5087/BE Aerospace Data Sheets

Total Page:16

File Type:pdf, Size:1020Kb

Load more

CHEMICAL OXYGEN GENERATORS Chemical Oxygen Generators B/E Aerospace, Inc. is the world’s leader in chemical oxygen equipment for aircraft. B/E Aerospace has been supplying this versatile equipment to the leading airframe manufacturers for over 30 years. In addition to aviation, chemical oxygen generators are being used in a growing list of various other applications, including escape, rescue, first aid, fire fighting and submarine life support. With over 300,000 units placed in service and more than 3 billion flight hours accumulated on this equipment, B/E Aerospace has demonstrated exceptional expertise in chemical oxygen systems. History Oxygen generation from the thermal decomposition of chlorates and perchlorates is not a recent innovation. One of the first applications of chemical oxygen generation was in the production of mine rescue equipment over ninety years ago. However, these early generators were erratic in decomposition rates and required large wet or dry filtration systems in order to achieve a purity level suitable for breathing. During World War II the need arose for an oxygen source that was efficient on a weight/volume basis to protect military personnel from the dangers of anoxia during flight. The National Defense Research Council funded the development of the oxygen candle apparatus (OCA). This chlorate oxygen generator was successfully used to sustain the physiological needs of personnel operating B-17 bombers over Europe. Since then, chemical oxygen equipment has been installed on an ever increasing variety of military and civil aircraft. This technology also has a variety of applications outside aviation, including escape and rescue equipment, first aid, fire fighting, and submarine operations. The uses for chemical oxygen generators continue to expand as more potential users are made aware of these safe, compact and reliable oxygen sources. Function of Chemical Oxygen Generators As shown in Figure 1, the chlorate core is wrapped in insulation and placed in a stainless steel housing. The insulation absorbs shock, partially filters the oxygen produced and retains heat energy within the core for continued chemical reaction after the generator is initiated. Flow from the generator is started by a mechanical flow initiating mechanism as shown in the illustration. The primary chemical reaction in the generator core is: 2 NaCiO3 2 NaCl + 3 O2 (sodium chlorate) (sodium chloride) (oxygen) As the chemical decomposition region or reaction zone travels along the chlorate core from one end to the other, the oxygen is produced. When the oxygen reaches the core locator, a metal plate separating the core from the filter media, the oxygen passes through holes around the perimeter of the lcoator and into the filter. The filter removes particulate matter and traces of contaminating gases which result from the core decomposition. When the oxygen reaches the outlet valve, it is distributed via an oxygen supply line or manifold connected to the generator. The outlet valve seals the unit from moisture which could contaminate the chlorate core in storage, prior to use. Should the outlet valve become clogged, over-pressure protection is provided by the relief valve which vents the oxygen to the atmosphere. The time lapse from initiation of the chemical oxygen generator to full flow of oxygen to the supply lines is typically less than ten seconds. CHEMICAL OXYGEN GENERATORS Aircraft System Design For airline applications, the chemical oxygen generators are typically located in overhead modules. The generators are housed with the oxygen supply lines and passenger masks in an enclosed compartment that is opened automatically by a pressure switch that senses decompression. When decompression occurs, the pressure switch supplies an electrical signal which releases the compartment door, and the masks are presented within reach of the passengers. Oxygen flow from the generators begins upon removal of a release pin from the flow initiation mechanism of each generator. This is accomplished by a lanyard which connects the mask or mask hose to the release pin. When a passenger takes hold of a mask, the lanyard will be at its full length. Bringing the mask to the face will remove the release pin and initiate the flow of oxygen from the generator. Since all masks connected to a single generator have lanyards attached to the common release pin, any of the masks are capable of removing the release pin and starting the flow of oxygen to all masks within that compartment. The chemical oxygen generator is designed to produce oxygen at a rate varying with time, which coincides with the physiological needs of the individual during descent. These needs are stated in FAA regulation FAR 25.1443. Figure 2(a) shows a typical altitude profile (cabin altitude versus time after decompression) plotted with the corresponding flow requirement, Figure 2(b). A trace of the typical output of a chemical oxygen generator is indicated on the flow requirement profile to illustrate the variations in normal output and the margin of extra oxygen normally programmed into B/E Aerospace’s chemical oxygen generators. As can be seen in Figure 2(a), altitude is maintained at 40,000 feet for a short period to allow for normal crew reaction time before descent of the aircraft. Once the aircraft reaches an altitude of 10,000 feet, oxygen is normally no longer required and the generator automatically ceases production after the predetermined descent time has expired. B/E Aerospace has broad capabilities to produce a generator design matched to any aircraft altitude descent requirement. Why Chemical Oxygen Generators? Reduced weight, simplified maintenance, and increased safety are three features which make chemical oxygen generators the preferred choice of airlines. Since the small, lightweight generators are under no pressure, they may be handled easily and safely by ground personnel and conveniently stored for many years. By eliminating pressure gauges and complicated piping which must routinely be cleaned and maintained in a gaseous system, chemical oxygen generators need only be visually inspected to determine the state of the generator. If the expended indicator on the side of the generator and initiating mechanism show no signs of activation or tampering, further maintenance is not required. This further reduces maintenance time, necessary ground facilities and their required personnel. Chemical oxygen generators also allow for a high degree of installation flexibility. Seating configuration may be changed quickly without the time-consuming process of relocating high pressure pipes, gauges and distribution systems which must be checked and tested for leaks. A major concern when working with any oxygen system is fire susceptibility. High pressure oxygen systems are dangerously sensitive to nearby fires, unlike chemical oxygen, which will not explode and is a low fire contributor. Gunfire fragmentation tests have been performed on chemical oxygen generators and even then, there were no signs of combustion within the chlorate core. For economical, practical and safe sources of oxygen for all aviation applications, choose chemical oxygen generators from the leader, B/E Aerospace, Inc. B/E AEROSPACE, INC. Oxygen Systems Products 10800 Pflumm Road • Lenexa, KS • USA • 66215 Telephone (913) 338-9800 • Fax (913) 469-8419 [email protected] www.beaerospace.com REV. 1-01/3000.
Recommended publications
  • Sodium Chlorate Process Liquor De-Chromed SN

    Sodium Chlorate Process Liquor De-Chromed SN

    SAFETY DATA SHEET This SDS adheres to the standards and regulatory requirements of the United States and may not meet the regulatory requirements in other countries. 1. Identification Product identifier Sodium Chlorate Process Liquor De-chromed SN Other means of identification De-chromed blend of Crystallizer Feed Liquor and Mother Liquor, NaClO3 Recommended use For internal transfer between ERCO Worldwide sodium chlorate manufacturing facilities for process purposes Recommended restrictions None known Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name ERCO Worldwide Address 335 Carlingview Drive Unit 1 Etobicoke, M9W 5G8 Canada Telephone Information #: (416) 239-7111 (M- F: 8:00 am – 5:00pm EST) Website http://www.ercoworldwide.com E-mail [email protected] Emergency phone number Canada & USA: 1-800-424-9300 (CHEMTREC) Supplier Refer to Manufacturer 2. Hazard(s) Identification Physical hazards Oxidizing liquids Category 2 Health hazards Acute toxicity, oral Category 4 Environmental hazards Not currently regulated by OSHA, refer to Section 12 for additional information. OSHA defined hazards This mixture does not meet the classification criteria according to OSHA HazCom 2012. Label elements Signal word Danger Hazard statement May intensify fire; oxidizer. Harmful if swallowed. Page 1 of 15 Issue Date: 11/18/2020 Sodium Chlorate Process Liquor De-chromed SN Precautionary statement Prevention Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep away from clothing and other combustible materials. Wear protective gloves, protective clothing, eye protection, face protection. Response IF ON SKIN: Wash with plenty of water. Take off contaminated clothing and wash it before reuse. In case of fire: Use water to extinguish.
  • Production of Hexavalent Chromium for Use in Chlorate Cells

    Production of Hexavalent Chromium for Use in Chlorate Cells

    Europaisches Patentamt J European Patent Office © Publication number: 0 266 128 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 87309335.5 © Int. CIA C25B 1/26 @ Date of filing: 22.10.87 ® Priority: 29.10.86 CA 521737 © Applicant: Tenneco Canada Inc. 2 Gibbs Road © Date of publication of application: Islington OntarioM9B 1R1(CA) 04.05.88 Bulletin 88/18 0 Inventor: Dobosz, Leszek Michal © Designated Contracting States: 68 MacDonald Street CH ES FR LI SE Toronto Ontario M8V 1Y4(CA) © Representative: Hamilton, Raymond et al c/o Albright & Wilson Limited 1 Knightsbridge Green London SW1X 7QD(GB) © Production of hexavalent chromium for use in chlorate cells. © By-product hypochlorite from the electrolytic production of chlorates, notably sodium chlorate, is used to form hexavalent chromium for use in the electrolysis process by oxidation of trivalent chromium compounds by the hypochlorite. The hypochlorite maybe the condensate produced by treatment of the chlorate cell by-product gas stream and/or present in the cell liquor. < 00 CO CO (VI a. UJ Xerox Copy Centre 0 266 128 PRODUCTION OF HEXAVALENT CHROMIUM FOR USE IN CHLORATE CELLLS The present invention relates to the fomation of hexavalent chromium useful in the electrolytic production of aqueous chlorate solutions. An aqueous solution of sodium chlorate and sodium chloride is conventionally produced by the electrolysis of aqueous sodium chloride in diaphragmless electrolytic cells. The extent of electrolysis is 5 controlled to produce an effluent from the cell in which the sodium chlorate and sodium chloride have the desired ratio, usually in the range (expressed as a weight ratio) of about 1 :1 to about 20:1 and preferably in the range of about 2:1 to about 15:1.
  • Guidelines for Drinking-Water Quality, Fourth Edition

    Guidelines for Drinking-Water Quality, Fourth Edition

    12. CHEMICAL FACT SHEETS Assessment date 1993 Principal reference WHO (2003) Chlorine in drinking-water In humans and experimental animals exposed to chlorine in drinking-water, no specific adverse treatment-related effects have been observed. IARC has classified h ypochlorite in Group 3 (not classifiable as to its carcinogenicity to humans). Chlorite and chlorate Chlorite and chlorate are disinfection by-products resulting from the use of chlorine dioxide as a disinfectant and for odour and taste control in water. Chlorine dioxide is also used as a bleaching agent for cellulose, paper pulp, flour and oils. Sodium chlorite and sodium chlorate are both used in the production of chlorine dioxide as well as for other commercial purposes. Chlorine dioxide rapidly decomposes into chlorite, chlorate and chloride ions in treated water, chlorite being the predominant species; this reaction is favoured by alkaline conditions. The major route of environmental ex- posure to chlorine dioxide, sodium chlorite and sodium chlorate is through drinking- water. Chlorate is also formed in sodium hypochlorite solution that is stored for long periods, particularly at high ambient temperatures. Provisional guideline values Chlorite: 0.7 mg/l (700 µg/l) Chlorate: 0.7 mg/l (700 µg/l) The guideline values for chlorite and chlorate are designated as provisional because use of chlorine dioxide as a disinfectant may result in the chlorite and chlorate guideline values being exceeded, and difficulties in meeting the guideline value must never be a reason for compromising adequate disinfection. Occurrence Levels of chlorite in water reported in one study ranged from 3.2 to 7.0 mg/l; however, the combined levels will not exceed the dose of chlorine dioxide applied.
  • The Response of Aircraft Oxygen Generators Exposed to Elevated N Temperatures

    The Response of Aircraft Oxygen Generators Exposed to Elevated N Temperatures

    a a c i The Response of Aircraft Oxygen Generators Exposed to Elevated n Temperatures h c e t e David Blake t o n April 2003 l DOT/FAA/AR-TN03/35 a c This document is available to the public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. i n h c e U.S. Department of Transportation t Federal Aviation Administration e te technical note technic t o o NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-TN03/35 4. Title and Subtitle 5. Report Date THE RESPONSE OF AIRCRAFT OXYGEN GENERATORS EXPOSED TO April 2003 ELEVATED TEMPERATURES 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. David Blake DOT/FAA/AR-TN03/35 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration William J.
  • Toxic Action of Aqueous Sodium Chlorate on Nitella1

    Toxic Action of Aqueous Sodium Chlorate on Nitella1

    TOXIC ACTION OF AQUEOUS SODIUM CHLORATE ON NITELLA1 By H. R. OFFORD, Agent, and R. P. D'URBAL, Assistant Chemist, Division of Blister Rust Control, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION The experiments herein reported on the toxic action of aqueous sodium chlorate on Nitella were conducted as part of an investigative program ^ to devise economic methods for the chemical suppression of wild currant and gooseberry plants. These plants, members of the family Grossulariaceae and commonly referred to as Ribes, are the alternate hosts of the blister-rust disease of white pines, which is caused by the fungus Cronartium ribicola Fisch. Blister rust may be effectively controlled by hand eradication of currants and goose- berries within 900 feet of the white-pine stand delimited for protection, though in the case of certain highly susceptible species of Ribes this distance necessarily must be increased. Hand pulling is an effective eradication practice, but a cheaper method, such as chemical treat- ment, is needed where the plants occur in great profusion. High toxicity, low cost, and adaptability to field use are important requi- sites of a chemical for general use in plant-eradication work. In field experiments more than a hundred chemicals were tested as plant poisons during the summers of 1925, 1926, and 1927 (P).^ The results of these experiments showed that sodium chlorate is by far the best killing agent and in addition lends itself suitably to general field application. Sodium chlorate, fully effective on Ribes petiolare Dougk, is but moderately successful on other Ribes. Field experiments performed during three successive years established this difference in susceptibility very definitely and suggested that, in the mechanism of killing, specific reactions between the chlorate and the several Ribes species are involved.
  • Dangers of Unspent Aircraft Oxygen Generators

    Dangers of Unspent Aircraft Oxygen Generators

    Safety Advisory Dangers of Unspent Aircraft Oxygen Generators U.S. Chemical Safety and Hazard Investigation Board No. 2007-I-NC-01-SA | June 2007 Key Message This Safety Advisory is issued to alert aircraft maintenance and hazardous waste facility personnel to the hazards associated with the transportation and storage of expired, unspent aircraft chemical oxygen generators. Aircraft oxygen generators are dangerous devices that, if mishandled, can cause fires, property damage, and personal injury. Aircraft oxygen generators that have exceeded their service life should be expended before shipping by any transport mode. Introduction On October 5, 2006, at about 10 pm, a fire occurred at the EQ Industrial Services (EQ) hazardous waste treatment, storage, and disposal facility in Apex, North Carolina. The fire resulted in the evacuation of thousands of Apex residents and the complete destruction of the hazardous waste building at EQ’s Apex facility. The U.S. Chemical Safety and Hazard Investigation Board (CSB) investigation concluded that aircraft oxygen generators most likely contributed to the rapid spread of the fire to other areas in the EQ facility. The CSB issues this Safety Advisory to focus attention on the need for aircraft maintenance facilities to expend chemical oxygen generators that have exceeded their service life, and for hazardous waste facility operators and shippers to exercise due care when handling unspent chemical oxygen generators. Incident Description At about 10 pm on October 5, 2006, a citizen driving past the EQ facility in Apex, North Carolina, called 911 when he saw a plume of smoke and smelled a strong chlorine odor coming from the facility.
  • Experiments with Sodium Chlorate and Other Chemicals As Herbicides for Field Bindweed»

    Experiments with Sodium Chlorate and Other Chemicals As Herbicides for Field Bindweed»

    EXPERIMENTS WITH SODIUM CHLORATE AND OTHER CHEMICALS AS HERBICIDES FOR FIELD BINDWEED» By W. L. LATSHAW, Associate Professor of Chemistry^ and J. W. ZAHNLEY, Associate Professor of Farm Crops, Kansas State Agricultural College ^ INTRODUCTION Field bindweed (Convolvulus arvensis) is regarded as the most noxious weed in several of the Western States and is widely distrib- uted in Kansas. In some cases infested farms are reduced in value more than one-half and loan companies often refuse to accept them as security. Considering the seriousness of the situation and the fact that methods now in use (5)^ in Kansas are not wholly satisfactory, further experimental work seemed desirable. The use of chemicals as herbicidal agents is not new, but so far as is known to the authors sodium chlorate had not been tried in any experiments with bind- weed previous to those herein reported. REVIEW OF LITERATURE A considerable amount of work has been done by various investi- gators relating to the eradication of bindweed. Intensive cultivation has proved effective in several States as shown by the following workers: Call and Getty (5) in Kansas; Barnum (3) and Bioletti (4) in California; Cox (6) of the United States Department of Agricul- ture; Stewart and Pittman (13) in Utah; and in Idaho (10), as reported by the direptor of the Idaho Experiment Station. Chemicals have been used more or less generally. Krauss (12) and Wilcox (15) found sodium arsenite effective. Gray (7) also found it effective within the fog belt of California, but not nearly so successful (8) in the less humid section of the State.
  • Deracemization of Sodium Chlorate with Or Without the Influence of Sodium Dithionate Manon Schindler

    Deracemization of Sodium Chlorate with Or Without the Influence of Sodium Dithionate Manon Schindler

    Deracemization of sodium chlorate with or without the influence of sodium dithionate Manon Schindler To cite this version: Manon Schindler. Deracemization of sodium chlorate with or without the influence of sodium dithionate. Cristallography. Normandie Université, 2020. English. NNT : 2020NORMR004. tel- 02521046v2 HAL Id: tel-02521046 https://tel.archives-ouvertes.fr/tel-02521046v2 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracémisation du chlorate de sodium avec et sans l’influence du dithionate de sodium Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme. Elizabeth HILLARD Dr. Hab. Université de Bordeaux Rapporteur M. Elias VLIEG Pr. Université Radboud de Nimègue Rapporteur Mme. Sylvie MALO Pr. Université de Caen Normandie Présidente M. Woo Sik KIM Pr. Université Kyung Hee de Séoul Examinateur M. Gérard COQUEREL Pr. Université de Rouen Normandie Directeur de thèse Thèse dirigée par Gérard COQUEREL, professeur des universités au laboratoire Sciences et Méthodes Séparatives (EA3233 SMS) THÈSE Pour obtenir le diplôme de doctorat Spécialité Physique Préparée au sein de l’Université de Rouen Normandie Deracemization of sodium chlorate with or without the influence of sodium dithionate Présentée et soutenue par Manon SCHINDLER Thèse soutenue publiquement le 13 mars 2020 devant le jury composé de Mme.
  • Six-Year Review 3 Technical Support Document for Chlorate

    Six-Year Review 3 Technical Support Document for Chlorate

    Six-Year Review 3 Technical Support Document for Chlorate Office of Water (4607M) EPA-810-R-16-013 December 2016 Disclaimer This document is not a regulation. It is not legally enforceable, and does not confer legal rights or impose legal obligations on any party, including EPA, states, or the regulated community. While EPA has made every effort to ensure the accuracy of any references to statutory or regulatory requirements, the obligations of the interested stakeholders are determined by statutes, regulations or other legally binding requirements, not this document. In the event of a conflict between the information in this document and any statute or regulation, this document would not be controlling. This page intentionally left blank. Table of Contents 1 Introduction ................................................................................................................. 1-1 2 Contaminant Background .......................................................................................... 2-1 2.1 Chemical and Physical Properties ................................................................................. 2-1 2.2 Production, Use and Release ......................................................................................... 2-2 2.2.1 Commercial Production and Use in Industry and Agriculture ........................... 2-2 2.2.2 Incidental Production and Release ...................................................................... 2-6 2.3 Environmental Fate ......................................................................................................
  • Active Chlorine Released from Sodium Hypochlorite Product-Type 5 (Drinking Water)

    Active Chlorine Released from Sodium Hypochlorite Product-Type 5 (Drinking Water)

    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Active chlorine released from sodium hypochlorite Product-type 5 (Drinking water) January 2017 IT Active chlorine released Product-type 5 January 2017 from sodium hypochlorite CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ............................................... 3 1.1. Procedure followed .............................................................................................................................. 3 1.2. Purpose of the assessment report ................................................................................................ 3 2. OVERALL SUMMARY AND CONCLUSIONS ................................................................... 4 2.1. Presentation of the Active Substance ......................................................................................... 4 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ................................................... 4 2.1.2. Intended Uses and Efficacy ..................................................................................................................... 9 2.1.3. Classification and Labelling ................................................................................................................... 12 2.2. Summary of the Risk Assessment ............................................................................................... 14 2.2.1. Human Health Risk Assessment
  • Sodium Hydroxide (Caustic Soda)

    Sodium Hydroxide (Caustic Soda)

    SODIUM HYDROXIDE odium hydroxide (caustic soda) is a co-product from the manufacture of chlorine using a Ssolution of the readily available raw material, rock salt (sodium chloride). These factors contribute to it being the cheapest and most widely used strong alkali. Uses 48 The biggest single use for sodium hydroxide in making organic chemicals is in the manufacture of epoxypropane, used in turn to make polyurethanes (Unit 67). Figure Sodium hydroxide is used in the purification of the ore, bauxite, prior to it being used to make aluminium (Unit 69). This picture shows stockpiling of recently mined bauxite ore at the Gove refinery in the Northern Territory, Australia. Figure 2 Purified bauxite being unloaded from a ship in Iceland, on its way to an aluminium extraction plant. Much sodium hydroxide is used to scrub gases to remove acids. One example is in the purification of flue gases in the manufacture of sulfuric acid, where the alkali removes sulfur dioxide and sulfur trioxide from gases that are being emitted into the atmosphere (Unit 50). Similarly it is used to treat the effluent in the manufacture of titanium dioxide (Unit 51). Another major use of sodium hydroxide is in the manufacture of paper from wood. In the most used process, the Kraft process, wood is treated with a Figure 3 Uses of sodium hydroxide. solution containing a mixture of sodium sulfide and SODIUM HYDROXIDE sodium hydroxide. Most of the unwanted material in the caustic soda produced from each of the processes wood, such as the lignins, dissolve in the liquor, leaving varies: relatively pure cellulose which is filtered off.
  • Heterogeneous Production of Perchlorate and Chlorate By

    Heterogeneous Production of Perchlorate and Chlorate By

    HETEROGENEOUS PRODUCTION OF PERCHLORATE AND CHLORATE BY OZONE OXIDATION OF Cl- by SIXUAN WANG B.E. A Thesis In CIVIL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of The Requirements for The Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING Approved Dr. Andrew W. Jackson Chairperson of the Committee Dr. Todd A. Anderson Peggy Gordon Dean of Graduate School August, 2011 Copyright © 2011, Sixuan Wang Texas Tech University, Sixuan Wang, August 2011 ACKNOWLEDGEMENTS This research project would not finish without the support of many people. I would like to express my gratitude to all those who gave me help and support to complete this thesis. I want to thank Dr. Andrew Jackson, the chair of my committee for giving me the chance, guidance, and encouragement. I would like to take this opportunity to thank my committee members, Dr. Todd Anderson, for his continuous support and encouragement all the way. I would also take this opportunity to thank my friends and colleagues Dr. Rao, Nubia, Felipe, Tony and Tim for their continuous help, sharing during these two years of research in Environmental lab. I am very thankful to the Strategic Environmental Research and Development Program (SERDP) for providing the necessary funds for this project. ii Texas Tech University, Sixuan Wang, August 2011 TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................... ii ABSTRACT .................................................................................................................