Sodium Chlorite Chlorine Dioxide Generators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Working with Hazardous Chemicals
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
A Guide to Acids, Acid Strength, and Concentration
A GUIDE TO ACIDS, ACID STRENGTH, AND CONCENTRATION What’s the difference between acid strength and concentration? And how does pH fit in with these? This graphic explains the basics. CH COOH HCl H2SO4 HNO3 H3PO4 HF 3 H2CO3 HYDROCHLORIC ACID SULFURIC ACID NITRIC ACID PHOSPHORIC ACID HYDROFLUORIC ACID ETHANOIC ACID CARBONIC ACID pKa = –7 pKa = –2 pKa = –2 pKa = 2.12 pKa = 3.45 pKa = 4.76 pKa = 6.37 STRONGER ACIDS WEAKER ACIDS STRONG ACIDS VS. WEAK ACIDS ACIDS, Ka AND pKa CONCENTRATION AND pH + – The H+ ion is transferred to a + A decrease of one on the pH scale represents + [H+] [A–] pH = –log10[H ] a tenfold increase in H+ concentration. HA H + A water molecule, forming H3O Ka = pKa = –log10[Ka] – [HA] – – + + A + + A– + A + A H + H H H H A H + H H H A Ka pK H – + – H a A H A A – + A– A + H A– H A– VERY STRONG ACID >0.1 <1 A– + H A + + + – H H A H A H H H + A – + – H A– A H A A– –3 FAIRLY STRONG ACID 10 –0.1 1–3 – – + A A + H – – + – H + H A A H A A A H H + A A– + H A– H H WEAK ACID 10–5–10–3 3–5 STRONG ACID WEAK ACID VERY WEAK ACID 10–15–10–5 5–15 CONCENTRATED ACID DILUTE ACID + – H Hydrogen ions A Negative ions H A Acid molecules EXTREMELY WEAK ACID <10–15 >15 H+ Hydrogen ions A– Negative ions Acids react with water when they are added to it, The acid dissociation constant, Ka, is a measure of the Concentration is distinct from strength. -
Sodium Chlorate Process Liquor De-Chromed SN
SAFETY DATA SHEET This SDS adheres to the standards and regulatory requirements of the United States and may not meet the regulatory requirements in other countries. 1. Identification Product identifier Sodium Chlorate Process Liquor De-chromed SN Other means of identification De-chromed blend of Crystallizer Feed Liquor and Mother Liquor, NaClO3 Recommended use For internal transfer between ERCO Worldwide sodium chlorate manufacturing facilities for process purposes Recommended restrictions None known Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name ERCO Worldwide Address 335 Carlingview Drive Unit 1 Etobicoke, M9W 5G8 Canada Telephone Information #: (416) 239-7111 (M- F: 8:00 am – 5:00pm EST) Website http://www.ercoworldwide.com E-mail [email protected] Emergency phone number Canada & USA: 1-800-424-9300 (CHEMTREC) Supplier Refer to Manufacturer 2. Hazard(s) Identification Physical hazards Oxidizing liquids Category 2 Health hazards Acute toxicity, oral Category 4 Environmental hazards Not currently regulated by OSHA, refer to Section 12 for additional information. OSHA defined hazards This mixture does not meet the classification criteria according to OSHA HazCom 2012. Label elements Signal word Danger Hazard statement May intensify fire; oxidizer. Harmful if swallowed. Page 1 of 15 Issue Date: 11/18/2020 Sodium Chlorate Process Liquor De-chromed SN Precautionary statement Prevention Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep away from clothing and other combustible materials. Wear protective gloves, protective clothing, eye protection, face protection. Response IF ON SKIN: Wash with plenty of water. Take off contaminated clothing and wash it before reuse. In case of fire: Use water to extinguish. -
Mechanism of Action of Sodium Hypochlorite ISSN 0103-6440113
Braz Dent J (2002) 13(2): 113-117 Mechanism of action of sodium hypochlorite ISSN 0103-6440113 Mechanism of Action of Sodium Hypochlorite Carlos ESTRELA1 Cyntia R.A. ESTRELA1 Eduardo Luis BARBIN2 Júlio César E. SPANÓ2 Melissa A. MARCHESAN2 Jesus D. PÉCORA2 1Faculty of Dentistry, Federal University of Goiás, Goiânia, GO, Brazil 2Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil The choice of an irrigating solution for use in infected root canals requires previous knowledge of the microorganisms responsible for the infectious process as well as the properties of different irrigating solutions. Complex internal anatomy, host defenses and microorganism virulence are important factors in the treatment of teeth with asymptomatic apical periodontitis. Irrigating solutions must have expressive antimicrobial action and tissue dissolution capacity. Sodium hypochlorite is the most used irrigating solution in endodontics, because its mechanism of action causes biosynthetic alterations in cellular metabolism and phospholipid destruction, formation of chloramines that interfere in cellular metabolism, oxidative action with irreversible enzymatic inactivation in bacteria, and lipid and fatty acid degradation. The aim of this work is to discuss the mechanism of action of sodium hypochlorite based on its antimicrobial and physico-chemical properties. Key Words: sodium hypochlorite, irrigating solution, intracanal dressing. INTRODUCTION microbial agent to the infected site, adequate concen- tration of the agent, -
Properties of Acids and Bases
GREEN CHEMISTRY LABORATORY MANUAL Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? hat do you taste when you brush your teeth and drink orange juice afterwards. Yuck! It leaves a really bad taste in your mouth, but why? Orange juice and toothpaste by themselves taste good. But the terrible taste W results because an acid/base reaction is going on in your mouth. Orange juice is a weak acid and the toothpaste is a weak base. When they are placed together they neutralize each other and produce a product that is unpleasant to taste. How do you determine what is an acid and what is a base? In this lab we will discover how to distinguish between acids and bases. Introduction Two very important classes of compounds are acids and bases. But what exactly makes them different? There are differences in definition, physical differences, and reaction differences. According to the Arrhenius definition, acids ionize in water to + produce a hydronium ion (H3O ), and bases dissociate in water to produce hydroxide ion (OH -). Physical differences can be detected by the senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation to broken skin. For example, if you have ever tasted a lemon, it can often result in a sour face. Bases have a bitter taste and a slippery feel. Soap and many cleaning products are bases. -
Production of Hexavalent Chromium for Use in Chlorate Cells
Europaisches Patentamt J European Patent Office © Publication number: 0 266 128 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 87309335.5 © Int. CIA C25B 1/26 @ Date of filing: 22.10.87 ® Priority: 29.10.86 CA 521737 © Applicant: Tenneco Canada Inc. 2 Gibbs Road © Date of publication of application: Islington OntarioM9B 1R1(CA) 04.05.88 Bulletin 88/18 0 Inventor: Dobosz, Leszek Michal © Designated Contracting States: 68 MacDonald Street CH ES FR LI SE Toronto Ontario M8V 1Y4(CA) © Representative: Hamilton, Raymond et al c/o Albright & Wilson Limited 1 Knightsbridge Green London SW1X 7QD(GB) © Production of hexavalent chromium for use in chlorate cells. © By-product hypochlorite from the electrolytic production of chlorates, notably sodium chlorate, is used to form hexavalent chromium for use in the electrolysis process by oxidation of trivalent chromium compounds by the hypochlorite. The hypochlorite maybe the condensate produced by treatment of the chlorate cell by-product gas stream and/or present in the cell liquor. < 00 CO CO (VI a. UJ Xerox Copy Centre 0 266 128 PRODUCTION OF HEXAVALENT CHROMIUM FOR USE IN CHLORATE CELLLS The present invention relates to the fomation of hexavalent chromium useful in the electrolytic production of aqueous chlorate solutions. An aqueous solution of sodium chlorate and sodium chloride is conventionally produced by the electrolysis of aqueous sodium chloride in diaphragmless electrolytic cells. The extent of electrolysis is 5 controlled to produce an effluent from the cell in which the sodium chlorate and sodium chloride have the desired ratio, usually in the range (expressed as a weight ratio) of about 1 :1 to about 20:1 and preferably in the range of about 2:1 to about 15:1. -
Disinfection Session Objectives
Disinfection Session Objectives • To introduce the principal disinfectants that may be used and highlight key advantages and disadvantages of each • To emphasise the use of chlorination for routine disinfection. • To describe the process of chlorination and discuss the concepts of breakpoint chlorination, chlorine demand and outline basic chlorine chemistry. • To discuss the types of chlorine available and how these may be used for routine disinfection. WHO SEMINAR PACK FOR DRINKING-WATER QUALITY Disinfection Introduction All water supplies should be disinfected. This is aimed both at inactivating remaining bacteria before distribution and providing a residual disinfectant to inactivate bacteria introduced by any subsequent ingress of contaminated water during storage or distribution. At present, the principal disinfectant used worldwide is chlorine, although alternatives are being increasingly investigated and process such as ozonation are becoming more common. Chlorine is generally the disinfectant of choice as it is reasonably efficient, cheap and easy to handle. In all but the smallest water treatment plants, chlorine is added to water as either in aqueous solution (calcium hypochlorite or sodium hypochlorite) or chlorine gas. Smaller supplies may use tablets of hypochlorite. Other disinfectants include ozone, ultraviolet light and iodine. These all have disadvantages. UV is not a particularly effective disinfectant and it is difficult to expose water for sufficient time for disinfection to be effective. Neither ozone or UV provide a residual disinfectant and therefore offer no protection against recontamination in distribution. To overcome this, in some water supplies booster ozonation stations are set up along the distribution network. Both iodine and ozone are carcinogenic. There are also significant health and safety concerns, for operators, regarding the generation and application of ozone and chlorine (especially in the gaseous form). -
Template COVID-19
PAHO Does Not Recommend Taking Products that Contain Chlorine Dioxide, Sodium Chlorite, Sodium Hypochlorite, or Derivatives 16 July 2020 The information included in this note reflects the available evidence at the date of publication. KEY MESSAGES • The Pan American Health Organization (PAHO) does not recommend oral or parenteral use of chlorine dioxide or sodium chlorite-based products for patients with suspected or diagnosed COVID-19 or for anyone else. There is no evidence of their effectiveness and the ingestion or inhalation of such products could cause serious adverse effects. • People’s safety should be the main objective of any health decision or intervention. • PAHO recommends strengthened reporting to the national drug regulatory authority or to the office of the Ministry of Health responsible for drug regulation in the event of any adverse event linked to the use of these products. PAHO also recommends that products containing chlorine dioxide, chlorine derivatives, or any other substance presented as a treatment for COVID-19 should be reported. • The health authorities should monitor media marketing of products claiming to be therapies for COVID-19 in order to take the appropriate actions. Information on the subject Context • Chlorine dioxide is a yellow or reddish-yellow gas used as bleach in paper manufacturing, in public water treatment plants, and for the decontamination of buildings. Chlorine dioxide reacts with water to generate chlorite ions. Both chemical species are highly reactive, which means that they have capacity to eliminate bacteria and other microorganisms in aqueous media (Agency for Toxic Substances and Disease Registry [ATSDR], 2004). • This gas has been used as a disinfectant in low concentrations for the treatment of water (WHO: 2008, 2016) and in clinical trials for buccal antisepsis (National Library of Medicine, 2020). -
Sodium Chlorite Neutralization
® Basic Chemicals Sodium Chlorite Neutralization Introduction that this reaction is exothermic and liberates a If sodium chlorite is spilled or becomes a waste, significant amount of heat (H). it must be disposed of in accordance with local, state, and Federal regulations by a NPDES NaClO2 + 2Na2SO3 2Na2SO4 + NaCl permitted out-fall or in a permitted hazardous 90.45g + 2(126.04g) 2(142.04g) + 58.44g waste treatment, storage, and disposal facility. H = -168 kcal/mole NaClO2 Due to the reactivity of sodium chlorite, neutralization for disposal purposes should be For example, when starting with a 5% NaClO2 avoided whenever possible. Where permitted, solution, the heat generated from this reaction the preferred method for handling sodium could theoretically raise the temperature of the chlorite spills and waste is by dilution, as solution by 81C (146F). Adequate dilution, discussed in the OxyChem Safety Data Sheet thorough mixing and a slow rate of reaction are (SDS) for sodium chlorite in Section 6, important factors in controlling the temperature (Accidental Release Measures). Sodium chlorite increase (T). neutralization procedures must be carried out only by properly trained personnel wearing Procedure appropriate protective equipment. The complete neutralization procedure involves three sequential steps: dilution, chlorite Reaction Considerations reduction, and alkali neutralization. The dilution If a specific situation requires sodium chlorite to step lowers the strength of the sodium chlorite be neutralized, the chlorite must first be reduced solution to 5% or less; the reduction step reacts by a reaction with sodium sulfite. The use of the diluted chlorite solution with sodium sulfite to sodium sulfite is recommended over other produce a sulfate solution, and the neutralization reducing agents such as sodium thiosulfate step reduces the pH of the alkaline sulfate (Na2S2O3), sodium bisulfite (NaHSO3), and solution from approximately 12 to 4-5. -
Guidelines for Drinking-Water Quality, Fourth Edition
12. CHEMICAL FACT SHEETS Assessment date 1993 Principal reference WHO (2003) Chlorine in drinking-water In humans and experimental animals exposed to chlorine in drinking-water, no specific adverse treatment-related effects have been observed. IARC has classified h ypochlorite in Group 3 (not classifiable as to its carcinogenicity to humans). Chlorite and chlorate Chlorite and chlorate are disinfection by-products resulting from the use of chlorine dioxide as a disinfectant and for odour and taste control in water. Chlorine dioxide is also used as a bleaching agent for cellulose, paper pulp, flour and oils. Sodium chlorite and sodium chlorate are both used in the production of chlorine dioxide as well as for other commercial purposes. Chlorine dioxide rapidly decomposes into chlorite, chlorate and chloride ions in treated water, chlorite being the predominant species; this reaction is favoured by alkaline conditions. The major route of environmental ex- posure to chlorine dioxide, sodium chlorite and sodium chlorate is through drinking- water. Chlorate is also formed in sodium hypochlorite solution that is stored for long periods, particularly at high ambient temperatures. Provisional guideline values Chlorite: 0.7 mg/l (700 µg/l) Chlorate: 0.7 mg/l (700 µg/l) The guideline values for chlorite and chlorate are designated as provisional because use of chlorine dioxide as a disinfectant may result in the chlorite and chlorate guideline values being exceeded, and difficulties in meeting the guideline value must never be a reason for compromising adequate disinfection. Occurrence Levels of chlorite in water reported in one study ranged from 3.2 to 7.0 mg/l; however, the combined levels will not exceed the dose of chlorine dioxide applied. -
140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids
nr 2009;43(7) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 140. Sulphuric, hydrochloric, nitric and phosphoric acids Marianne van der Hagen Jill Järnberg arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-14-5 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Enviromental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Kristina Alexanderson, Stockholm Co-editors: Maria Albin, Ewa Wigaeus Berit Bakke, Oslo Tornqvist, Marianne Törner, Wijnand Lars Barregård, Göteborg Eduard, Lotta Dellve och Roger Persson Jens Peter Bonde, Köpenhamn Managing editor: Cina Holmer Jörgen Eklund, Linköping Mats Eklöf, Göteborg © University of Gothenburg & authors 2009 Mats Hagberg, Göteborg Kari Heldal, Oslo Arbete och Hälsa, University of Gothenburg Kristina Jakobsson, Lund SE 405 30 Gothenburg, Sweden Malin Josephson, Uppsala Bengt Järvholm, Umeå ISBN 978-91-85971-14-5 Anette Kærgaard, Herning ISSN 0346–7821 Ann Kryger, Köpenhamn http://www.amm.se/aoh -
Hydrochloric Acid Handbook
Hydrochloric Acid Handbook OxyChem ® OxyChem is a registered trademark of Occidental Chemical Corp. 08/2018 Dallas-based Occidental Chemical Corporation is a leading North American manufacturer of basic chemicals, vinyls and performance chemicals directly and through various affiliates (collectively, OxyChem). OxyChem is also North America's largest producer of sodium chlorite. As a Responsible Care® company, OxyChem's global commitment to safety and the environment goes well beyond compliance. OxyChem's Health, Environment and Safety philosophy is a positive motivational force for our employees, and helps create a strong culture for protecting human health and the environment. Our risk management programs and methods have been, and continue to be, recognized as some of the industry's best. OxyChem offers an effective combination of industry expertise, experience, on line business tools, quality products and exceptional customer service. As a member of the Occidental Petroleum Corporation family, OxyChem represents a rich history of experience, top-notch business acumen, and sound, ethical business practices. Table of Contents Page INTRODUCTION TO HYDROCHLORIC ACID .................................................................................... 4 MANUFACTURING ........................................................................................................................... 4 HYDROCHLORIC ACID — USES ........................................................................................................ 5 SPECIFICATIONS AND