XIII Publications, Presentations

Total Page:16

File Type:pdf, Size:1020Kb

XIII Publications, Presentations XIII Publications, Presentations 1. Refereed Publications Bakunina, I. A., Abramov-maximov, V. E., Nakariakov, V. M., Lesovoy, S. V., Soloviev, A. A., Tikhomirov, Y. V., Melnikov, V. F., Shibasaki, K., Abramov-Maximov, V. E., Efremov, V. I., Parfinenko, L. D., Solov'ev, Nagovitsyn, Y. A., Averina, E. L.: 2013, Long-Period Oscillations of A. A., Shibasaki, K.: 2013, Long-period oscillations of sunspots Sunspots by NoRH and SSRT Observations, PASJ, 65, S13. according to simultaneous ground-based and space observations, Batista, V., Beaulieu, J.-P., Gould, A., Bennet, D. P., Yee, J. C., Fukui, A., Geomag. Aeron., 53, 909-912. Gaudi, B. S., Sumi, T., Udalski, A.: 2014, MOA-2011-BLG-293Lb: First Abramov-maximov, V. E., Efremov, V. I., Parfinenko, L. D., Solov'ev, A. Microlensing Planet Possibly in the Habitable Zone, ApJ, 780, 54. A., Shibasaki, K.: 2013, Long-Term Oscillations of Sunspots from Baty, H., Pétri, J., Zenitani, S.: 2013, Explosive reconnection of double Simultaneous Observations with the Nobeyama Radioheliograph and tearing modes in relativistic plasmas: application to the Crab flare, Solar Dynamics Observatory, PASJ, 65, S12. MNRAS, 436, L20-L24. Abu-Zayyad, T., et al. including Oshima, A.: 2013, Correlations Bendek, E. A., Guyon, O., Ammons, S. M., Belikov, R.: 2013, Laboratory of the Arrival Directions of Ultra-High Energy Cosmic Rays Demonstration of Astrometric Compensation Using a Diffractive with Extragalactic Objects as Observed by the Telescope Array Pupil, PASP, 125, 1212-1225. Experiment, ApJ, 777, 88. Bersten, M. C., Tanaka, M., Tominaga, N., Benvenuto, O. G., Nomoto, Abu-Zayyad, T., et al. including Oshima, A.: 2013, Upper limit on the K.: 2013, Early UV/Optical Emission of The Type Ib SN 2008D, ApJ, flux of photons with energies above 1019 eV using the Telescope 767, 143. Array surface detector, Phys. Rev. D, 88, 112005. Bonnefoy, M., et al. including Tamura, M., Kandori, R., Kuzuhara, Adams, J. H., et al. including Kajino, T., Kim, J.-S., Mizumoto M., Kwon, J., Kudo, T., Hashimoto, J., Kusakabe, N., Guyon, O., Y., Watanabe, J.: 2013, An evaluation of the exposure in nadir Hayano, Y., Hayashi, M., Hayashi, S., Ishii, M., Iye, M., Morino, observation of the JEM-EUSO mission, Astropart. Phys., 44, 76-90. J.-I., Nishimura, T., Pyo, T., Suenaga, T., Suto, H., Suzuki, R., Akiyama, E., Momose, M., Kitamura, Y., Tsukagoshi, T., Shimada, S., Takahashi, Y., Takato, N., Terada, H., Tomono, D., Takami, Koyamatsu, S., Hayashi, M.: 2013, An Observational Study of the H., Usuda, T.: 2014, Characterization of the gaseous companion κ Temperature and Surface Density Structures of a Typical Full Disk Andromedae b. New Keck and LBTI high-contrast observations, around MWC 480, PASJ, 65, 123. A&A, 562, A111. Akiyama, K., Takahashi, R., Honma, M., Oyama, T., Kobayashi, H.: Börzsönyi, A., Chiche, R., Cormier, E., Flaminio, R., Jojart, P., Michel, 2013, Multi-Epoch VERA Observations of Sagittarius A*. I. Images C., Osvay, K., Pinard, L., Soskov, V., Variola, A., Zomer, F.: 2013, and Structural Variability, PASJ, 65, 91. External cavity enhancement of picosecond pulses with 28,000 cavity Aoki, W.: 2014, The Subaru Telescope High Dispersion Spectrograph finesse, Appl. Opt., 52, 8376-8380. (HDS), Astron. Nachr., 335, 27-31. Brandt, T. D., et al. including Kudo, T., Kusakabe, N., Hashimoto, Araki, H., Noda, H., Tazawa, S., Ishihara, Y., Goossens, S., Sasaki, S.: J., Currie, T., Golota, T., Guyon, O., Hayano, Y., Hayashi, M., 2013, Lunar laser topography by LALT on board the KAGUYA lunar Hayashi, S., Ishii, M., Iye, M., Kandori, R., Kwon, J., Morino, explorer – Operational history, new topographic data, peak height J.-I., Nishimura, T., Pyo, T.-S., Suenaga, T., Suto, H., Suzuki, analysis of laser echo pulses, Adv. Space Res., 52, 262–271. R., Takahashi, Y., Takato, N., Terada, H., Tomono, D., Takami, Argudo-Fernández, M., Verley, S., Bergond, G., Sulentic, J., Sabater, J., H., Usuda, T., Tamura, M.: 2014, The Moving Group Targets of Fernández Lorenzo, M., Leon, S., Espada, D., Verdes-Montenegro, the SEEDS High-contrast Imaging Survey of Exoplanets and Disks: L., Santander-Vela, J. D., Ruiz, J. E., Sánchez-Expósito, S.: 2013, The Results and Observations from the First Three Years, ApJ, 786, 1. AMIGA sample of isolated galaxies. XII. Revision of the isolation Burningham, B., et al. including Ishii, M., Tamura, M.: 2013, 76 T degree for AMIGA galaxies using the SDSS, A&A, 560, A9. dwarfs from the UKIDSS LAS: benchmarks, kinematics and an Ariyoshi, Y., Hanada, T., Kawamoto, S.: 2013, Are Small Satellites updated space density, MNRAS, 433, 457-497. Hazardous in Comparison to Large Spacecraft?, T. Jpn. Soc. Cheoun, M. K., Choi, K., Kim, K. S., Saito, K., Kajino, T., Tsushima K., Aeronaut. S., 11, 1-5. Maruyama, T.: 2013, Asymmetry in the neutrino and anti-neutrino Arunbabu, K. P., Antia, H. M., Dugad, S. R., Gupta, S. K., Hayashi, reactions in a nuclear medium on a proton in nuclear medium and in Y., Kawakami, S., Mohanty, P. K., Nonaka, T., Oshima, A., nucleus, Phys. Lett. B, 723, 464-469. Subramanian, P.: 2013, High rigidity Forbush decreases: due to Cheoun, M. K., Choi, K., Kim, L. S., Saito, K., Kajino, T., Tsushima, K., CMEs or shocks?, A&A, 555, A139. Maruyama, T.: 2013, Effects of density-dependent weak form factors Asada, K., Nakamura, M., Doi, A., Nagai, H., Inoue, M.: 2014, on the neutrino reaction for the nucleon in nuclear medium and 12C, Discovery of Sub- to Superluminal Motions in the M87 Jet: An Phys. Rev. C, 87, 065502. Implication of Acceleration from Sub-relativistic to Relativistic Cheoun, M.-K., Deliduman, C., Gungor, C., Keles, V., Ryu, C-Y., Kajino, Speeds, ApJ, 781, L2. T., Mathews, G. J.: 2013, Neutron stars in a perturbative f(R) gravity Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, model with strong magnetic fields, J. Cosmo. Astropart. Phys., 10, 021. T., Tatsumi, D., Yamamoto, H.: 2013, Interferometer Design of the Cho, K.-S., Bong, S.-C., Chae, J., Kim, Y.-H., Park, Y.-D., Katsukawa, KAGRA Gravitational Wave Detector, Phys. Rev. D, 88, 043007. Y.: 2013, FISS Observations of Vertical Motion of Plasma in Tiny XIII Publications, Presentations 143 Pores, Sol. Phys., 288, 23-37. Follette, K. B., et al. including Tamura, M., Hashimoto, J., Kwon, Choi, J.-Y., et al. including Fukui, A.: 2013, Microlensing Discovery of J., Kandori, R., Currie, T., Guyon, O., Hayano, Y., Hayashi, M., a Population of Very Tight, Very Low Mass Binary Brown Dwarfs, Hayashi, S., Ishii, M., Iye, M., Kudo, T., Kusakabe, N., Kuzuhara, ApJ, 768, 129. M., Morino, J.-I., Nishimura, T., Pyo, T.-S., Suto, H., Suzuki, R., Choi, S., Kashiwagi, K., Kojima, S., Kasuya, Y., Kurokawa, T.: 2013, Two- Takato, N., Terada, H., Tomono, D., Takami, H., Usuda, T.: 2013, Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Mapping H-band Scattered Light Emission in the Mysterious SR21 Full-Field Profilometry, Appl. Phys. Express, 6, 106601. Transitional Disk, ApJ, 767, 10. Chou, M.-Y., Takami, M., Manset, N., Beck, T., Pyo, T.-S., Chen, W.-P., Fujii, M., Portegies Zwart, S.: 2014, The moment of core collapse in star Panwar, N., Karr, J. L., Shang, H., Liu, H. B.: 2013, Time Variability clusters with a mass function, MNRAS, 439, 1003-1014. of Emission Lines for Four Active T Tauri Stars. I. October-December Fujita, Y., Nakanishi, H., Muller, E., Kobayashi, N., Saito, M., Yasui, C., in 2010, AJ, 145, 108. Kikuchi, H., Yoshinaga, K.: 2014, The environment around the young Collins, M. L. M., et al. including Arimoto, N.: 2014, The Masses of massive star cluster RSGC 1 and HESS J1837-069, PASJ, 66, 19. Local Group Dwarf Spheroidal Galaxies: The Death of the Universal Fukagawa, M., Tsukagoshi, T., Momose, M., Saigo, K., Ohashi, N., Mass Profile, ApJ, 783, 7. Kitamura, Y., Inutsuka, S., Muto, T., Nomura, H., Takeuchi, T., Collins, M. L. M., et al. including Arimoto, N.: 2013, A Kinematic Kobayashi, H., Hanawa, T., Akiyama, E., Honda, M., Fujiwara, H., Study of the Andromeda Dwarf Spheroidal System, ApJ, 768, 172. Kataoka, A., Takahashi, S. Z., Shibai, H.: 2013, Local Enhancement Crnojević, D., Ferguson, A. M. N., Irwin, M. J., Bernard, E. J., Arimoto, of the Surface Density in the Protoplanetary Ring Surrounding HD N., Jablonka, P., Kobayashi, C.: 2013, The outer halo of the nearest 142527, PASJ, 65, L14. giant elliptical: a VLT/VIMOS survey of the resolved stellar Fukui, A., Narita, N., Kurosaki, K., Ikoma, M., Yanagisawa, K., populations in Centaurus A to 85 kpc, MNRAS, 432, 832-847. Kuroda, D., Shimizu, Y., Takahashi, H., Ohnuki, H., Onitsuka, Davis, T., Heiderman, A., Evans, N., Iono, D.: 2013, The molecular ISM M., Hirano, T., Suenaga, T., Kawauchi, K., Nagayama, S., Ohta, in luminous infrared galaxies: a λ = 3 mm line survey of Arp 157, K., Yoshida, M., Kawai, N., Izumiura, H.: 2013, Optical-to-near- MNRAS, 436, 570-583. infrared Simultaneous Observations for the Hot Uranus GJ3470b: A de Gregorio-Monsalvo, I., et al. including Takahashi, S., Akiyama, E., Hint of a Cloud-free Atmosphere, ApJ, 770, 95. Higuchi, A. E., Saito, M.: 2013, Unveiling the gas-and-dust disk Fukui, Y., Ohama, A., Hanaoka, N., Furukawa, N., Torii, K., Dawson, structure in HD 163296 using ALMA observations, A&A, 557, A133. J. R., Mizuno, N., Hasegawa, K., Fukuda, T., Soga, S., Moribe, N., Dent, W. R. F., et al. including Nomura, H.: 213, GASPS - A Herschel Kuroda, Y., Hayakawa, T., Kawamura, A., Kuwahara, T., Yamamoto, Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial H., Okuda, T., Onishi, T., Maezawa, H., Mizuno, A.: 2014, Molecular Statistics, PASP, 125, 477-505. Clouds toward the Super Star Cluster NGC 3603 Possible Evidence do Nascimento, J.-D., Jr., Takeda, Y., Meléndez, J., da Costa, J.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Binocular Universe: Northern Exposure
    Binocular Universe: Northern Exposure March 2013 Phil Harrington he northern circumpolar sky holds many binocular targets that we can enjoy throughout the year. This month, let's take aim at the constellation Ursa TMinor, the Little Bear. You may know it better as the Little Dipper, an asterism made up of the seven brightest stars in the Little Bear. Above: Winter star map from Star Watch by Phil Harrington. Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm Call it what you will, this star group is most famous as the home of the North Star, Polaris [Alpha (α) Ursae Minoris]. Earth's rotational axis is aimed just three- quarters of a degree away from Polaris, causing it to trace out a very tiny circle around that invisible point every 24 hours. The North Celestial Pole is slowly moving closer to Polaris. It will continue to close to within 14 minutes of arc around the year 2105, when it will slowly start to pull away. While Polaris is currently the pole star, the 26,000-year wobble of Earth's axis, called precession, causes the Celestial Pole's aim to trace a 47° circle in the sky. For instance, during the building of the pyramids nearly 4,600 years ago, the North Pole was aimed toward the star Thuban in Draco. Fast forward 5,200 years from now and the pole will be point near Alderamin in Cepheus. Most of us at one time or another have heard someone misspeak by referring to Polaris as the brightest star in the night sky.
    [Show full text]
  • The Planisphere of the Heavens
    The Planisphere of the Heavens by Steven E. Behrmann Book V Copyright© by Steven E. Behrmann All rights reserved 2010 First Draft (Sunnyside Edition) Dedication: This book is dedicated to my blessed little son, Jonathan William Edward, to whom I hope to teach the names of the stars. Table of Contents A Planisphere of the Heavens .......................................................... 12 The Signs of the Seasons ................................................................. 15 The Virgin (Virgo) ........................................................................... 24 Virgo ............................................................................................ 25 Coma ............................................................................................ 27 The Centaur .................................................................................. 29 Boötes ........................................................................................... 31 The Scales (Libra) ............................................................................ 34 Libra ............................................................................................. 35 The Cross (Crux) .......................................................................... 37 The Victim ................................................................................... 39 The Crown .................................................................................... 41 The Scorpion ...................................................................................
    [Show full text]
  • 国内外における今後の火星探査の動向調査 Research on Trend About
    Eco-Engineering, 22(4), 185-191, 2010 内外の研究動向 国内外における今後の火星探査の動向調査 Research on Trend about Domestic and International Mars Exploration in the future 新井真由美* Mayumi Arai* 日本科学未来館 〒135-0064 東京都江東区青海2-3-6 National Museum of Emerging Science and Innovation 2-3-6, Aomi, Koto-ku, Tokyo 135-0064, Japan 月ごとにフォボスに接近し、高解像度ステレオカメラ 1 .国外における今後の火星探査 (HRSC)で、1 ピクセル 4.4 m という、これまでにない 2011 年以降打ち上げを予定している火星探査計画は、 ほどの高解像度でフォボス表面を撮影している。フォボ アメリカ航空宇宙局(NASA)が主体となる計画のほか、 スは、地球に対する月のように常に火星に同じ面を向け 欧州宇宙機関(ESA)、ロシア、中国の計画がある。こ て公転しているが、フライバイを行うことによってフォ れらの主な目的と特徴を述べる。 ボスの異なる面の観測が可能となる。これらのデータ 1.1 Phobos-Grunt は、Phobos-Grunt の着陸地点選出に用いられる予定であ Phobos-Grunt は、火星の衛星フォボスの表面サンプル る。現在、フォボスへのオペレーションと着陸が安全な を地球に持ち帰るロシアの計画である。Phobos-Grunt と 場所として、5 °S-5 °N, 230-235 °E が選ばれている(Zak, は、“フォボスの土壌”という意味である。2009 年に打 2010; Mars Express’s web site, 2010)。 ち上げが予定されていたが、2011 年に延期された。現 1.2 蛍火 1 号(Yinghuo-1) 時点での打ち上げウィンドウは、2011 年 12 月 25 日。 蛍火 1 号(インホワ・ワン)は、中国の航空宇宙産 2012 年 8 月から 9 月に火星軌道に入り、2013 年から 業が開発した中国初の小型の火星周回衛星で、Phobos- 火星軌道を周り、2013 年にフォボスに着地。そして、 Grunt に相乗りして 2011 年の打ち上げを予定している。 2014 年に地球に帰還予定である。フォボスは、直径が約 Yinghuo という名前は「蛍」を意味する。蛍火 1 号の 27 × 22 × 19 km の不整形な形をした炭素質の C 型小惑 大きさは、長さ 75 cm、幅 75 cm、高さ 60 cm で、質量 星で、密度が平均 1.85 g/cm3 と小さく、氷と岩石の混合 110 kg、太陽電池パネルを広げると 7.85 m。2012 年に 物から構成されていると考えられている。フォボスは、 Phobos-Grunt から分離され、火星の赤道軌道に投入され、 火星の重力に捕獲された小惑星であるという説のほか、 約 2 年間、火星上空のプラズマ環境と磁場の詳細な観測 火星に隕石が衝突した際に飛び散った岩石が集まって誕 などを行う予定である(Zak, 2010)。蛍火 1 号は、中国 生したという説、太陽系の惑星形成時の残余物が集まっ 初の惑星探査機で、有人探査の「神舟」シリーズ、月探 たという説が考えられているが、実際どのようなメカニ 査の「嫦娥」シリーズに継ぐ、第 3 の宇宙探査に位置づ ズムで火星の赤道面に捕獲され、進化してきたか未だ議 けられる。
    [Show full text]
  • MELOS Rover (Smaller Than MER) Engineering Primary Objectives Rough-Terrain Traversability • Design & Development of the Mobility System: I.E
    MEPAG meeting 2015 Current plan of the MELOS, a proposed Japanese Mars mission Hirdy Miyamoto (University of Tokyo) on behalf of MELOS working group NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. Background of the Japanese Mars program JAXA’s missions to solar system bodies NOZOMI Mars Mission (1998) (did not arrive at Mars) Hayabusa asteroid mission (2003) Kaguya lunar mission (2007) Akatsuki Venus mission (2011) Venus orbit insertion delayed until 2015 Hayabusa 2 asteroid mission (2014) Successfully launched • MELOS working group@JAXA from 2008 MELOS used to stand for “Mars Explorations with Landers and Orbiters” Lander(s) and orbiters (meteorology and atmospheric escape) • MELOS is now down-scaled to be an EDL (+Rover) mission for an engineering demonstration • MELOS (Mars Exploration of Life-Organism Search) is one of 4 proposals for Announcement of Opportunity for medium- class missions, Feb. 2015, JAXA Proposed mission outline of MELOS Launch Aug. 2020 (Sep. 2022) Mars Arrival Feb. 2021 (Apr. 2023) Primary objective: Science objectives Engineering demonstration Current status/activity on Mars (Pin-point landing, long-range - Meteorology roving) - Geology - Biology Proposed landing scenario of MELOS Cruise module separation & entry Entry-Descent-Landing (EDL) module Guided flight 909kg (wet), 803kg (dry) Parachute deployment Interplanetary Cruise Module Atmospheric Entry Module Aeroshell Module Skycrane Powered Landing Module descent Rover Landing accuracy 20 x 14 km Rover touchdown MELOS Rover (smaller than MER) Engineering primary objectives Rough-terrain traversability • Design & development of the mobility system: i.e.
    [Show full text]
  • Enabling Science with Gaia Observations of Naked-Eye Stars
    Enabling science with Gaia observations of naked-eye stars J. Sahlmanna,b, J. Mart´ın-Fleitasb,c, A. Morab,c, A. Abreub,d, C. M. Crowleyb,e, E. Jolietb,f aEuropean Space Agency, STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA; bEuropean Space Agency, ESAC, P.O. Box 78, Villanueva de la Canada,˜ 28691 Madrid, Spain; cAurora Technology, Crown Business Centre, Heereweg 345, 2161 CA Lisse, The Netherlands; dElecnor Deimos Space, Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos, Madrid, Spain; eHE Space Operations BV, Huygensstraat 44, 2201 DK Noordwijk, The Netherlands; fCalifornia Institute of Technology, Pasadena, CA, 91125, USA ABSTRACT ESA’s Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G∼6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed. Keywords: Gaia, Astrometry, Proper motion, Parallax, Bright Stars, Extrasolar planets, CCD 1. INTRODUCTION There are about 6000 stars that can be observed with the unaided human eye. Greek astronomer Hipparchus used these stars to define the magnitude system still in use today, in which the faintest stars had an apparent visual magnitude of 6.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015
    THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015 ****************************************************************************************************************************** AUSTRALIAN CRATER HIDDEN STARS A team of geophysicists has found the twin scars of Scientists found a bright nebula around the Milky the impacts of a huge meteorite that broke in two Way”s nearby star 48 Librae in a patch of sky that moments before it slammed into the Earth millions of appears totally black in visible light but appears in infra- years ago in central Australia. It is the largest impact red. They said: "This cluster is probably a group of very zone ever found on Earth – 400 kilometers wide. young stars forming inside a previously undiscovered “YELLOW BALLS” molecular cloud, and the 48 Librae nebula apparently is Citizen scientists recently found a new class of due to a huge cloud of dust around the star.” curiosities that had gone unrecognized before: yellow HUBBLE IS 25! balls. Many "citizen scientist" projects make up the Hubble, the first telescope to revolutionize modern Zooniverse website which relies on “crowd-sourcing” to astronomy and change our view of the universe by help process scientific data. offering glimpses of distant galaxies, has marked its 25th The rounded features are not actually yellow but year in space. A senior scientist said: "Hubble absolutely appear that way in the infrared images the telescope has changed the way humans look at the universe and sends to Earth. See: http://www.spxdaily.com/images- our place in it." lg/yellow-balls-process-star-formation-lg.jpg A DISTANT PLANET and http://www.zooniverse.org The Spitzer Space Telescope teamed up with CANADA’S NEW TMT TELESCOPE Poland’s OGLE telescope in Chile to find a remote gas Canada and an international partnership are funding planet about 13,000 light-years away, making it one of the construction of the Thirty Meter Telescope - the top the most distant planets known.
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • The Mason Dixon Land Survey
    Historic American Land Surveys: The Mason Dixon Land Survey 4 Hours PDH Academy PO Box 449 Pewaukee, WI 53072 (888) 564-9098 www.pdhacademy.com HISTORIC AMERICAN LAND SURVEYS – THE MASON-DIXON LINE SURVEY BY: NATHAN J. WALKER, PLS Objective: As the retracement surveyors of today are called upon to “follow in the footsteps” of those original surveyors who went before, it is useful and instructive to learn how and why the early surveyors conducted their projects. It is likewise worthwhile to consider the outcomes and consequences of the early land surveys that shaped and continue to influence America. This course seeks to study the historically important Mason-Dixon Line survey, the circumstances that led to the necessity of the survey, the surveyors who conducted the survey, and the methods and techniques they employed to complete their daunting project. Also, the lasting political and cultural effects of the survey will be examined and a timeline of events relating to the survey will be presented. Course Outline: The Mason-Dixon Line Survey A. Biographical Overview of Charles Mason B. Biographical Overview of Jeremiah Dixon C. Mason and Dixon’s Initial Expedition Section 1 – Historical Background 1. The Province of Maryland 2. The Province of Pennsylvania 3. The Penn-Calvert Boundary Dispute Section 2 – Surveying the Lines 1. Scope of the Survey 2. Celestial Observation and a Commencing Point 3. The Point of Beginning 4. The Tangent Line 5. The West Line and the North Line 6. Extending the West Line Section 3 – Lasting Effects of the Survey 1. The Delaware Wedge 2.
    [Show full text]
  • GRB 190114C: an Upgraded Legend Arxiv:1901.07505V2 [Astro-Ph.HE] 25 Mar 2019
    GRB 190114C: An Upgraded Legend Yu Wang1;2, Liang Li 1, Rahim Moradi 1;2, Remo Ruffini 1;2;3;4;5;6 1ICRANet, P.zza della Repubblica 10, 65122 Pescara, Italy. 2ICRA and Dipartimento di Fisica, Sapienza Universita` di Roma, P.le Aldo Moro 5, 00185 Rome, Italy. 3ICRANet - INAF, Viale del Parco Mellini 84, 00136 Rome, Italy. 4Universite´ de Nice Sophia Antipolis, CEDEX 2, Grand Chateauˆ Parc Valrose, Nice, France. 5ICRANet-Rio, Centro Brasileiro de Pesquisas F´ısicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil. 6ICRA, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy. [email protected], [email protected], [email protected], ruffi[email protected] arXiv:1901.07505v2 [astro-ph.HE] 25 Mar 2019 1 Gamma-ray burst (GRB) 190114C first resembles the legendary GRB 130427A: Both are strong sources of GeV emission, exhibiting consistent GeV spectral evolution, and almost identical in detail for the morphology of light-curves in X-ray, gamma-ray and GeV bands, inferring a standard system with differ- ent scales. GRB 190114C is richer than GRB 130427A: a large percentage of ∼ 30% energy is thermal presenting in the gamma-ray prompt emission, mak- ing it as one of the most thermal-prominent GRBs; Moreover, GRB 190114C extends the horizon of GRB research, that for the first time the ultra-high energy TeV emission (> 300 GeV) is detected in a GRB as reported by the MAGIC team. Furthermore, GRB 190114C urges us to revisit the traditional theoretical framework, since most of the GRB’s energy may emit in the GeV and TeV range, not in the conventional MeV range.
    [Show full text]
  • Chemical-Composition-Of-The-Circumstellar-Disk-Around-AB-Aurigae.Pdf (1.034Mb)
    Astronomy & Astrophysics manuscript no. AB_Aur_final c ESO 2015 May 12, 2015 Chemical composition of the circumstellar disk around AB Aurigae S. Pacheco-Vázquez1 , A. Fuente1, M. Agúndez2, C. Pinte6, 7, T. Alonso-Albi1, R. Neri3, J. Cernicharo2,J. R. Goicoechea2, O. Berné4, 5, L. Wiesenfeld6, R. Bachiller1, and B. Lefloch6 1 Observatorio Astronómico Nacional (OAN), Apdo 112, E-28803 Alcalá de Henares, Madrid, Spain e-mail: [email protected], [email protected] 2 Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Spain e-mail: [email protected] 3 Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d’Hères, France 4 Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 5 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France 6 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Université UJF-Grenoble 1/CNRS-INSU, F-38041 Grenoble, France 7 UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago, Chile e-mail: [email protected] Received September 15, 1996; accepted March 16, 1997 ABSTRACT Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions).
    [Show full text]