Program and Abstract Volume

Total Page:16

File Type:pdf, Size:1020Kb

Program and Abstract Volume Program and Abstract Volume LPI Contribution No. 1650 CONFERENCE ON LIFE DETECTION IN EXTRATERRESTRIAL SAMPLES February 13–15, 2012 • San Diego, California Sponsors NASA Mars Program Office NASA Planetary Protection Office Universities Space Research Association Lunar and Planetary Institute Conveners Dave Beaty Mary Voytek NASA Mars Program Office NASA Astrobiology Cassie Conley Jorge Vago NASA Planetary Protection ESA Mars Program Gerhard Kminek Michael Meyer ESA Planetary Protection NASA Mars Exploration Program Dave Des Marais Mars Exploration Program Analysis Group (MEPAG) Chair Scientific Organizing Committee Carl Allen Charles Cockell NASA Johnson Space Center University of Edinburgh Doug Bartlett John Parnell Scripps Institution of Oceanography University of Aberdeen Penny Boston Mike Spilde New Mexico Tech University of New Mexico Karen Buxbaum Andrew Steele NASA Mars Program Office Carnegie Institution for Science Frances Westall Centre de Biophysique Moléculaire Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1650 Compiled in 2011 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2011) Title of abstract. In Conference on Life Detection in Extraterrestrial Samples, p. XX. LPI Contribution No. 1650, Lunar and Planetary Institute, Houston. ISSN No. 0161-5297 Preface This volume contains abstracts that have been accepted for presentation at the Conference on Life Detection in Extraterrestrial Samples, February 13–15, 2012, San Diego, California. Administration and publications support for this meeting were provided by the staff of the Meeting and Publication Services Department at the Lunar and Planetary Institute. Life Detection in Extraterrestrial Samples v Contents Program ........................................................................................................................................................................ ix We Did It Before — The Lunar Receiving Laboratory (1969–1972) C. C. Allen and J. H. Allton ............................................................................................................................. 1 Cleaning Genesis Mission Payload for Flight with Ultrapure Water and Assembly in ISO Class 4 Environment J. H. Allton ...................................................................................................................................................... 3 Technical Tension Between Achieving Particulate and Molecular Organic Environmental Cleanliness: Data from Astromaterial Curation Laboratories J. H. Allton and P. J. Burkett ........................................................................................................................... 5 Seeking Evidence of Past Life on Mars: The Potential Evidence that May Be Contained in Returned Samples A. C. Allwood .................................................................................................................................................. 7 Detection of Long Chain Bio-Polymers Using Atomic Force Microscopy M. S. Anderson ................................................................................................................................................ 9 Planning for the Analytic Environment to Conduct Life Detection Experiments on Samples Returned from Mars: Observations and Issues D. S. Bass, D. W. Beaty, C. C. Allen, A. C. Allwood, L. E. Borg, K. E. Buxbaum, J. A. Hurowitz, and M. D. Schulte ................................................................................................................. 10 Status Report of a Joint Science Working Group for a Proposed 2018 Joint Mars Mission D. W. Beaty, G. Kminek, A. Allwood, R. Arvidson, L. Borg, J. Farmer, F. Goesmann, J. Grant, E. Hauber, S. Murchie, G. G. Ori, S. Ruff, F. Rull, M. Sephton, B. Sherwood Lollar, C. Smith, F. Westall, A. Pacros, M. Wilson, M. Meyer, J. Vago, D. Bass, L. Joudrier, B. Boyes, P. Francescetti, J. Hurowitz, S. Laubach, D. Loizeau, S. Feldman, and R. Trautner .................................................................................. 12 Tele-Analysis of Returned Mars Samples: An Opportunity for NASA? D. F. Blake and L. F. Allard .......................................................................................................................... 13 The Effect of Carbonate on the Determination of δ13C Biosignature in Low-Organic Low- Carbonate Soils from the Atacama: Relevance to the Search for Past Life on Mars R. Bonaccorsi, C.-P. McKay, and A.-P. Zent ................................................................................................ 15 Long-Term Persistence of Microorganisms in Geological Materials: Lazarus, Rip Van Winkle, and the Walking Dead P. J. Boston, M. N. Spilde, D. E. Northup, and C. McMillan ........................................................................ 17 EPR Study of Paleogene to Precambrian Cherts: Reassessing the Use of EPR for the Detection of Contaminations in Precambrian Cherts M. D. Bourbin, S. Derenne, D. Gourier, and Y. Le Du ................................................................................. 19 An Approach for Collection, Concentration, and Isolation of DNA from Terrestrial and Exo- Planetary Soils Using SCODAphoresis C. Bradburne, C. Neish, C. Robinson, S. Kinahan, J. Proescher, J. Maydan, A. Marziali, and J. DiRuggiero .................................................................................................. 20 vi LPI Contribution No. 1650 Sample Integrity for the Proposed Mars Sample Return Campaign C. J. Budney .................................................................................................................................................. 21 SERS Investigation of Nucleobases Deposited on Evaporite Minerals: A Test Case for Analogue Mars Regolith. S. C. Caporali, V. M-C. Moggi-Cecchi, M. P. Pagliai, G. P. Pratesi, and V. S. Schettino ........................... 22 Nucleic-Acid Sequencing for Life Detection and Characterization C. E. Carr, C. S. Lui, H. Rowedder, M. T. Zuber, and G. Ruvkun ................................................................ 24 Biosignatures in Vesicular Basalts B. Cavalazzi, F. Westall, S. L. Cady, R. Barbieri, F. Foucher, and N. J. Beukes .......................................... 26 Investigation of the Spatial Relationships of Bacteria Associated with Rock Varnish A. M. Corcoran, D. R. Noguera, and K. R. Kuhlman .................................................................................... 27 Sterilization of Spacecraft Components by Laser Ablation and Plasma Generation C. B. Dreyer, J. R. Spear, K. L. Lynch, and A. J. Bauer ................................................................................ 29 Recovery of Organics and Biomarkers from Mars Analogues and Meteorites: Extraction and Quantitative Analytical Challenges P. Ehrenfreund, R. Quinn, Z. Martins, S. Direito, B. Foing, M. Kotler, and W. Roeling .............................. 31 X-Ray Computed Microtomography and Fluorescence Microtomography: Non-Invasive Screening Tools for Returned Rock and Core Samples from Mars and Other Solar System Bodies G. J. Flynn ..................................................................................................................................................... 32 Abiotic Corrosion Microtextures in Volcanic Glass: Reevaluation of a Putative Biosignature for Earth and Mars J. E. French and D. F. Blake ......................................................................................................................... 34 Diagenetic Origin of Moretane Anomalies in the Late Permian and Early Triassic K. L. French, N. J. Tosca, C. Cao, and R. E. Summons ................................................................................ 36 “Life in CI Chondrites”: Not Life, Not Extraterrestrial, Not Even Interesting M. Fries ......................................................................................................................................................... 37 The Microbial Contamination State of As-Found Antarctic Meteorites M. Fries, R. Harvey, A. J. T. Jull, N. Wainwright, and ANSMET 07-08 Team ............................................. 39 Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars D. P. Glavin, A. S. Burton, M. P. Callahan, J. E. Elsila, J. C. Stern, and J. P. Dworkin .............................. 41 Biocontainment Challenges for Handling and Life Detection of Extraterrestrial Samples M. A. Grimaldo, R. L. Beets, and J. S. Sandlin .............................................................................................. 43 µ-XANES at the S-K Edge and Hard/Soft XRF Analyses
Recommended publications
  • Alejandra C. Ortiz 425D Mann Hall  2501 Stinson Dr
    Alejandra C. Ortiz 425D Mann Hall 2501 Stinson Dr. Raleigh, NC 27695 Phone: (919) 515-8392 E-Mail: [email protected] Appointments Assistant Professor, Department of Civil, Construction, and Environmental Engineering, North Carolina State University. 2017-Present National Center for Earth Surface Dynamics 2 Synthesis Postdoctoral Fellow, Department of Geological Sciences at Indiana University. 2015 – 2016. Adviser: Dr. Doug Edmonds Education Ph.D. MIT-WHOI Joint Program in Oceanography and Applied Ocean Science & Engineering. 2010 – 2015. Marine Geology & Geophysics Department. Investigating the Evolution and Formation of Coastlines and the Response to Sea-Level Rise. Dr. Andrew D. Ashton. M.S. MIT. 2010 - 2012. Civil and Environmental Engineering Department. Investigation of the Effect of a Circular Patch of Vegetation on Turbulence Generation and Sediment Deposition Using Four Case Studies. Dr. Heidi M. Nepf. B.A. Wellesley College. 2006 – 2010. Geosciences & Classical Civilizations. Honors in Geosciences & cum laude. Sigma Psi. Senior Thesis in Geosciences: Investigating the Effect of Wave Energy on Coastal Morphology and Beach Sedimentology Using Real and Modeled Wave Data. Dr. Britt Argow. Research Interests • Coastal Geomorphology • Numerical Modeling • Coastal Response to Climate Change • Fluvial Ecogeomorphology • Coastal Sedimentology Academic Experience Teaching • Teaching Assistant. MIT – 12.717. Coastal Geomorphology. Planned class field trip, 2015 planed and graded homework assignments. Graduate Students. • Teaching Assistant. MIT – 1.69. Transport Processes in the Environment. Planned and 2013 prepped 1 lab and 2 lectures. Undergraduates. • Teaching Assistant. MIT – 12.747. Modeling, Data Analysis, and Numerical Techniques 2012 for Geochemistry. MatLab Programming. Graduate Students. • Teaching Assistant. Wellesley College – CS 112. Computation for the Sciences. MatLab 2009-2010 Programming.
    [Show full text]
  • 国内外における今後の火星探査の動向調査 Research on Trend About
    Eco-Engineering, 22(4), 185-191, 2010 内外の研究動向 国内外における今後の火星探査の動向調査 Research on Trend about Domestic and International Mars Exploration in the future 新井真由美* Mayumi Arai* 日本科学未来館 〒135-0064 東京都江東区青海2-3-6 National Museum of Emerging Science and Innovation 2-3-6, Aomi, Koto-ku, Tokyo 135-0064, Japan 月ごとにフォボスに接近し、高解像度ステレオカメラ 1 .国外における今後の火星探査 (HRSC)で、1 ピクセル 4.4 m という、これまでにない 2011 年以降打ち上げを予定している火星探査計画は、 ほどの高解像度でフォボス表面を撮影している。フォボ アメリカ航空宇宙局(NASA)が主体となる計画のほか、 スは、地球に対する月のように常に火星に同じ面を向け 欧州宇宙機関(ESA)、ロシア、中国の計画がある。こ て公転しているが、フライバイを行うことによってフォ れらの主な目的と特徴を述べる。 ボスの異なる面の観測が可能となる。これらのデータ 1.1 Phobos-Grunt は、Phobos-Grunt の着陸地点選出に用いられる予定であ Phobos-Grunt は、火星の衛星フォボスの表面サンプル る。現在、フォボスへのオペレーションと着陸が安全な を地球に持ち帰るロシアの計画である。Phobos-Grunt と 場所として、5 °S-5 °N, 230-235 °E が選ばれている(Zak, は、“フォボスの土壌”という意味である。2009 年に打 2010; Mars Express’s web site, 2010)。 ち上げが予定されていたが、2011 年に延期された。現 1.2 蛍火 1 号(Yinghuo-1) 時点での打ち上げウィンドウは、2011 年 12 月 25 日。 蛍火 1 号(インホワ・ワン)は、中国の航空宇宙産 2012 年 8 月から 9 月に火星軌道に入り、2013 年から 業が開発した中国初の小型の火星周回衛星で、Phobos- 火星軌道を周り、2013 年にフォボスに着地。そして、 Grunt に相乗りして 2011 年の打ち上げを予定している。 2014 年に地球に帰還予定である。フォボスは、直径が約 Yinghuo という名前は「蛍」を意味する。蛍火 1 号の 27 × 22 × 19 km の不整形な形をした炭素質の C 型小惑 大きさは、長さ 75 cm、幅 75 cm、高さ 60 cm で、質量 星で、密度が平均 1.85 g/cm3 と小さく、氷と岩石の混合 110 kg、太陽電池パネルを広げると 7.85 m。2012 年に 物から構成されていると考えられている。フォボスは、 Phobos-Grunt から分離され、火星の赤道軌道に投入され、 火星の重力に捕獲された小惑星であるという説のほか、 約 2 年間、火星上空のプラズマ環境と磁場の詳細な観測 火星に隕石が衝突した際に飛び散った岩石が集まって誕 などを行う予定である(Zak, 2010)。蛍火 1 号は、中国 生したという説、太陽系の惑星形成時の残余物が集まっ 初の惑星探査機で、有人探査の「神舟」シリーズ、月探 たという説が考えられているが、実際どのようなメカニ 査の「嫦娥」シリーズに継ぐ、第 3 の宇宙探査に位置づ ズムで火星の赤道面に捕獲され、進化してきたか未だ議 けられる。
    [Show full text]
  • MELOS Rover (Smaller Than MER) Engineering Primary Objectives Rough-Terrain Traversability • Design & Development of the Mobility System: I.E
    MEPAG meeting 2015 Current plan of the MELOS, a proposed Japanese Mars mission Hirdy Miyamoto (University of Tokyo) on behalf of MELOS working group NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. Background of the Japanese Mars program JAXA’s missions to solar system bodies NOZOMI Mars Mission (1998) (did not arrive at Mars) Hayabusa asteroid mission (2003) Kaguya lunar mission (2007) Akatsuki Venus mission (2011) Venus orbit insertion delayed until 2015 Hayabusa 2 asteroid mission (2014) Successfully launched • MELOS working group@JAXA from 2008 MELOS used to stand for “Mars Explorations with Landers and Orbiters” Lander(s) and orbiters (meteorology and atmospheric escape) • MELOS is now down-scaled to be an EDL (+Rover) mission for an engineering demonstration • MELOS (Mars Exploration of Life-Organism Search) is one of 4 proposals for Announcement of Opportunity for medium- class missions, Feb. 2015, JAXA Proposed mission outline of MELOS Launch Aug. 2020 (Sep. 2022) Mars Arrival Feb. 2021 (Apr. 2023) Primary objective: Science objectives Engineering demonstration Current status/activity on Mars (Pin-point landing, long-range - Meteorology roving) - Geology - Biology Proposed landing scenario of MELOS Cruise module separation & entry Entry-Descent-Landing (EDL) module Guided flight 909kg (wet), 803kg (dry) Parachute deployment Interplanetary Cruise Module Atmospheric Entry Module Aeroshell Module Skycrane Powered Landing Module descent Rover Landing accuracy 20 x 14 km Rover touchdown MELOS Rover (smaller than MER) Engineering primary objectives Rough-terrain traversability • Design & development of the mobility system: i.e.
    [Show full text]
  • CURRICULUM VITAE George M. Weinstock, Ph.D
    CURRICULUM VITAE George M. Weinstock, Ph.D. DATE September 26, 2014 BIRTHDATE February 6, 1949 CITIZENSHIP USA ADDRESS The Jackson Laboratory for Genomic Medicine 10 Discovery Drive Farmington, CT 06032 [email protected] phone: 860-837-2420 PRESENT POSITION Associate Director for Microbial Genomics Professor Jackson Laboratory for Genomic Medicine UNDERGRADUATE 1966-1967 Washington University EDUCATION 1967-1970 University of Michigan 1970 B.S. (with distinction) Biophysics, Univ. Mich. GRADUATE 1970-1977 PHS Predoctoral Trainee, Dept. Biology, EDUCATION Mass. Institute of Technology, Cambridge, MA 1977 Ph.D., Advisor: David Botstein Thesis title: Genetic and physical studies of bacteriophage P22 genomes containing translocatable drug resistance elements. POSTDOCTORAL 1977-1980 Postdoctoral Fellow, Department of Biochemistry TRAINING Stanford University Medical School, Stanford, CA. Advisor: Dr. I. Robert Lehman. ACADEMIC POSITIONS/EMPLOYMENT/EXPERIENCE 1980-1981 Staff Scientist, Molec. Gen. Section, NCI-Frederick Cancer Research Facility, Frederick, MD 1981-1983 Staff Scientist, Laboratory of Genetics and Recombinant DNA, NCI-Frederick Cancer Research Facility, Frederick, MD 1981-1984 Adjunct Associate Professor, Department of Biological Sciences, University of Maryland, Baltimore County, Catonsville, MD 1983-1984 Senior Scientist and Head, DNA Metabolism Section, Lab. Genetics and Recombinant DNA, NCI-Frederick Cancer Research Facility, Frederick, MD 1984-1990 Associate Professor with tenure (1985) Department of Biochemistry
    [Show full text]
  • Preliminary Mission Analysis and Orbit Design for Next Mars Exploration
    Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_7-Tk_12, 2010 Topics Preliminary Mission Analysis and Orbit Design for Next Mars Exploration By Naoko OGAWA 1), Mutsuko Y. MORIMOTO1), Yuichi TSUDA1,2), Tetsuya YAMADA1,2), Kazuhisa FUJITA1,3), Tomohiro YAMAGUCHI4), Yasuhiro KAWAKATSU1,2), Takashi KUBOTA1,2) and Jun’ichiro KAWAGUCHI1,2) 1)JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara, Japan 2)Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan 3)Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tokyo, Japan 4)The Graduate University for Advanced Studies, Sagamihara, Japan (Received July 21st, 2009) Japan has launched many interplanetary spacecraft for exploration of solar system bodies including Mars. Now we are planning the next Mars mission in the late 2010’s. This paper describes the preliminary mission analysis and orbit design for this plan. The combined exploration by several spacecraft requires complicated and careful consideration, different from those for single-probe missions. Mission plans to realize required configuration by a single launch and simple simulation results are reported. Key Words: Mars, Mission Analysis, Orbit Design, MELOS 1. Introduction 2.1.1. Meteorological orbiter for martian climate One orbiter of the two, called hereafter as the meteorological In 2008, Japan Aerospace Exploration Agency (JAXA) orbiter, aims understanding of the interaction between the has established a novel working group toward a novel Mars atmosphere and subsurface ice, and atmospheric dynamics. exploration program named MELOS, an acronym for “Mars Global, high-resolution and continuous mapping of water vapor, Exploration with Lander-Orbiter Synergy”1). As its name clouds, dusts and atmospheric temperature will be performed indicates, this is an ambitious mission composed of several with imaging cameras from the apoapsis of its highly elliptic landers and orbiters, schematically illustrated in Fig.
    [Show full text]
  • Here She Received a NASA Earth Systems Science Fellowship (1996- 1999) and Completed Her Ph.D
    TRAIT-BASED APPROACHES TO OCEAN LIFE traitspace.com Keynotes Brian Enquist Lionel Guidi Image: Erik Selander Alexandra Worden Neil Banas CHICHELEY HALL, BUCKINGHAMSHIRE, UK 18th to 21st August, 2019 FOURTH WORKSHOP ON TRAIT-BASED APPROACHES TO OCEAN LIFE Table of Contents Schedule ...................................................................................................................................... 2 Keynote Speakers ........................................................................................................................ 5 Abstracts ..................................................................................................................................... 7 1 Schedule Sunday 13:00-14:00 Lunch 18th August 14:00-14:10 Welcome & Introduction Session 1: Traits, environments, ecology and evolution 14:10-15:10 Keynote: Brian Enquist The past, present, and future of trait- based ecology: Toward a more predictive framework 15:10-15:30 Davi Castro Tavares Traits shared by marine megafauna and their relationships with ecosystem functions and services 15:30-15:50 Stephanie Dutkiewicz Biogeochemical and ecological redundancy in phytoplankton communities 15:50-16:10 Tea/Coffee 16:10-16:30 Stephanie Green A traits-based framework to account for the influence of predator-prey interactions on species distribution under global change 16:30-16:50 David Talmy Trade-offs modify ecosystem biomass structure along trophic gradients 16:50-17:10 Aleksandra Does initial diversity influence Lewandowska phytoplankton response
    [Show full text]
  • Cv15866 JGI PR CR:JGI Progress Report
    15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 1 U.S. DEPARTMENT OF ENERGY 2008 Progress Joint Genome Institute Report DOE JGI—powering a sustainable future with the science we need for biofuels, environmental cleanup, and carbon capture. 15866_JGI_PR_CR:Cover 3/23/09 11:07 AM Page 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Gov- ernment. While this document is believed to contain correct information, neither the United States Govern- ment nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect uencing targets of the DOE Joint Genome those of the United States Government or any agency thereof or The Regents of the University of California. The cover depicts various DOE mission-relevant genome seq Institute. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Labora- tory under contract No.
    [Show full text]
  • Genetic Tool Development in Marine Protists: Emerging Model Organisms for Experimental Cell Biology
    UC Santa Cruz UC Santa Cruz Previously Published Works Title Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Permalink https://escholarship.org/uc/item/9x78x702 Journal Nature methods, 17(5) ISSN 1548-7091 Authors Faktorová, Drahomíra Nisbet, R Ellen R Fernández Robledo, José A et al. Publication Date 2020-05-01 DOI 10.1038/s41592-020-0796-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESOURCE https://doi.org/10.1038/s41592-020-0796-x Genetic tool development in marine protists: emerging model organisms for experimental cell biology Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of pro- tists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways. he ocean represents the largest continuous planetary ecosys- Results tem, hosting an enormous variety of organisms, which include Overview of taxa in the EMS initiative. Taxa were selected from Tmicroscopic biota such as unicellular eukaryotes (protists).
    [Show full text]
  • Matthew B. Sullivan University of Arizona, Department of Ecology & Evolutionary Biology 1007 E
    Matthew B. Sullivan University of Arizona, Department of Ecology & Evolutionary Biology 1007 E. Lowell St., LSS 246, Tucson, AZ 85721, ph: 520-626-6297 (lab), 520-626-9100 (office) http://www.eebweb.arizona.edu/faculty/mbsulli e-mail: [email protected] Education and Training 1997 B.S. Marine Science Long Island University, Southampton College, NY 1998 M.Phil. Biology Queens University of Belfast, Northern Ireland, U.K. Thesis: “Fouling and anti-fouling in crustose coralline algae (Rhodophyta, Corallinales)” Advisor: Matthew J. Dring 2004 Ph.D. Biology MIT/WHOI: Joint Program in Biological Oceanography Thesis: “Ecology, diversity and comparative genomics of ocean cyanobacterial viruses” Advisors: Sallie W. Chisholm and John B. Waterbury 2004-7 Post-Doctoral Associate MIT, Department of Civil and Environmental Engineering Academic / Professional Appointments 2014-present Associate Professor, University of Arizona, Department of Ecology & Evolutionary Biology 2009-present Joint appointment, University of Arizona, Department of Molecular & Cellular Biology 2009-present Biosphere 2 Research Professor, University of Arizona 2008-2014 Assistant Professor, University of Arizona, Department of Ecology & Evolutionary Biology 2004-2007 Post-doctoral fellow, Dr. Sallie Chisholm, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 1998-2003 Pre-doctoral trainee, Drs. Sallie Chisholm and John Waterbury, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 1997-1998 Pre-doctoral trainee, Dr. Matthew J. Dring, Portaferry Marine Laboratory, Queens University of Belfast, Northern Ireland, U.K. 1996 Summer Undergraduate Research Fellow, Dr. Brian Palenik, Scripps Institution of Oceanography, U. California San Diego, San Diego, CA 1994 NSF Research Experience for Undergraduates Fellow, Dr. Todd Kana, Horn Point Environmental Laboratories, U.
    [Show full text]
  • PRIMER Fall 2008 Volume 5 Issue 2
    the PRIMER Fall 2008 Volume 5 Issue 2 also in this issue Guts ’R Us?: CSP 2009 JGI News . 2 Genome of Simplest Animal Reveals Ancient User Community Faces: Lineage . 10 Selections Announced Alexandra Worden . 3 Using Metagenomics Super Bacteria for on Lake Washington Q: What do boat-boring the information that we gener- Super Alfalfa . 4 Microbes. 12 bivalves and stinkbirds have ate from these selections CSP2009 Project at in common? JGI Announcements . 16 promise to take us faster and Contaminated A: Their guts are just two of 44 further down the path toward Hanford Site . 6 new CSP 2009 targets. clean, renewable transporta- In the continuing effort to tion fuels while affording us a tap the vast, unexplored reaches more comprehensive under- Director Rubin of the Earth’s microbial and standing of the global carbon plant domains for bioenergy cycle,” says Eddy Rubin, DOE Reviews and environmental applications, JGI Director. “The range of the DOE JGI has announced its projects spans important ter- Genomics of latest portfolio of DNA sequenc- restrial contributors to bio- ing projects for the coming year. mass production in the Loblolly Biofuels in The 44 projects, culled from pine—the cornerstone of the Nature nearly 150 proposals received U.S. forest products industry— through the Community to phytoplankton, barely visible Genomics is accelerating Sequencing Program (CSP), will to the naked eye, but no less improvements for converting collectively generate more than important to the massive gen- plant biomass into biofuel, thus 60 billion nucleotides of data. eration of fixed carbon in our bringing closer to reality wide- “The scientific and techno- marine ecosystems.” spread use of an alternative to logical advances enabled by With new cont.
    [Show full text]
  • Harriet Alexander –
    B [email protected] Í halexand.github.io nekton4plankton Harriet Alexander halexand Education 2010–2016 PhD, Biological Oceanography, Massachusetts Institute of Technology – Woods Hole Oceanographic Joint Program, Cambridge / Woods Hole, MA. Thesis title: Defining the ecological and physiological traits of phytoplankton across marine ecosystems Advisor: Dr. Sonya Dyhrman 2006–2010 BA, Biological Sciences, Wellesley College, Wellesley, MA, cum laude. Departmental Honors in Biological Sciences, Minor in Mathematics Thesis Title: Phylogenetic analysis of the diversity of photosynthetic picoeukaryotic phytoplankton in the Monterey Bay using rDNA clone libraries Professional Experience 2016–present Postdoctoral Research Scientist, Lamont-Doherty Earth Observatory, Columbia Univer- sity, Palisades, NY. Advisor: Dr. Sonya Dyhrman 2010–2016 Graduate Student Researcher, Woods Hole Oceanographic Institution, Woods Hole, MA. Advisor: Dr. Sonya Dyhrman 2008–2010 Undergraduate Research Intern, Monterey Bay Aquarium Research Institute, Moss Landing, CA. Advisor: Dr. Alexandra Worden Selected Awards and Fellowships 2016 EMBL Travel Award 2015 NSF ECOGEO Workshop Travel Award 2015 OCB Trait-based Ecology Conference Travel Award 2014–2015 Ocean Life Institute Fellowship 2014 OCB Scoping Workshop Travel Award 2011–2014 National Defense Science and Engineering Fellowship 2011 National Science Foundation Graduate Research Fellowship declined 2010–2011 MIT Presidential Fellowship 2010 Lucy Allen Branch Prize in Natural History 2010 Jane Harris Schneider Prize in Sculpture 1/5 Last updated March 17, 2016 Publications Peer-reviewed Alexander H, Rouco M, Haley ST, Wilson ST, Karl DM, Dyhrman ST. (2015). Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proceedings of the National Academy of Sciences 112:E5972–E5979. doi:10.1073/pnas.1518165112. Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST.
    [Show full text]
  • Meteorological Station
    MELOS: Japan’s Mars Exploration Plan ~ Updates on MELOS1 ~ T. Satoh (JAXA) and MELOS Working Group NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. MELOS Mars Exploration MEPAG in Washington, D.C. (27-28 February 2012) Science Target of MELOS Understanding the Martian System Interior + surface + atmosphere + surrounding space − To understand the evolution and to answer the fundamental question “Why (and how) is Mars different from the Earth?”, missions designed to study inter-relations between these are needed. − Both “orbiting” science and “landing” science are important. Atmospheric escape Degassing from Keyword: to the interplanetary the interior of the space planet Why is Mars “red”? Capture of the atmosphere to Orbiter (A): Meteorology the interior of the Orbiter (B): Aeronomy planet for MELOS-1 Lander (A): Surface Lander (B): Biology Transportation of Lander (C): Interior atmosphere and dust by meteorological Lander (D): Sample Return activities for MELOS-1 EDL and for MELOS-2 MELOS Mars Exploration MEPAG in Washington, D.C. (27-28 February 2012) Dust Meteorology of Mars Roles of the Martian dust: Dust as the source of heating the atmosphere Dust as an agent of chemistry Dust as the surface albedo changer These are “what water does” on the earth! The dust significantly alters the atmospheric What we need to know about the dust: temperature by absorbing How dust enters the atmosphere? the sunlight How dust is transported? How dust is removed from the atmosphere? The life of dust storm in various sizes Why is the global dust storm intermittent? The physical/optical properties of dust MELOS Mars Exploration MEPAG in Washington, D.C.
    [Show full text]