Cambridge University Press 978-0-521-57162-3 — the Cambridge History of Science Edited by Alexander Jones , Liba Taub Index More Information
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
国内外における今後の火星探査の動向調査 Research on Trend About
Eco-Engineering, 22(4), 185-191, 2010 内外の研究動向 国内外における今後の火星探査の動向調査 Research on Trend about Domestic and International Mars Exploration in the future 新井真由美* Mayumi Arai* 日本科学未来館 〒135-0064 東京都江東区青海2-3-6 National Museum of Emerging Science and Innovation 2-3-6, Aomi, Koto-ku, Tokyo 135-0064, Japan 月ごとにフォボスに接近し、高解像度ステレオカメラ 1 .国外における今後の火星探査 (HRSC)で、1 ピクセル 4.4 m という、これまでにない 2011 年以降打ち上げを予定している火星探査計画は、 ほどの高解像度でフォボス表面を撮影している。フォボ アメリカ航空宇宙局(NASA)が主体となる計画のほか、 スは、地球に対する月のように常に火星に同じ面を向け 欧州宇宙機関(ESA)、ロシア、中国の計画がある。こ て公転しているが、フライバイを行うことによってフォ れらの主な目的と特徴を述べる。 ボスの異なる面の観測が可能となる。これらのデータ 1.1 Phobos-Grunt は、Phobos-Grunt の着陸地点選出に用いられる予定であ Phobos-Grunt は、火星の衛星フォボスの表面サンプル る。現在、フォボスへのオペレーションと着陸が安全な を地球に持ち帰るロシアの計画である。Phobos-Grunt と 場所として、5 °S-5 °N, 230-235 °E が選ばれている(Zak, は、“フォボスの土壌”という意味である。2009 年に打 2010; Mars Express’s web site, 2010)。 ち上げが予定されていたが、2011 年に延期された。現 1.2 蛍火 1 号(Yinghuo-1) 時点での打ち上げウィンドウは、2011 年 12 月 25 日。 蛍火 1 号(インホワ・ワン)は、中国の航空宇宙産 2012 年 8 月から 9 月に火星軌道に入り、2013 年から 業が開発した中国初の小型の火星周回衛星で、Phobos- 火星軌道を周り、2013 年にフォボスに着地。そして、 Grunt に相乗りして 2011 年の打ち上げを予定している。 2014 年に地球に帰還予定である。フォボスは、直径が約 Yinghuo という名前は「蛍」を意味する。蛍火 1 号の 27 × 22 × 19 km の不整形な形をした炭素質の C 型小惑 大きさは、長さ 75 cm、幅 75 cm、高さ 60 cm で、質量 星で、密度が平均 1.85 g/cm3 と小さく、氷と岩石の混合 110 kg、太陽電池パネルを広げると 7.85 m。2012 年に 物から構成されていると考えられている。フォボスは、 Phobos-Grunt から分離され、火星の赤道軌道に投入され、 火星の重力に捕獲された小惑星であるという説のほか、 約 2 年間、火星上空のプラズマ環境と磁場の詳細な観測 火星に隕石が衝突した際に飛び散った岩石が集まって誕 などを行う予定である(Zak, 2010)。蛍火 1 号は、中国 生したという説、太陽系の惑星形成時の残余物が集まっ 初の惑星探査機で、有人探査の「神舟」シリーズ、月探 たという説が考えられているが、実際どのようなメカニ 査の「嫦娥」シリーズに継ぐ、第 3 の宇宙探査に位置づ ズムで火星の赤道面に捕獲され、進化してきたか未だ議 けられる。 -
ARISTOXENUS of TARENTUM Rutgers University Studies in Classical Humanities
ARISTOXENUS OF TARENTUM Rutgers University Studies in Classical Humanities Series Editor: David C. Mirhady Advisory Board: William W. Fortenbaugh Dimitri Gutas Pamela M. Huby Timothy C. Powers Eckart Schütrumpf On Stoic and Peripatetic Ethics: The Work of Arius Didymus I Theophrastus of Eresus: On His Life and Work II Theophrastean Studies: On Natural Science, Physics and Metaphysics, Ethics, Religion and Rhetoric III Cicero’s Knowledge of the Peripatos IV 7KHRSKUDVWXV+LV3V\FKRORJLFDO'R[RJUDSKLFDODQG6FLHQWLÀF Writings V Peripatetic Rhetoric after Aristotle VI The Passionate Intellect: Essays on the Transformation of Classical Traditions presented to Professor I.G. Kidd VII Theophrastus: Reappraising the Sources VIII Demetrius of Phalerum: Text, Translation and Discussion IX Dicaearchus of Messana: Text, Translation and Discussion X Eudemus of Rhodes XI Lyco of Troas and Hieronymus of Rhodes XII Aristo of Ceos: Text, Translation and Discussion XIII Heraclides of Pontus: Text and Translation XIV Heraclides of Pontus: Discussion XV Strato of Lampsacus: Text, Translation and Discussion XVI ARISTO XENUS OF TARENTUM DISCUSSION RUTGERS UNIVERSITY STUDIES IN CLASSICAL HUMANITIES VOLUMEXVU EDITED BY eARL A. HUFFMAN First published 2012 by Transaction Publishers Published 2017 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 711 Third Avenue, New York, NY 10017, USA Routledge is an imprint of the Taylor & Francis Group, an informa business Copyright © 2012 by Taylor & Francis. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. -
MELOS Rover (Smaller Than MER) Engineering Primary Objectives Rough-Terrain Traversability • Design & Development of the Mobility System: I.E
MEPAG meeting 2015 Current plan of the MELOS, a proposed Japanese Mars mission Hirdy Miyamoto (University of Tokyo) on behalf of MELOS working group NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. Background of the Japanese Mars program JAXA’s missions to solar system bodies NOZOMI Mars Mission (1998) (did not arrive at Mars) Hayabusa asteroid mission (2003) Kaguya lunar mission (2007) Akatsuki Venus mission (2011) Venus orbit insertion delayed until 2015 Hayabusa 2 asteroid mission (2014) Successfully launched • MELOS working group@JAXA from 2008 MELOS used to stand for “Mars Explorations with Landers and Orbiters” Lander(s) and orbiters (meteorology and atmospheric escape) • MELOS is now down-scaled to be an EDL (+Rover) mission for an engineering demonstration • MELOS (Mars Exploration of Life-Organism Search) is one of 4 proposals for Announcement of Opportunity for medium- class missions, Feb. 2015, JAXA Proposed mission outline of MELOS Launch Aug. 2020 (Sep. 2022) Mars Arrival Feb. 2021 (Apr. 2023) Primary objective: Science objectives Engineering demonstration Current status/activity on Mars (Pin-point landing, long-range - Meteorology roving) - Geology - Biology Proposed landing scenario of MELOS Cruise module separation & entry Entry-Descent-Landing (EDL) module Guided flight 909kg (wet), 803kg (dry) Parachute deployment Interplanetary Cruise Module Atmospheric Entry Module Aeroshell Module Skycrane Powered Landing Module descent Rover Landing accuracy 20 x 14 km Rover touchdown MELOS Rover (smaller than MER) Engineering primary objectives Rough-terrain traversability • Design & development of the mobility system: i.e. -
Ancient Greek Physicians
Ancient Greek physicians Abascantus Acesias Acron Acumenus Adamantius Aegimus Aelianus Meccius Aelius Promotus Aeschines (physician) Aeschrion of Pergamon Agapetus (physician) Agathinus Agnodice Alcmaeon of Croton Alexander of Tralles Alexander Philalethes Epipodius and Alexander Alexias Alexion Alexippus Amentes Ammonius Lithotomos Anaxilaus Andreas (physician) Androcydes (physician) Andromachus Andromachus (physician) Andron (physician) Andronicus (physician) Anicia Anonymus Londinensis Antaeus (physician) Antigenes Antigonus (physician) Antiochis Antiochus (physician) Antiochus Philometor Antipater (1st-century BC physician) Antipater (2nd-century physician) Antiphanes of Delos Antonius (herbalist) Antyllus Apollodorus (physician) Apollonides (physician) Apollonides of Cos Apollonios of Kition Apollonius (physician) Archigenes Aretaeus of Cappadocia Aristogenes (physician) Aristoxenus (physician) Asclepiades of Bithynia Asclepiades Pharmacion Aspasia the Physician Athenaeus of Attalia Athryilatus B Bacchius of Tanagra Bolus of Mendes C Calliphon of Croton Chrysippus of Cnidos Claudius Agathemerus Criton of Heraclea Ctesias D Damocrates Democedes Demosthenes Philalethes Dexippus of Cos Dieuches Diocles of Carystus Pedanius Dioscorides Diphilus (physician) Draco (physician) E Epicles Erasistratus Eudemus (physician) Eudoxus of Cnidus Euphorbus (physician) Euryphon Evenor G Galen Glaucias (physician, 3rd century BC) Glaucias (physician, 4th century BC) -
Alexander Jones Calendrica I: New Callippic Dates
ALEXANDER JONES CALENDRICA I: NEW CALLIPPIC DATES aus: Zeitschrift für Papyrologie und Epigraphik 129 (2000) 141–158 © Dr. Rudolf Habelt GmbH, Bonn 141 CALENDRICA I: NEW CALLIPPIC DATES 1. Introduction. Callippic dates are familiar to students of Greek chronology, even though up to the present they have been known to occur only in a single source, Ptolemy’s Almagest (c. A.D. 150).1 Ptolemy’s Callippic dates appear in the context of discussions of astronomical observations ranging from the early third century B.C. to the third quarter of the second century B.C. In the present article I will present new attestations of Callippic dates which extend the period of the known use of this system by almost two centuries, into the middle of the first century A.D. I also take the opportunity to attempt a fresh examination of what we can deduce about the Callippic calendar and its history, a topic that has lately been the subject of quite divergent treatments. The distinguishing mark of a Callippic date is the specification of the year by a numbered “period according to Callippus” and a year number within that period. Each Callippic period comprised 76 years, and year 1 of Callippic Period 1 began about midsummer of 330 B.C. It is an obvious, and very reasonable, supposition that this convention for counting years was instituted by Callippus, the fourth- century astronomer whose revisions of Eudoxus’ planetary theory are mentioned by Aristotle in Metaphysics Λ 1073b32–38, and who also is prominent among the authorities cited in astronomical weather calendars (parapegmata).2 The point of the cycles is that 76 years contain exactly four so-called Metonic cycles of 19 years. -
Preliminary Mission Analysis and Orbit Design for Next Mars Exploration
Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_7-Tk_12, 2010 Topics Preliminary Mission Analysis and Orbit Design for Next Mars Exploration By Naoko OGAWA 1), Mutsuko Y. MORIMOTO1), Yuichi TSUDA1,2), Tetsuya YAMADA1,2), Kazuhisa FUJITA1,3), Tomohiro YAMAGUCHI4), Yasuhiro KAWAKATSU1,2), Takashi KUBOTA1,2) and Jun’ichiro KAWAGUCHI1,2) 1)JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara, Japan 2)Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan 3)Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tokyo, Japan 4)The Graduate University for Advanced Studies, Sagamihara, Japan (Received July 21st, 2009) Japan has launched many interplanetary spacecraft for exploration of solar system bodies including Mars. Now we are planning the next Mars mission in the late 2010’s. This paper describes the preliminary mission analysis and orbit design for this plan. The combined exploration by several spacecraft requires complicated and careful consideration, different from those for single-probe missions. Mission plans to realize required configuration by a single launch and simple simulation results are reported. Key Words: Mars, Mission Analysis, Orbit Design, MELOS 1. Introduction 2.1.1. Meteorological orbiter for martian climate One orbiter of the two, called hereafter as the meteorological In 2008, Japan Aerospace Exploration Agency (JAXA) orbiter, aims understanding of the interaction between the has established a novel working group toward a novel Mars atmosphere and subsurface ice, and atmospheric dynamics. exploration program named MELOS, an acronym for “Mars Global, high-resolution and continuous mapping of water vapor, Exploration with Lander-Orbiter Synergy”1). As its name clouds, dusts and atmospheric temperature will be performed indicates, this is an ambitious mission composed of several with imaging cameras from the apoapsis of its highly elliptic landers and orbiters, schematically illustrated in Fig. -
Philosophy of Chemistry, Integrated Science 2, 144 Author Index
Author Index A Brahe, Tycho, 65 Abegg, Richard, 118 Bunsen, Robert Wilhelm Eberhard, 113 Alexander the Great, 32 Butlerov, Aleksandr Mihajlovič, 89 Alkindus, al-Sabah, 40 Al-Ihmimi, 40 C Al-Razi, Abu Bekr Muhammad ibn Zakariyya, Cannizzaro, Stanislao, 111 42 Carnap, Rudolf, 10 Al-Sabah, Abu Jusuf Jakub ibn Ishak, Cartesius, René Descartes, 48 Alkindus, 40 Carus, Titus, Lucretius, 27 Anaxagoras of Clazomenae, 24 Cavendish, Henry, 59 Anaximander of Miletus, 21 Cimabue (painter), 25 Anaximenes of Miletus, 21 Cleopatra of Alexandria, 35 Angelico, Beato, Fra. Angelico, 25, 26 Comarius, 33 Aquinas, St. Thomas, 25, 43 Comenius, Jan Amoš Komenski, 52 Aristotle of Stagira, 22 Comte, Auguste, 10 Arrhenius, Svante August, 109 Copernicus, Nicolaus, 11 Averroes, Ibn-Ružd, 40 Cosimo il Vecchio, 48 Avicena, Ibn-Sina, 40 Couper, Archibald Scott, 89 Avogadro, Amedeo, 111 Cram, Donald James, 133 Crum Brown, Alexander, 90 B Bacon, Roger, Doctor Mirabilis, 43 D Balaban, Alexandru, 114 Dalton, John, 74 Bayen, Pierre, 57 Davy, Humphry, 85 Bellosztenecz, Ivan, 27 Democritus of Abdera, 24 Berthollet, Claude Louis, 69, 75 de Morveau, Louis-Bernard Guyton, 69 Berzelius, Jöns Jacob, 28, 81 Descartes, René, Cartesius, 48 Biot, Jean Baptist, 105 Döbereiner, Johan, 97 Black, Joseph, 59 Doctor Mirabilis, Roger Bacon, 43 Boerhaave, Hermann, 49 Duhem, Pierre, 11, 12 Bohr, Niels, 118 Dumas, Jean Baptiste Andre, 85 Bolus of Mendes, 35 Born, Max, 108 E Bošković, Rugjer Josip, 50 Eco, Umberto, 41 Boyle, Robert, 53, 60 Empedocles of Akragas (Agrigento), 21 Bragg, Sir William Henry, 114 Epicurus of Samos, 26 Bragg, Sir William Lawrence, 114 Euler, Leonhard, 103 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 143 Nature Switzerland AG 2021 H. -
(Getting Rid of the «Presocratics»), In: Philosophy in the Dialogue of Cultures
Andrei V. Lebedev, Izbavliaias’ ot «dosokratikov» (Getting rid of the «Presocratics»), in: Philosophy in the dialogue of cultures. Materials of the World Philosophy Day (Moscow - St. Petersburg, November 16 -19, 2009), p. 177 - 183 (in Russian). Translated into English by the author. This paper was delivered in the Institute of philosophy of the Russian Academy of sciences at the Round Table «Getting rid of stereotypes in the history of philosophy». Some explanatory remarks that have been added in the English translation are placed in square brackets. In 1903 the Weidmann Publishing House in Berlin published the first edition of Die Fragmente der Vorsokratiker by the distinguished German classical scholar Hermann Diels which still remains the most complete single edition of the fragments of the Early Greek philosophers (of the VI - V centuries B.C.). In the first edition it started with Thales and ended with «Anhang» that contained pre-philosophical tradition (cosmogonic poetry and prose, the sayings of the Seven Sages) as well as the fragments of the Sophists. After Diels’s death (1922) his disciple Walter Kranz in the last 5th edition (1934) gave it its present structure by dividing the whole text into three parts: A) Anfänge (pre-philosophical tradition), B) Fragments of the Greek Philosophers of the 6th and 5th centuries and their immediate followers and C) Sophists. There are all in all 90 chapters, in which about 400 names are mentioned, of which 235 derive from Jamblichus’ Catalogue of Pythagoreans. Diels himself explained in the preface to the first edition that he included in his collection also some mathematicians and a selection of non-Hippocratic doctors. -
Program and Abstract Volume
Program and Abstract Volume LPI Contribution No. 1650 CONFERENCE ON LIFE DETECTION IN EXTRATERRESTRIAL SAMPLES February 13–15, 2012 • San Diego, California Sponsors NASA Mars Program Office NASA Planetary Protection Office Universities Space Research Association Lunar and Planetary Institute Conveners Dave Beaty Mary Voytek NASA Mars Program Office NASA Astrobiology Cassie Conley Jorge Vago NASA Planetary Protection ESA Mars Program Gerhard Kminek Michael Meyer ESA Planetary Protection NASA Mars Exploration Program Dave Des Marais Mars Exploration Program Analysis Group (MEPAG) Chair Scientific Organizing Committee Carl Allen Charles Cockell NASA Johnson Space Center University of Edinburgh Doug Bartlett John Parnell Scripps Institution of Oceanography University of Aberdeen Penny Boston Mike Spilde New Mexico Tech University of New Mexico Karen Buxbaum Andrew Steele NASA Mars Program Office Carnegie Institution for Science Frances Westall Centre de Biophysique Moléculaire Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1650 Compiled in 2011 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. -
The Draconic Gearing of the Antikythera Mechanism: Assembling the Fragment D, Its Role and Operation
The Draconic gearing of the Antikythera Mechanism: Assembling the Fragment D, its role and operation A.Voulgaris1, C.Mouratidis2, A.Vossinakis3, G.Bokovos4 (Submitted 14 January 2020) 1Municipality of Thessaloniki, Directorate Culture and Tourism, Thessaloniki, GR-54625, Greece 2Hellenic Ministry of Education, Research and Religious Affairs, Kos, GR-85300, Greece 3Thessaloniki Astronomy Club, Thessaloniki, GR-54646, Greece 4Thessaloniki Science Center and Technology Museum-Planetarium, Thermi, GR-57001, Greece Abstract The unplaced Fragment D of the Antikythera Mechanism with an unknown operation was a mystery since the beginning of its discovery. The gear-r1, which was detected on the Fragment radiographies by C. Karakalos, is preserved in excellent condition, but this was not enough to correlate it to the existing gear trainings of the Mechanism. The suggestion that this gear could be a part of the hypothetical planet indication gearing is still a hypothesis since no mechanical evidence has been preserved. After the analysis of AMRP tomographies of Fragment D and its mechanical characteristics revealed that it could be part of the Draconic gearing. Although the Draconic cycle was well known during the Mechanism’s era as represents the fourth Lunar cycle, it seems that it is missing from the Antikythera Mechanism. The study of Fragment D was supported by the bronze reconstruction of the Draconic gearing by the authors. The adaptation of the Draconic gearing on the Antikythera Mechanism improves its functionality and gives answers on several questions. 1. Introduction. The Antikythera Mechanism, a geared machine based on the lunar cycles The Antikythera Mechanism a creation of an ingenious manufacturer of the Hellenistic era was a geared machine capable of performing complex astronomical calculations, mostly based on the lunar periodic cycles. -
INDEX RERUM Aetiology, Aitiologia, 110 N
INDEX RERUM aetiology, aitiologia, 110 n. 21, 158, fire atoms, 129, 280 177, 193 n. 59, 265, 266, 275 mental atoms, 129 agriculture, 40–41, 207, 208, 212, position, 131, 265, 270, 281, 283, 226, 231 284, 288 anima and animus, 7, 80–86 rebound, 289 anima animae, 81 shape, 100, 131, 139, 184, 187, 210, animals, 58, 78, 84, 85, 90–93, 110, 211, 241–249, 255, 258, 259, 111, 118, 127, 139, 143–156, 159– 278, 280–283, 286, 291 161, 173–176, 190, 191 and n. 49, surfaces, 131, 141, 286, 288 193, 194, 210, 226, 270, 291 and touch, 97, 129, 130, 131, 186, n. 42 260, 262, 268, 277, 278, 281, bloodless, 161, 163 285–290, 292 with blood, 161 ρμνα, 183, 186, 187, 196 belief or reliability (pistis), 48, 49 Arpedonaptes, 37 blood, 84, 110, 161, 233, 279 Asclepiades, 214, 215, 218 and n. 36, Bolus of Mendes, 40, 41, 56–62, 109, 219–221 and n. 43, 222–224, 236 162 n. 26, 181, 207, 212, 224–226, asyntakta, in Democritus catalogue, 236 17, 157, 158 brain, 77, 79 n. 5, 84, 86 and n. 10, astronomy, 35 110 n. 24, 163, 172–175, 217, atom, 3, 6–9, 46, 47, 77–79, 81–83, 218 85, 88, 98–100, 106, 109, 110 brain-death, 85, 86 and n. 22, 112–115, 117–120, 122, 128–133, 135 n. 61, 139–141, 169, calendar, 34, 35 170, 176–179, 184 n. 17, 186, 213, cartography, 37 219, 223 n. 53, 225, 239–249, Catalogue of Anthistenes’ works, 182 251, 255–263, 273–290, 292 and n. -
Matteo Martelli the Four Books of Pseudo-Democritus Gianna Katsiampoura
139 objets quotidiens comme des objets d’épopée, pour susciter une émotion mais aussi un sentiment du beau où l’humain sans cesse se refonde, pour nommer et renommer les choses. C’est précisément dans ce passage du morcellement à l’unité et de la rupture à l’ouverture que l’exister dans l’infini trouve sons sens, selon Blay; comme une naissance au poétique toujours à renaître pour ne pas étouffer dans le silence du penser avec l’infini. Une résurgence comme une résistance, un appel à la résistance. Matteo Martelli The Four Books of Pseudo-Democritus Society for the History of Alchemy and Chemistry, Maney Publishing, 2014 Gianna Katsiampoura DOI 10.1484/J.ALMAGEST.5.103572 In the span of the last decades, interest for the Greek alchemical tradition has reanimated, after a long period of time, during which the main subject of research was Latin alchemy. The first collection of Greek alchemical manuscripts was the edition by M. Berthelot and Ch.-Em. Ruelle, Collection des ancients alchimistes grecs,15published at the end of the 19th century. It included several works by Alexandrian and Byzantine writers, with the exception of the work of Stephanus of Alexandria, which was edited by Ideler26four decades ago. The next important project was the series Catalogue des manuscrits alchimiques grecs, under the direction of J. Bidez, F. Cumont, A. Delatte, O. Lagercrantz and J. Ruska. The series consisted of eight volumes, published between 1924 and 1932. The 1970s’ work on Greek alchemical manuscripts by e.g. R. Halleux, M. Mertens and C. Viano renewed the interest for Greek alchemy.