giant- white clam from the Galapagos Rift, Calyptogena aagnif ica, new species. ?*alacologia 20: 161-794.

Bruce, F. and A.C. Carey, Jr. 1969. Depth distribution of scaphopods off 3regon. Prog. Rept. 1968-1969, Atomic Energy Commission, Contract AT(q5-1)-7750-54, Dept. of Oceanography, Oregon State University, Corvallis, Or., Ref. no. 69-9: 102-103.

3urnett, B.R. 1977. Quantitative sampling of microbiota of the deep-sea benthos -- I. Sampling techniques and some data from abyssal central North Pacific . Deep-Sea 2es. 24: 781 -783.

Burreson, E.M. 1981. A new deep-sea leech, Bathybdella sawyeri gen. et sp. n., from thermal vent areas on the Galapagos Rift. Proc. Biol 3oc. Wash. -94: 483-491. Carey, A.G., Jr. 1963. Ecological and radiological study of the benthos in the Pacific Ocean off Oregon. Prog. Rept. 1963, Atomic Energy Commission, Contract AT(45-1)-1758, Dept. of Oceanography, Oregon State University, Corvallis, Or., Ref. no. 63-34: 1-14.

Carey, A. C. , Jr . 1965. Preliminary studies on animal-sediment inter-relationships off the Central Oregon coast. Ocean Science and Ocean Engineering, Vol. 1 : 100-1 10.

Carey, A.G., Jr. 1969. Zinc-65 in echinoderms and sediments in the marine environment off Oregon, p. 380-388. In Proceedings of the Second National Symposium on ~adioecology,Ann Arbor, Mi., 1967 Carey, A.S., Jr. 1972a. Food sources of sublittoral, ~atnyaland aSyssal asteroids in the Northeast Pacific Ocean. Ophelia 1C: - - - 5>-G7.

Carey, A .G., Jr. 1972b. Ecological observations on the Senthic lnverteerates lron the Central Cregon continental shelf, p. 422-443. In the Columbia River estuary and adjacent ocean ~aters,A.E Pruter and D.L. Alverson, eds., LJniversity of iiashington Press, Seattle, Xa. a,. , J, 7972~. Zinc-65 ir. ken'hic Ir.ver'e5ratss ~f?tne ;r~gcn,:$as:, ;. s33-544. -In ~.;~,3~i~?.i.;l? ?3EL;3?'l 32: ad2acsnt ocean ~3t3?s,A.T. Prutsr and 2.;. Alversc~,ens. , :p,iversi :y 3f iashingtsn ?ress, Seattle, %a.

Carey, A.G., Jr. 1981. A comparison of benthic infaunal aoundance on two abyssal ?lains in the Northeast Pacific Ccean. 'eep-Sea Res. -28A: 467-479. Carey, A.C., Jr. and M.A. Alspach. 1966. Ecology of the benthic fauna off the Oregon coast. Final Report 3963-1965, NSF Res. Grant G8 531, Dept. of Zceanograpny, Oregon State Kniversity, Zorvallls, Cr., Ref. no. 66-20, 25 pages.

Carey, A.G., Jr., ?.A. Alspach and G.L. Hufford. 1967. The feeding ha~itsof asteroids off Oregon. Prog. Rept. 1966-1967, Atomic Energy Commission, Contract AT(45-1)-1750 RLO-1750-22, Dept. of Oceanography, Oregon State University, Corvallis, Or., Ref. no. 67-7: 82-86.

:arey, A.G., Jr. and R.R. Paul. 1968. Organic content of sediments. Prog. Rept. 1967-1968, 4tomic Encergy Commission, Contract AT(r5-')-I750 RLC-3750-28, Cept. of Oceanography, 2regon State Yniversity, Corvallis, Or., 3ef. 30. 68-7: 183-186.

Carey, A.G., Jr. and J.M. Stander. 7968. Estimation of macro-epifau~alabundance by bottom photography. Prog. Rept. 1967-'368, Atomic Energy Commission, Contract AT(45-l !-I750 RL0-1750-28, Dept. of Oceanograpny, Oregon State University, Corvallis, Or., Ref .no. 68-7: 178-1 82.

Carey, A.C., Jr. and N.H. Cutshall. 1973. Zinc-65 specific activities from Oregon and Washington continental shelf sediments and benthic invertebrate fauna, p. 287-305. -In Radioactive contamination of the marine environment, International Atomic Energy Agency, Vienna.

Carey, A.G., Jr., J.B. Rucker and R.C. Tipper. 1973. Benthic ecological studies at deepwater dumpsite G in the Northeast Pacific Ocean off the coast of Washington. Proceedings of the First Conference on the Environmental Effects of Explosives and Explosions, NOL Tech. Rept. 73-223: 120-1 37. BENTHOS

Carney, R.5. 1976. Patterns of abundance and relative abundance of benthic holothur ians (Echinodermata:Holothuroida) on Cascadia Basin and Tufts Abyssal Plain in the Northea2t Pacific Ocean. Ph.3. Thesis, Oregon State University, Corvallis, Or., 185 pages.

Carney, 3.S. and A.G. Carey, Jr. 1976. Distribution pattern of holothurians on the Northeastern Pac if lc (3regon, USA) continents; shelf, slope and abyssal plaln. Thalassia Jugoslavica '2: 67-74.

Cavanaugh, C.M. 1983. Symbiotic chemoautotrophic bacteria in from sulphide-ricn habitats. Nsture 58-61.

Cavanaugh, C.M., S.L. Gardiner, M.L. Jones, H.W. Jannasch, and J.B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila :ones: possible chemoautotrophic synbionts. Science -21 3: 340-342.

,Zhildress, J.J., and T.J. Mickel. 1982. Oxygen and sulfide consumption rates of the vent clam Calyptogena pacifica. Mar. Biol. Let. -3: 73-79.

~Clague,D.A., W. Friesen, P. Quinterno, M. Holmes,. 2. Morton,R. Bouse, L. Morgenson and A. Davis. 1984. Preliminary geological, geophysical and biological data from the Gorda Ridge. Open File Rept. 84-364, U.S.G.S., Menlo Park, Ca., 31 pages.

Cobler, R., and J. 3ymond. 1980. Sediment trap experiment on the Galapagos spreading center, equatorial Pacific. Science 209: ao r -803.

Cohen, D.M., and R.L. Haedrich. 1983. The fish fauna of the Galapagos thermal vent region. Deep-Sea Res. 30: 371 -279.

Comita, P.B., R.B. Gagosian, and P.M. Williams. 1984. Suspended particulate organic material from hydrothermal vent waters at 21 ON. Nature -307: 450-453. Corliss, J.S., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.3. 3allard, K. Green, D. Williams, A. Bainbridge, K. Crane and T.H. van Andel. 1979. Submarine thermal springs on the Galapagos Rift. Science -203: 1073-1 083. Corliss, J.B., J.A. Baross and S.E. Hoffman. 1980. Submarine hydrothermal systems: a probable site for the origin of life. Final Report 1980, NSF Grants OCE 75-23353, OCE 77-23978, OCE 78-26368, OCE 79-27283, School of Oceanography, Oregon State SENTHOS

Jniversity, Corvallis, Or., Ref. no. 50-7, 44 pages.

Crane, K., and 8.3. Bailard. 1980. The Galapagos Rift at 86OX: 4. Struct~reand morphology of nydrothernal fields and their relatronshlp to the volcanic and tectonic processes of the rift valley. 2. Geoonys. 3es. 85: '443-7454.

Cross, F.A. 1966. Zinc-65 in a marine benthic amphipod. Prog . Rept. 1965-1 966, Atomic Energy Commission, Contract AT(a5-1 )-I750 RLO-1750-5, Dept. of Oceanography, Oregon State University, Corvallis, Or., 'ef. no. 66-5: 98-1'~4. ' l,"C ,as, - 3.4. 3.3ehav;or of certain racionucliGes ir. a Zarine ben;.-.i- anphipod. P?.. 3. T3esis, Oregon SLat? Zr,i.:ersi ty , Corvaliis, Or., 64 pages.

'esbruyeres, D., and L. iaubler. 1980. Alvinella pornpejana gen. sp. ?ov., Ampharetlda; aDerrant des sources nydrothermales de la ride Est-Pacifique. Oceanoi. Acta 3: 267-274.

Desbruyeres, D., and L. Laubier. 1982. Paralvinella grasslei, new ger.us, new species of Alvinellinae (Po1;lchaeta : Arnpharet idae) from the Zalapagos Rift geothermal vents. ?roc. Biol. Soc . Wash. -95: 484-494. Desbruyeres, D., P. Crassous, J. Srassle, A. Yhripounoff, D. Reyss, Y. 9io and M. Van Praet. 1982. Donnees ecologiques sur un nouvsau site d'hydrotherrnalisme actif de la ride du ?acifique Oriental, C.R. Acad. Sci. Paris, Ser. I11 -295: 489-494. Desbruyeres, D., 8. Saill, L. Laubier, D. Prieur, and G.H. Rau. 1983. Unusual nutrition of the "Po~peii worm" Alvinella ?orn;ejana (polychaetous ) from a nydrothermai vent environment: SEM, TEM, 13c and ''N evidence. Mar. Biol. 75: 20 1 -205.

Cesbruyeres, D. and L. Laubier. 1984. Primary consumers from hydrothermal vents animal communities, p. 77 1-734. In Hydrothermal processes at seafloor spreading centersT~ona, P.R., R. Sostrom, L. Laubier and K.L. Smith, Jr., eds.) NATO Conf. Ser 4: Mar-Sci. 12. Plenum Press, NY, NY.

Dickinson, 2.J. 1976. Two zoogeographic studies of deep-sea benthic gammarid arnphipods. Ph.D. Thesis, Oregon State University, Corvailis, Or., 117 pages.

Dickinson, J.J. 1983. The systematics and distributional ecology of the superfamily Ampeliscoida (Amphipoda, Gamrnaridea) in the Northeastern Pacific region 2. The genera Byblis and Haploops. Natl. Mus. Nat. Sci. Publi. (Ottawa, Canada) 0 (1). I-V: 1-38. BENTHOS

Dickinson, J.J. and A.G. Carey, Jr. 1978. Distribution of gammarid Amphipoda (Crustacea) on Cascadia Abyssal Plain (Oregon). Deep-Sea Res. 25: 97-106.

Dunn, 3.F. 1982. Paraphelliactis pabista, new species of Hormathiid sea ar.erone from a~yssalNortheastern Tacif ic waters (Coelenterata:dctiniara) . SYESIS -15: 51-56.

Ednond, J.Y. 1982. Ccean hot springs: A status report. Cceanus 25(2): 22-29.

Eam, 3.3. Wcuff, anc C. 1. Yeassres. 1352. Ch3mistry of hot springs 3n the East ?scific 3ise and tneir efflsent aispersal. Yacure -297: 157-7 93.

Elvers, D., K. ?otter, 2. Seidel, and J. Morley. 1974. :.3.O.E. survey, N.O.S. Seamap profiles plates 3CM-3-71. NOAA Environmental Data Service, Washington, D. C.

Enright, J.T., W.A. Newman, R.R. Hessler, and J.A. McGowan. 1987. Deep-ocean hydrothermal vent communities. Nature -289: 219-221.

Pstton, Z. and M. Roux. 198la. "oalites de croissance et microstructure de la coquille de Calyptogena (; Lamellibranches), en relation aver les sources hydrothermales oceaniques. C.?.. Acad. Sci. Paris -243: 63-68.

Fatton, 5. and Y. Roux. 1981 b. Etapes de ltorganisation microstructurale chez Calyptogena magnifica Boss et Turner, bivalve a croissance rapide des sources hydrothermales oceanique. C.R. Acad. Sci. Paris 243: 63-68.

Patton, E., C. Marieu, C. Fschiaudi, M. Rio and M. Roux. 1982. Fluctuations de ltactivite des sources hydrothermales oceaniques (Pacifique Est, 21 ON) enregistrees lors de la croissance des coquilles de Calyptogena magnifica (Larnellibranche, Vesicomyidae) par les isotopes stables du carbonne et de l'cxygene. C.R. Acad. Sci. Paris -293: 701-706.

Fauchald, K. 1982. A eunicid polychaete from a white smoker. Proc. Biol. Soc. Wash. -95: 781-787. Fauchald, K. and D.R. Hancock. 1981. Deep-water polychaetes from a transect off central Oregon. Monographs of the Allan Hancock Foundation, No. 11, University of Southern California, Los Angeles, Ca., 73 pages.

Felbec k, H. 1981 . Chernoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science -21 3: 336-338. BENTHOS

FelSec~,ki. :983. Sulfide oxidation and carbon fixa':,,or, oy tke gutless clam Solemya reidi: an animal-bacteria symbiosis. J. Comp. P9ysiol. 6 3 3-11.

FelSeck, H- 'gB5. C02 fixation in the hydrothermal vent tube warm 3iffia 2nchyptila Jones. Physiol. Zool. 55: 272-281.

Felbeck, H., J.J. ,:nildress, and G.N. Somero. 1587. Calvin-5enson cycle and sulphide 3xidation in animals from suiphide-rich habitats. Vature -293: 29;-293.

0'~:xaticr. In :issues of narlno oligc?9a?cas (?!?~llc.:rilss - leu~odermat~s2nd ;?) con~ainingsyzbioti-, chemoautotro~hicbacteria. ?:ar. aicl. 75: 187-19; .

Felbec~,ti., and G.N. Sonero. 1982. Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. Trends Biochem. Sci. -7: 201-204. Fischer, R., W. Zillig, K.O. Stetter, and G. Schreiber. 1983. Chernoli thoautotrophic meta~olis!? of anaer,~bic extremely therrnoph~licarchae'sacteria. Nature 51 1-51 3.

Fleming, R.X. and C.A. Barnes. 1367. Physical, chemical and biological data from the Northeast Pacific Ocean: Columbia River effluent area, 1965. Vol. I. Tech. Rept., Unlversity of Wasnington, Seattle, Wa., 335 pages.

Fowler, G.A. and L.D. Kulm. 1970. Foraminifera1 and sedimentological evidence for uplift of the deep-sea floor, Gorda Sise, Northeastern Pacific. J. Yar. Res. -25: 537-605. Fretter, V., A. Graham, and J.N. McLean. 1981. The of the Galapagos Rift limpet, Neomphalus f retterae. Malacologia % 337-361.

Fry, B., H. Gest, ;.!!. Hayes. 1983. Sul?hur isotopic conpositions of deep-sea hydrothermal vent animals. Nature -306: 51 -52. Galapagos Biology Expedition Participants: Grassle, J.F., C.J. Berg, J.J. Childress, J.P. Grassle, R.R. Hessler, H.W. Jannasch, D.M. Karl, R.A. Lutz, T.J. Mickel, D.C. Rhoads, J.L. Sanders, K.L. Smith, G.N. Somero, R.D. Turner, J.H. Tuttle, P.J. Walsh and A.J. Xilliams. 1979. Galapagos '79: Initial findings of a biology quest. Oceanus -22 (2): 2-1 0. Grassle, J.F. 1982. The biology of hydrothermal vents: a short summary of recent findings. Mar. Technol. Soc. J. (3): 33-38.

Grassle, J.F. 1984a. Animals in the soft sediments, near the hydrothermal vents. Oceanus -27 (3) :63-66. BENTHOS

Grassle, J. F. 1984b. Introduction to the biology of hydrothermal vents, ?. 665-676. In hydrothermal ?recesses at seafloor spreadrr,g :enters. (Rona, P.R., R. Sostrom, L. iaubier and K.L. Smith, Jr., eds.) NATO Conf. Ser 4: Mar-Sci. 32. Plenum Press, NY, NY.

Criggs, G.B. 1369. Cascadia Channel: the anatomy of a deep-sea channel. P3.D. Thesis, Oregon State Ur.iS~ersity,Corvallis, Or., 183 pages.

Sriggs, ;.3., A.2. "rrey, Jr. and L.D. Klum. 1953.. 3ee;-sea sedi3enta'ion and sedinent-fauna intaracticcs in ,?zscazla Channel and cc Cascadia A>ysszl Plain. 2eep-Sea Zns. -16: 157-170.

Xancoc~, D.9. 1969. 3athyal ana abyssal polychaetes (An~eiids)from the Zentral coast of Oregon. M.S. Thesis, Oregon State University, Corvallis, Or., 121 pages.

Hand, S.C., and G.N. Somero. 1983. Energy metabolism pathways of hydrothermal vent aniaals: adaptations to a food-rich and sulflde-rlch deep-sea environment. 9101. Bull. ' 67-18' .

Harwood, C.S., H.W. Zannasch, and E. Canale-Parola. 1982. Anaerobic spirochete from a deep-sea hydrothermal vent. Appl. Env . Microbiol. -44: 234-237. Haymon, R.M., R.A. Koski, and C. Sinclair. 1984. of hydrothermal vent worms from sulfide ores of the Samail ophioli te, Oman. Science 223: 1407-1 409.

Zessler, R.R. 7981. Oasis under the sea--where sulfur is the staff of life, New Scient., 10 December: 741-747.

Hessler, R.R. 1984. Dahlella caldariensis, new genus, new species: a lep tostracan (Crustacea, Malacostraca) from deep-sea hydrothermal vents. J. Crust. Biol. -4: 655-664.

Hessler, R.R. and W.M. Smithey, Jr. 1984. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents, p. 735-770. & Hydrothermal processes at seafloor spreading centers. (Rona, P.R., R. Bostrom, L. Laubier and K.L. Smith, Jr., eds.) NATO Conf. Ser 4: Mar-Sci. 12. Plenum Press, NY, NY.

Hey, R.N., and D.S. Wilson. 1982. Propagating rift exglanation for the tectonic evolution of the northeast Pacif ic--the pseudomovie. Earth Planet. Sci. Lett. -58: 167-188. Higley, D.L., R.L. Holton and P.D. Komar. 1976. Analysis of benthic infauna communities and sedimentation patterns of a proposed fill site and nearby regions in the Columbia River estuary. BENTHOS

Final 3ept., School of Zceanography, Oregon State University, Corvaliis, Or., Ref. no. 76-3, 78 pages.

Hufford, 2.:. '967. Some aspects of the biology of tfie deep-sea holotnuroid Paelopatides spp. M.S. Thesis, Oregon State University, Csrvallis, Jr., 67 pages.

Humes, A.S., 2nd N. Dojiri. 1980. A siphonostome copepod associa5ed with a vestimentiferan from the Galapagos Rift and the Zast ---.ra~ific Rise. ?roc 3iol. Scc. Xash. 697-737.

Ingri?, 7.A. ad 3.3. 3essler. 1992 . ,istri5sti~n an2 S?r.a.ficr CF scavenging aa;hi;ocs fror. L,.,z '+ - 'Zentral !;or5 Facif ic. :s?p-Zsa ?es. -33A: 663-7G6. Jannasch, 9.X. 1984a. 2hemosynthesis: The nutritional sasis f~r life at deep-sea vents. Oceanus 2J (3): 73-73.

Jannasch, H.N. '984b. Microbial processes at deep sea hydrothermal vents, p. 677-709. In Hydrothermal processes st seafloor spreading centers. (Rona, P.R., R. Bostrom, L. Laubier and K.L. Smi th, Jr . , eds. ) NATO Csnf. Ser 4 : Yar-Sci. 12. Plenum Press, NY, NY.

Gannasch, H.X., and C.O. Wirsen. 1973. Chemosynthetic primary production at East Pacific sea floor spreading center. Bio Science 29: 592-598.

Jannasch, B.W., and C.O. Wirsen. 1981. Mor?hological survey of microbial mats near deep-sea thermal vents. Appl. Env iron. Micrcbiol. 47: 528-538.

Johnson, A.C., F.M. Utter and H.O. Yodgins. 1974. Elsctrophoretic comparison of five species of Pandaiid shrimps from the Northeastern Pacific Ocean. Fish. Bull. 799-803.

Jones, M.L. 1980. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos 3ift geothernal vents :?cgonophora) . Proc. 3io. Soc. Wasn. 1295-1 31 3.

Jones, M.L. 1981. Riftia pachyptila Jones: observations on the vestlnentiferan worm from the Galapagos Rift. Science -21 3: 333-336. Jones, M.L. 1984. The giant tube worms. Oceanus 27 (3): 47-53.

Jones, M.L. 1985. (editor). The hydrothermal vents of the Eastern Pacific: an overview. Bull. of Biol. Soc. Wash., No. 6. (in press ) .

Jones, W.J., J.A. Leigh, F. Mayer, C.R. Woese and R.S. Wolfe. 1983. jannaschii new species, an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microb iol. BENTHOS

Karl, D.M., C.3. Wirsen, and H.W. Jannasch. '980. Deep-sea primary production at the Galapagos hydrothernal vents. Science 207: 1345-1 347.

Karl, D.M., D.J. Burns, K. Orrett and H.W. Jannasch. 1980. 2eep-sea primary production at the Galapagos nydrothermal vents. Yar. aiol. Lett. -5: 227-232. Ken~,'J.C., and 9.R. nil so^. A new aussel [3i3ralvia, wyci:idae) from hydr-thermal vents In tne Sal?pagos. ?!?l?zolcgls ,~n, . ?ross,.

Klng, d.3. '377. Ac~teeffects of seainentation on C~rneila vulgaris Hart 1930 (Cumacea). M.S. Thesis, Oregon State University, Corvallrs, Or., 54 pages.

Krantz, G.W. 1982. A new species of Copidognathus Troussart (Acari :Act iredida: Halacaridae) from the Galapagos Rift. Can. Jour. Zool. -60: 1728-1731. Kuln, L.D., E. Suess, J.C. Foore, 3. Carson, 3.T. Lewls, S. ?.i'gers, D. Kadko, 7. Thornburg, 3. Embley, W. Rugh, G.J. Massoth, Y. Langseth, G.R. Cochrane and R.L. Scamman. 1985. Oregon margin subduction zone: geologic framework, fluid ventlng, biological communities and carbonate lithification observed by deep submersible. Science ( in press).

Kyte, M.A. 1971. Recent ophiuroidea occurring off Oregon, USA. Prog. Rept. 1970-1971, Atomic Energy Commission, Contract AT(45-1 )-2227 RLO-2227-T12-10, Task Agreement 12, Dept. of Oceanography, Oregon State University, Corvallis, Or., Ref. no. 71 -1 5: 65-83.

Lambert, P. 1984. British-Columbia, Canada, marine faunistic survey report: Holothurians from the Northeast Pacific. Can. Tech. Rept. Fish. Aquatic Sci. -0 (12341, I-IV: 1-30.

Laubier, L., D. 3esbruyeres and C. Chassard-Bouchaud. 1983. Microanalytical evidence of sulfur accumulation in a polychaete from deep-sea hydrothermal vents. Mar. Biol. Lett. -4 : 11 3-1 16.

Laubier, L., D. Desbruyeres and C. Chassard-Bouchaud. In press. Evidence of sulfur accumulation in the epidermis of the polychaetes from deep-sea hydrothermal vents: A microanalytical study. Nature.

Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-sea Res. -24: 857-863.

Lonsdale, P. 1984. Hot vents and hydrocarbon seeps in the Sea of Cortez. Oceanus -27 (3) : 21-25. BENTHOS

Lutz, R.A., 2. Jablonski, D.C. Rhoads, and R.D. Turner. 1980. Lar-42: 2is2ersal of a deep-sea hydrothermal 'Jent Sivalve from :no 2a;spagos 2ift. Mar. 3iol. 57: 127-1 33.

Lutz, 3.A., D, Jaolonski 2nd 8.D. Turner. 1984. Larval development ar.d dispersal st deep-sea hydrothermal vents. Science -225: i 451-7 454.

Lutz, 3..4., X. Fritz and D.C. Rhoads. in press. Ycl;usc&n growth at zeep-sea hydrotcerrnal vents. ASZ Symposium. 3u:l. 8icl. Scc. hasn., ?io. 7.

"aciolek, !I.:. 1381. 3?ionidae (Annelica: Tslychaeta; frcm t?.e Galapagos 3ift geothermal vents. Proc. Bioi. Soc. dash. 94: a26-837.

YcCauley, ;.E. 1367. Echinoid stucies. ?rog. Rept. 1966-7967, Atomic Energy Commission, Contract AT(45-1 ) -1 750 RLO-1750-22, aept. of Oceanography, Oregon State University, Corvallis, 3r., Ref. no. 67-7:80-86.

"Cauley, J.5. 1372. A preliminary checklist of selectsd groups of invertebrates from otter-trawls and dredge coliections of? Sregon, p. 4G9-421. & A.T. Pruter and D.L. Alverson, eds., The Columbia River estuary and adjacent ocean waters, University of Xashington Press, Seattle, Wa.

YcCauley, J.E. and A.G. Carey, Jr. 1967. Echinoida of Oregon. Jour. Fish. Res. ad. of Canada -24: 1385-1401. %Lean, 2. 1981 . The Galapagos Rift limpet Neomphalus : relevance to understanding the evolution of a ma;or - radiation. Malacologia 21: 291 -336.

Mickel, T.J. 1982. Effects of pressure and temperature on the EKG and heart rats of the hydrothermal vent crab Bythograea thsrnydron (Brachyura). Biol. Bull. -152: 70-82. Mickel, T.;., and J.J. Childress. 1982. Effects of temperature, pressure and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura) Physiol. Zool. -55: 199-207. Nelson, D.C., J.B. Waterbury and H.W. Jannasch. 1984. DNA base composition and genome size of the prokaryotic symbiont in Rif tia pachyptili (Pogonophora). FEMS ~icrobiol: Lett. -24: 267-272.

Newman, W.A. 1979. A new scalpellid (Cirripedia): a Mesozoic relic living near an abyssal hydrothermal spring. Trans. San Diego Soc. Nat. Hist. 79: 153-1 67. BENTHOS

Normark, W.R., J.E. Lupton, J.W. Murray, J.R. Delaney, H.P. Johnson, R.A. Koski, D.A. Clague, and J.L. Morton. 1982. Polymetallic sulfide deposits and water-column of active hydrothermal vents on the southern Juan de Fuca 3idge. Mar. Tecnnol. Soc. J. 5 (3): 46-53.

Paull, D.K., 8. Hecker, R. Commeau, R.?. Freeman-Linde, C. Neumann, u.?. Corso, S. Golubic, J.E. Hood, E. Sikes, and J. Curray. 1934. Biological communities at the Florida Zscar9ment resemole hydrothermal vent taxa. Science -226: 965-967. ?ere:~rs, X.T. 1966. The Sathyzetric and seascnal Jistri5uti=", anc reorcduct:on of adult Tanner >raDs, Cnlonoecetes tanzer: =at-c~n !3rach:qura :Xaj idae i , off the Northern 3reqor. cozst. 3eep-;?a Res. 13: 1185-1206.

Pereyra, W.T. and M.S. Alton. 1972. Distribution and relative aSunaance of invertebra:es off the Northern Oregon coast, 2. 444-474. In A.T. Pruter and 3.L. Alverson, eds., University of WashingtonPress, Seattle, Wa.

?ettibone, M.H. 1383. A new scale worn (?olychaeta:?olynoidae) from the hydrothermal rift-area off western Mexico at 21 ON. Proc. 3iol. Soc. Wash. 96: 392-339.

Pettibone, M.H. 1984. A new scale-worm commensal with deep-sea mussels on the Galapagos hydrothermal vent (Polychaeta: ) . Proc. Biol. Soc. Wash. 97: 226-239.

Pettibone, M.H. 1985. An additional new scale worm (Po1ychaeta:Polynoidae) from the hydrothermal rift area off western Mexico at 21'~. Proc. Biol. Soc. Wash. -98: 150-157. Powell, M.A., and G.N. Somero. 1983. Blood components prevent sulfide poisoning of respiration of the hydrothermal vent tube worm Riftia pachyptila. Science 219: 297-299.

Rau, G.H. 1981a. Hydrothermal vent clam and tube worm 13c/12c: further evidence of nonphotosynthetic food sources. Science -21 3: 338-340. Rau, G.H. 1981 b. Low l5N/I4~in hydrothermal vent animals: ecological implications. Nature -289: 484-485. Rau, G.H. and J.I. Hedges. 1979. Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science -203: 648-649. Rhoads, D.C., R.A. Lutz, E.C. Revelas, and R.M. Cerrato. 1987. Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science -214: 911-913. Rhoads, 3.?., ?.A. Lutz, 3.N. Cerrato and E.C. Revelas. 1932. Growth and predation activity at deep-sea hydrothermal vents alsng tne 2alapagos 2ift. Jour. Mar. Res. 40: 593-51 5.

Richardson, M.3., A.G. Carey, Jr. and W.A. Colgate. 1977. Aquatic dis?oszl f iel5 investigations Columbia River disposal site, ?regon. Appendix C: The effects of dredged mat?rral disposal on benthic assemblages. U .S. Army Corps Engineers, 5redged Material 3es. Prog., Tech. Rept. D-77-30.

3oesiJadi, G., and ?.A. Crecelius. 1983. Zlernenta; compcsi tion of the h:jcrztnerzal -Jent clzz Zalyptoqena magr.i f ica frg3 :he ?as: ?scif i: sise. :&r. Siol. -53: ! 55-1 61 . Roux, ?I.,M. Rio, E. Fatton, G. Msrieu and C. Pachiandi. ;983. Growth rate of giant white clams Calyptogena magnifica and hydrothermal activity at 21' North Sast Pacific Rise recorded by the shell during about 5 years. 1383. C.2. Seances Acad. Sci. Paris. Ser. 11:. -297: 313-318. Ruay, E.G., C.O. Wirsen, and H.W. Jannasch. 1981. Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appi. Environ. Microbial. % 37 7-324.

Ruby, E. G. and 3.M. Jannasch. 1982. Thysiologica: characteristics of Thiomicrospira sp. strain L.-12 isolated from deep-sea hydrothermal vents. Jour. Bacteriol. 749: 161 -1 65.

Smith, K.L., Jr. 1985a. Macrozooplankton of a deep-sea hydrothermal vent: in situ rates of oxygen consumption. Limnol. Oceanogr. -30: 102-110. Smith, K.L., Jr. 1985b. Dee?-sea hydrothermal vent mussels: Nutri tionai state and distribution at the Galapagos Rift. Ecology 66: 1067-1 080.

Smith, K.L., Jr., G.A. White and M.B. Laver. 1979. Oxygen uptake 2nd nutrient exchange of sediments measure situ using a free vehicle grab respirometer . Deep-Sea Res. 26: 337-346.

Smith, K.L., Jr., M.B. Laver and N.O. Brown. 1983. Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific. Limnol. Oceanogr. 28: 882-898.

Smith, K.L., Jr. and R.J. Baldwin. 1984a. Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and Eastern North Pacific. Nature -307: 624-626. Smith, K.L., Jr. and R.J. Baldwin, 1984b. Vertical distribution of the necrophagous amphipod Eurythenes gryllus in the North Pacific: spatial and temporal variation. Deep-Sea Res. &k- 1179-1 196. Smithey, W.Y., Jr. and R.R. Hessler. In press. Megafaunal distribution at deep-sea hydrothermal vents: An integrated photographic approach, 2 3nderwater Photography for Scientists.

Snlder, L.J., 3.R. 3urnett and 3.R. Hessler. 1984. The composition and distribution of meiofauna and nannobiota in a Central Nortn Pac if ic deep-sea area. Deep-Sea Res. a 7225-1 250.

So~ero,G.N. 8.?hysio;cgy and biocnealstry =f the hydrother~sl vert 2ninzia. 3ceanus 2" '3): 67-72.

3c~;r~darg,4.J., Z.C. Sodthkar~,P.3. Dando, 2.h. 3au h. ?el>ec< a?d H. Fl~gel. 148'. 3acterial syaoionts 2nd 1;d ratlos in tlssues of Pogonopnora lndlcate unusual rutrltlon and metabolism. Nature 293: 61 6-620.

Stahl, D.A., D.J. Lane, G.J. Olsen, N.R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science -224: 409-41 1 . Stander, J.Y. 1973. Diversity and similarity ;f 5enthic fauna off 3regon. M.S. Thesis, Cregon State University, Corvailis, Or., 72 pages.

Stein, J .L. 1984. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrotheraal vents. Science -223: 696-698. Suess, E., B. Carson, S.D. Ritgers, J.C. Moore, M.L. Jones, L.D. Kulm and G.R. Cochrane. 1985. Biological communities at vent sites al3ng the subduction zone off 3regon. 22 pages, In The nydrothermal vents of the Eastern Pacific: an overview. M.L. Jones, editor. Bull. of Biol. Soc. Wash., No. 6., (in press).

Terwilliger, R.C., N.B. Terwilliger and Z. Schabtach. 1980. The structure of hemoglobin from an unusual deep-sea worm ('destimentifera). Comp. Biochem. Physio. -658: 537-535.

Terwilliger, R.C., N.B. Terwilliger, and A. Arp. 1983. Thermal vent clam (Calyptogena magnif ica ) hemoglob in. Science -21 9: 981 -983.

Trent, J.D., R.A. Chastain, and A.A. Yayands. 1984. Possible artefactual basis for apparent bacterial growth at 250'~. Nature -307: 737-740. Tunnicliffe, V. and S.K. Juniper. 1983. New hydrothermal vent discovery in the Northeast Pacific tubeworm: biotherms and bacterial glue. Am. Zool. -23: 966. Ture~ian,Y.K., J.K. Cochran, and Y. Nozaki. '973. Srowth rats of a clam from the Galapagos Rise hot spricg field using natural raalondcliae ratios. Nature -280: 385-387.

Turekian, K.K., J.K. Cochran. 1981. Growth rate of a vesicomyid cln frm t?e Salapagos spreading center. Science 509-91 i .

Ture~ian,K.K., J.K. Cochran, and J.T. Sennett. 1983. Growth rate 3f a vesicomyld clam frsm tne 2T0N Sast "clfio Rise nycrotner~alarea. Nature -303: 55-56.

T...-.P,,e 3. 8.n'&c~d is13nds" and ":ner~al .;enter' as :s?sers zf

Turner, R.D. and R.A. iutz. 198q. Growth and distributioc of xo?lusks as deep-sea vents and seeps. Oceanus 2 (3): 5G-62.

Turner, R.D., R.A. Lutz and D. Jablonski. In press. Modes of moiluscan larval development at deep-sea hydrothermal vents. ASZ Syaposium. aull. 3iol. Soc. Jash. NO. 7.

Tuttie, J,fi., C.C. Wirsen and H.K. Jannasch. 1983. Microbial activity in the emitted hydrothermal waters of the Gala?agos Rift vents. Mar. 3iol. 7& 293-299. van Praet, M. In press. Regime alimentaires des actinies. Bull. Soc. 2001. France.

Nilliams, A.B. 1980. A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: 3ecapoda: 3rachyura). Proc. Biol. Soc. Wash. 93: 443-472.

Nilliams, A.3. and R.A. Chase. 1982. Shrimp of the family Bresilidae from thermal vents of the Galapagos Rift (Crustacea: 3ecapoda: Caridae). Jour. Crust. Biol. 2 (1):136-147.

Xilliams, .4.B., and C.L. Van Dover. 1983. A new species of Munido sis from submarine thermal vents of the East Pacific Rise 6nomura:). Proc. Biol. SOC. Wash. -96: 481 -488.

Williams, P.M., K.L. Smith, E.M. Druffel, and T.W. Linick. 1981. Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue I4c activity . Nature -292: 448-449. Mittenberg, J.B., R.J. Morris, Q.H. Gibson, and M.L. Jones. 1981. Hemoglobin kinetics of the Galapagos Rift vent tube worm Riftia 2achyptila Jones (Pogonophora: Vestimentifera). Science -213: 344-346. BENTHOS

Woodwick, K.H., and T. Sensenbaugh. 1985. Saxipendium coronatum, new genus, new species (Hernichordata: Enteropneusta): the unusual spaghetti worms of the Galapagos Rift hydrothermal vents. Proc. Biol. Soc. Yasn. 98: 351-365.

Zottc;l, 9. '983. Amphisamytha galapagensis, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos aift, and the role of this species in rift ecosystems. ?roc. 3101. Soc. tiash. 96: 379-391. BENTHOS

Appendix I Species found on the Corda Ridge or within the lease area

MASTZU XFERENCES: I. Clague et ai. 1984 2. McCauley 7 972 3. Suessetal. 7985 4 Kulm et 31. 1985 5. Pereyra !i Alton ?972 5. Carey 7963 7, Fauchald & Fiancocx 7987 8. Dickinson b Zarey 1973 9. Dickinson 1976 13. Carey & Alspach 1966 11. Ambler 1980 12. Bernard I974 13. Bruce & Carey 7969 14. Carey et al. 7967 15. Carey 1972a 76. Alton I972 17. McCauley 1367 18. Carney & Carey 1976 19. Carney 1977 TO. Carney & Carey 1982 21. Kyte 1971 22. Fowler & Kulm 7970 BENTHOS

Species known to occur on the Gorda Ridge or in the lease area. *=collected on the Gorda Ridge.

Phylum Sarcodina Aderz~trymaglomeratum * Ammodiscus spp * Axmolagena * A.w.oxarginu1 ina * Astrorniza * 3atcysipncn * "olivina decussata * 3c';teiina * 3uccella frigida * aulimina rostrata * 3ulmina subacuminata * auliminella elegantissima * Cassidulina minuta * Cassidulina subglobosa * Cassidulina transluscens * Cibiciaes lobatulus * Cribostomoides * Zyclammina * Cystamina *

Eilohedra levicula * Elphidium clavatum * Elphidium microgranulosum * Epistominella pacifica * Eponides tumidulus * Eponides * Globigerina bulloides * Clobigerina pachyderma * Clobigerina quingueloba * Globigerinita glutinata * Globiger inita uvula * Clobotextularia anceps * Clomospira * Haplofragmoides columbiense * Hemisphaerammina * Hormosina globulifera * Hyperammina elongata * Karreriella * Lituotuba * Martinotiella * Trctobotellina * ?sammosphaera fusca * Psammosphaera parva * Recurvoides contortus * 3egphax cifflugif~rmis* 3eopkax distans * 3eopnax guttifer * 3eophax ncdulosus * 3habda~minaa~yssorum *

~accorhizramosa * Spiroplectammina spp * Textularia * Thurammina * Toiypammina * Trifarina angulosa * Trochammina * Trccnamninoides * Uvigerina auberiana * Subfamily Diffusilinidae * Phylum Coelenterata

Class Hydrozoa

Lictorella cervicornis --Lafoea spp Sertularella tanneri

Class An thozca Actinauge spp. * Callcgorgia spp. Clavularia spp Epizoanthus spp Kophoblemnon spp Parastenella doederleini Pennatula spp Protoptilum spp Zoanthidea Order An tipathar ian * Phylum Echiuroidea

Listriolobus hexamyotus

3 8 BENTHOS

Thalassema steinbecki

Phylum Brachiopoda

Pelagodiscus atlanticus

Phylum Anne1 ida

Class Polychaeta

Order Ampklnornida

Family Amchir.omi3ae

Chioeia pinnata Paramphinome pacifica

Order Capitellida

Family Arenicolidae

Arenicola marina Arenicola pusilia Branchiomaldane vincenti

Family Capitellidae

Capitella zapitata Dasybranchus glabrus Heteromas~usfiliformis Mediomastus californiensis Neoheteromastus lineus Notomastus lineatus Notomastus magnus Notomastus precocis Notomastus tenuis

Family Maldanidae

Asychis disparidentata Asychis ramosus Asychis similis Axiothella rubrocincta Clymaldane laevis Euclymene reticulata Maldane cristata Maldane glebifex Maldane harai Maldane monilata Maldane sarsi Nicomache lumbricalis Notoproctus pacificus Praxillella affinis pacifica BENTHOS

'raxillella gracilis 3hodine Sitorquata

OrSf r eossur ida

Family Cossuridae

Cosscra brunnea C~ssuralongicirrata Cossura modica Ccssura rcstrsta

Family Arabellidae

Arabella iricolor Drilonereis falcata

Family Dorvilleidae Dorvillea bati 3orvillea pseudorl~3rovitt3ta Protodorvillea gracilis Scnlstomeringos longicornis

Family Eunic idae

Eunice kobiensis Eunice segregata Marphysa stylobranchiata

Family Lumbrineridae

Lumbrineris abyssicola Lurnbrineris bricirrata Lumbrineris cruzensis Lumbrineris eugeniae Lumbrineris index imbrineris lagunae Lurnbrineris latreilli Lumbrineris moorei Lumbrineris sarsi Lumbrineris sirnilabris Lumbrineris zonata --Ninoe fusca Ninoe fuscoides --Ninoe gemmea Ninoe longibranchia

Family Onuphidae

Diopatra ornata BENTHOS

Hyalinoecia stricta Nothria conchylega occidentalis Nothria elegans Nothria geophiliformis Northria iridescens Nothria lepta Northria mixta Nothria pallida Nothria stignatis Onuphis parva

Family Sauveliopsidae

Fauveliopsis armata Fauveliopsis glabra Fauveliopsis magna

Family Flabelligeridae

Brada pluribranchiata arada villosa Diplocirrus micans Flabelligera infundibuliformis Pherusa inflata Pherusa negligens Pherusa papillata Uncopherusa bifida

Order Opheliida

Family Opheliidae

Armandia brevis Euzonus mucronata Euzonus williamsi Ophelia limacina Ophelina acuminata Ophelina breviata Travisia brevis Travisia foetida Travisia gigas Travisia oregonensis Travisia pupa

Family Scalibregmidae

Mucibregma spinosa Scalibregma inflatum BENTHOS

Order -2rSiniida

Fani ly Orbini idae

Califfa mexicana Haploscoloplos elongatus HapLoacoloplos kerguelensis Naineris dendricata Naineris uncinata --Phylo nudus Scoloplos acmeceps Scol3?los ar-iger Scoioplos zazatLanensis

Family Taraonidae

Acesta looezi Aedicera antennata Aedicera longicirrata Aedicera Aedicera pacirica Allla crassicapitis Allla hzr tnar i Allia ramosa --Aricidea suecica Paraonella abranchiata Paraonella cedroensis Tauberia gracilis

Order Oweniida

Family Oweniidae

Myriochele heeri Cwenia fusiformis-

Drder Phyllodoc ida

Family Aphroditidae

Aphrodita japonica Aphrodita rnagellanica Aphrodita refulgida Heteaphrodita altoni

Family ChrysopetaPidae Paleanotus chrysolepsis

Family Glycerldae

Glycera americana Glycera capitata BENTHOS

Glycera profundi Glycera robusta Slycera tenuis Slycera tesselata

Family Coniad idae

Sathyglycinde cedroensis S;ycir.de armigera Glyclnde paclf lca 2lycinde poiygnatha Zcns ida ann~lats kien:zodus ocroaiis

Family iiesionidae --Gyptis hyans T:dsr

Family Nephty idae

Aglaophamus eugeniae Nephtys caeca Nephtys caecoides Nephtys californienesis Nephtys ciliata Nephtys cornuta Nephtys ferruginea Nephtys longosetosa Nephtys punctata

Family Plereidae

Ceratocephala loveni Cheilonereis cyclurus Neanthes brandti --Nereis ea~ini Nereis mediator Nereis neoneanthes Nereis pelagica Nereis pelagica neonigripes Nereis procera Nereis vexillosa --Nereis zonata Platynereis bicanaliculata

Family Pholoid idae

Pholoides aspera BENTHOS

Anaitides groenlandica Anaitides medipapillata Anaitides williamsi Austrophyllum exsiiium Chaetoparia careyi Zteone pacifica Eulalia bilineata Eulalia quaariocuiata Eumida fusigera Zumida sangulnea Senetyllis castanea L;gia aoyssicola Notophyllum imbricatum Paranaitis polynoides Protomystides Occidentalis Pterocirrus imajimai

Family Pilagi idae

Ancistrosyllis Sreviceps Ancistrosyllis groenlanSica Sigambra setosa Sigambra :entaculata Synelmis klatti

Family Polynoidae

Arctonoe fragilis Arctonoe vittata Eucranta anoculata --Eunoe nodosa Yalocydna Srevisetosa 3arnathoe ex:enua ta Harmathoe imbricata Harmathoe lunulata Xesperonoe complanata Holoiepidella tuta Lagisca multisetosa Lepidonotus squamatus Nemidia canadensis

Family Pholo id idae

Pholoides aspera

Family Syll idae

Autolytus prismaticus Exogone gemmifera Odontosyllis phosphorea Sphaerosyullis californiensis BENTHOS

Syllis elongata Trypanosyllis adamanteus Tryposyllis gemmipara Tryposyllis armillaris Tryposyllis hyalina Tryposyllis puichra

Family Tomopter idae

Tomopteris septentrionalis

aathyadmetella commando Chore gracilis --Chone mollis Euchone analis Eudistylia vancouveri Fabrisabella sinilis Megalomma splendica Potamethus mucronatus Potamllla ocelata Sabella media Schzobrnachia insignis

Family Serpul idae

Circeis spirillum Serpuls avermicularis Spirorbis borealis

Order Spionidae

Family Chaetopteridae

Chaetopterus variopedatus Thyllochaetopterus limicolus

Family C irratulidae

Chaetozone corona Chaetozone setosa Cirratulus cirratus Dirriformia spirabrancha Dodecaceria fistulicola Tharvx monilaris Tharyx Tharyx BENTHOS

Famiiy Magelonidae

Yagelona cerae !?agelona japonica Magelona papiilicornis Magel~napitslkae

Family Sp ionidae

3cccardia pro3osc:dea Lae tmcnice 3elluclda Lm!~ice2ir?=*- - L.~ ',?in);ssio cirrifnrs lu?inuspicminor

?araprionosio pinnata ?olydora araata Polyaora brachicephala Polydora cardalia Polydora commensalis Polydora ligni Tolydora socialis Trionospio anuncata Trionospio malmgreni Scoloepis foliosa Scololepis squamatus Spiophanella pallida Spiophanes anoculata Spiophanes berkeleyorum Spiophanes bombyx Spiophanes cirrata Spiopnanes fimbriata Spiophanes kroeyeri

Order Sternaspida

Family Stermaspidae

Stermaspis fossor

Order Terebellida

Family Ampharetidae --Amage anops Amelinna abyssalis Ampharete acutifrons Ampharete goesi -- Amphicteis mucronata Amphicteis scaphobranchiata Amphisamytha bioculata Anobothrus gracilis Jugamphicteis paleata BENTHOS

Lysippe annectens Melinna cristata Melinnampharete gracilis Schistocoxus hiltoni

Family Pec tinari idae

"stenides brevicoma Pect;naria californiensis

Pamiiy Sabellariidae

ICanthyrsus ornamentatas Sajeilaria aementarium Sabellaria grzcilis

Family Terebell idae

Ar tacarna i Eupolymnia cresentis --Loirnia medusa Neoamphitrite robusta 2ista cristata Pista elongata Pista fasciata Pista fimbriata Pista pacifica Thelepus crispus Thelepus setosus

Family Tr icobranchidae

Ar:azazellz hancocki .l,,crancnusC'l ; r-seus Terebellides stroemii Trichobranchus glacialis

Phylum Pogonophora

Galathealinum brachiosum Lamellasabella zachsi

Order Vestimentifera

Lamellibrachia barhami

Phylum Ar thropoda

Subphylum

Class Pycnogonida

Colossendeis colossea BENTHOS

Colossendeis angusta Ascorhynchus japonicus ?

SuSphyidm Pustacea

Amigdoscalpellum auri'rillii incertum Scalpellun albatrossianum Scalpellum antillarum Scalpelium lar7~ale Scalpellurn ?erl=ng>~rn

Class Malacostraca

3rder Mysidacea

Ceratomysis spinosa Gnathophausia - spp. Class Eumalacostraca

Order Amphipoda

Acidostoma obesum Amathillopsis pac Ampelisca eoa ~~~ Ampelisca coeca Ampelisca plumosa aathynedcn caino Sathymedon nepos Bathymedon sp. 1 Bathymedon sp. 2 Bathymedon sp. 3 Bathymedon sp. 4 Bathymedon sp. 5 Bathymedon sp. 6 Bathymedon sp. a Bathymedon --sp. w Bathymedon sp. 2 Bonnierella 1 inear is Bruzelia inlex Bruzelia sp. a Byblis crassicornis Corophid sp. a Dulichia abyssi Epimeria spp. Cammarospsis spp. Halice sp. a Halice sp. 5 ---Halice sp. x ---Halice sp. y ---2aiice sp. z 3aploops lodo Ha?loops 3arpiniossis eaeryi Harpiniopsis Harpiniopsis fuigens Farpiniopsis galerus Harpiniopsis nsiadis

Hippomedon sLrages Hippomedon tracatrix Fippo~edonsp.b Koroga negsiops Lepechinella echinata Lepechineila turpis Lepechinelia sp. a Le2ecnineila --sp. 5 Lepidepecreurn sp. a Leucothoe uschakoui Liljeborgia cots Monoculodes diversisexus Xonoculodes la tissimanus Monoculodes necopinus Monoculodes recandesco Monoculodes sp. I Monoculodes sp. x Yonoculodes sp. y Monoculodes sp. z Oediceroides abyssorurn Oediceroides trepedora Oediceroides sp. y Crnnomene tabasco Paracentromedon sp. a Paraphoxus oculatus Pardalisca sp. 5 Pardaliscella symmetrica Pardaliscella sp. a Pardaliscid sp. g Pardaliscoides tikal Pardaliscoides 9.a Pardaliscoides sp. b. Paraliscopsis copal Phipsiella minima Photis kurilica Proboloides tunda Pseudotriton spp. Rhachotropis lEifidor Rhachotropis multisimis BENTHOS

?.hachotropis sp. 2 Rhachotropis sp. ; Rhackotropis sp. c Syrrnoe oluta Syrrhoe sp. b S:~rrhoites sp. a Try3hosella sp. a Uristes pers?inus Uris'es spp. Grot-oe rotundifrons .dalcekia . sp. a

CP.icnoecetes angulatus Chicnoecetes tanneri Crangon zbyssorum Crsngon franciscorum Eualus biunguis Hymendora frontalis Lithodes couesi Munidopsis aries Munldopsis oairdii Munidopsis ber ingana Munidopsis cascadia Munidopsis ciliata Munidopsis latirostris Munidopsis quadrata Munidopsis scabra Munidopsis subsquamosa Munidopsis tuftsi Munidopsis verrilli Munidopsis verrucosas * Municopsis yaquinensls Munidopsis spp. Notostomas japonicus Oregonia bifurcata Pandalopsis ampla Pandalus spp.- Paralomis rnultispina Paralomis verrilli Parapagurus mertensii Parapagurus pilosimanus Sergetes similis

Order Isopoda -Aega symmetrica ieptochelia dubia is?tognathia longire3is Parantanais nanalmdensis BENTHOS

Phylum Mollusca

Class :rnphir,eura

Leptochiton mesogonus Leptockiton s3?.

Class Sivaiv ia

Myonera tiliarnoodensls Nucula carlottensis -Nucula cardara Poromya leonina Solemya agassizi Solemya spp. Tindaria gibbsii

Class Cephalopoda

Orcer Octopoda

3enthoctopus spp. Craneledone spp. Japetella heathi Polypus sp. b Class Castropoda

Order Prosobranchiata

Admete californica Antiplanes vinosa Bathydoris spp. 3uccinum diplodeturn 3uccinum viridurn Cidarina carlotta -Colus dimidiatus Colus sapidus Colus trophius Leucosyrinx amycus Leucosyrinx persimilis Leucosyrinx persirnilis blanca Leucosyrinx persimilis leonis Mohnia vernalis Pleurotomella herrninea Plicifusus spp. Solariella permeabilis Tritonia diomeda BENTHOS

Class Scaphopoda

Zadulus californicus Dentalium agassizi Centalium ceras Dentalium dalli Dentalium megasthyris Dentaliurn rectius 3entalium sp. 5

Class .Ister=idsa

Asthenactis fisneri 5,l 6 Astrocles actinodotus 2,lO Astrolirus panarnensis 2 Benthopecten acanthonotus 2,5,16 aenthopecten claviger 2,5,6,16 Benthopecten spp. 2,10,14,15 Brisingella exilis Brissingia spp. Ctenodiscus crispatus - -- Dipsacaster anoplus Dytaster gilberti * Dytaster spp. Eremicaster pacificus Eremicaster spp. 2 Heterozonias aliernatus 2,5,6,10,14,15,16 Hippasteria californica 2,5,6,10,14,15,16 Hymenaster perissonotus 5,16 Hymenaster quadrispinosus 2,5,6,10,14,15,16 Hymenaster spp. 2,5,10 Leptychaster anomalous 2,6 Lophaster furciliger - 2,5,10,14,15,16 Mediaster elegans 14 Xediaster elegans abyssi 2,15 Myxoderma sacculatum 2,5,6,16 Myxoderma spp. 2 Nearchaster asiculosus 2,5,10,14,15,16 Pectinaster agassizi evoplus 2,5,16 Pectinaster spp. 14,15 Pseudarchaster parelii alascensis 2,5,10,15,16 Pseudarchaster dissonus 2,5,10,14,15,16 Pseudarchaster 2.10 Psilaster pectinatus 2,5,6,10,14,15,16 Pteraster coscinopeplus 5,16 Pteraster jordani 2,5,16 Solaster borealis 2,5,6,10,14,15,16 Zoroaster ophiurus 2,5,15,16 BENTHOS

Florometra asperrima Fiorometra serratissima Psathhyrometra fragilis Family Hyocrinidae *

Aer3asls fulva Ceratsph:Jsa rqssa Jser3soma giganteun 2recninus lsven~

Abyssocucumis aljatrossi Ainperima naresi Amperima rosea-- Amperima spp. aenthodytes incerta 3enthodytes sanguinolenta Caphiera sulcata Ceraplectana trachyderma Chirodota albatrossi Laetmagone wyvillethomsoni Laetmophasma fecundum Laetmophasma spp. Leptosynapta sp. b Mesothuria murrayi Molpadia granulata Molpadia intermedia Molpadia musculus Molpadia spinosa- Molpadia spp. Myriotrochus bathibius Myriotrochus giganteus Myriotrochus spp. Onerophanta mutabilis Paelopatides confundens Paelopatides spp. Pannychia moselyi Peniagone dubia Peniagone gracilis Peniagone spp. Protankyra duodactyla Protankyra pacifica Protankyra spp. Pseudostichopus mollis Pseudostichopus nudus Pseudostichopus villosus Pseudostichopus sp. a BENTHOS

Pseudostichopus sp. b Pseudostichopus --sp. c ?seudostichopus spp.

Scotoplanes theeli Scotoplanes

Class 3phiuroidea

Amphiazantha gastracantha Amphilepsis platytata Amphiophiura ponderosa Ampniophiura superba Anphiura diomedae Amphiura -korae Anpciura spp. Asteronyx loveni Gphicantha bathybia Ophiacantha normani Ophiacantna trachybactra Gphiacantha -spp. Opniacanthella acontophora a~himitraSDD. Ophiocten pacificum Ophiolimna bairdii Cphiomusium jolliensis 3phiomusiurn lymani Ophiomusium mu1 tispinum Ophiomusiurn spp.- Ophiophtalmus eurypoma Opniophtalmus normani Ophiura bathybia Ophiura hadra Ophiura -irrorata Ophiura leptoctenia Ophiura -spp Pandelia carchara Appendix 2

Species si~siiethe lease area that may occur in the Gorda 3icgs 13as+ 27~3,including 2:;drotherrnal vent organisms

------\,-z;. ?l.43TE? - L: 27.2.,L - . . ;ones 35 ai 1,383 2. 223j S Yznnasc3 :'382 . ?ereyra % hlt~n"372 'AC,:;:;~~~i 3'2 5. '-- _r .223i? . j:- e . :,;:-: ;<,? - .. . -. , . =r- 2 ~.xi~r.ey135- 3. 3~rr2son'33; 3. Tsi3ecx st al 1383 1 C. 3esSrl~yeresS Laubier '320 11 . 2anse i 379 12. ZoLtoli 3333 13. Fauchald 1982 14. aesbruyeres & Laubier 1982 15. Fetti3one '363 16. Pettibone ?324 17. ?!acio;s~ 198: 18. Jones 1980 13. Krantz 1382 20. lu'ewrr,an 1973 21 . Smith '385 22. Humes & 3oJ ir i 1980 23. Carey & Alspach 1966 24. gizkinson 1983 25. Zngram S Hessler 1983 2s. Szith h 3a?dxdin 19800 27. hillians 5 Chase 1982 28. Zilliams 1980 29. Williams & Van Dover 1983 30. Xessler 1324 31 . 3033 % Tarrier 1380 32. 3er7,ar-d 374 33. Alton :572 34. Carey '963 35. Carey r3:'a 36. Zay~y?t 31 1967 37. Jannasch ? 384b

Bacteria Reference no.

Beggiatoa Hyphomonas spp. Methanococcus jannaschii Thiobacillus spp. Thiomicrospira spp. Strain L.-12 BENTHOS

Phylum ?orif?ra

Class 3exac t inellida

Phylum Coele~terata

Class Anthozoa Anthoptilum grandiflorum Actinaria spp. 3alticina 2acifica

Class Xiruainea

Bathybdella sawyeri

Class Oligochaeta

Phallodrilus leukodermata Phallodrilus ?lanus

Class Polychaeta

Alvinella pompejana Ampharetidae spp. Amphisamytha galapagensis-- Eunicidae spp.

Spionidae spp. Ser?ulidae spp.

Phylum P~gonophora

Riftia pachyptila

Phylum Arthropoda

Subphylum Chelicerata

Class Acar ina

Copidognathus spp.

Subphylum Crustacea Class :irripedia

IszL3ellidae spp. -,zaL;?li~m7. --sp. 5 --bepas spp.

3:~al.s baraarensis --3~0li~spp. turoplsa elonga~~m Zurythenes gryllus daploops spp. Orchomene gerulicorois ?arallscella caoeresca 2aral:scella tendlpes ?arcalrscld

Order Decapoda

Acanthophyra spp. Sresilidae spp. Bythograea thermydron Calastacus spp. Chlorilia longipes turgida Gennadas spp. Yunidopsis lentigo Munidopsis spp. Munida quadraspina :,?3atocarclnus spp. 'agdrus capillatus- - ?ag71rus tanner i 3?lrontocaris flexa

2ahlella calderensis

Phylum Mollusca

Class Bivalvia

Calyptogena magnifica Cardiomya planetica Cuspidaria apodema Cyclopecten randolphi 2eiectopecten vancouverensis Mytilidae spp. ?oromya malespinae Xylopnaga wasningtona Yoldia limatula gairdneri Yoldia sonteryensis

Class Sastropoda

Ancistrolepis spp.

-Colus halidonus Neomphalus fretterae Neptuna amianta Tlicifusus griseus Tritonia -spp. Turidae -spp. Phylum Echinodernata

:;ass Asteroidea

Ampheraster marianus Rathbunaster - spp. Thrissacanthias penicillatus

Zoraster evermani mordax

Class Holo thuroidea

Molpadia oolitica

Class Ophiuroidea Ophiuroidae -spp.