Rocznik Astronomiczny 2002

Total Page:16

File Type:pdf, Size:1020Kb

Rocznik Astronomiczny 2002 INSTYTUT GEODEZJI I KARTOGRAFII ROCZNIK IGiK ASTRONOMICZNY 2002NA ROK INSTYTUT GEODEZJI I KARTOGRAFII ROCZNIK ASTRONOMICZNY NA ROK 2002 LVII WARSZAWA 2001 Rada Wydawnicza przy Instytucie Geodezji i Kartografii Adam Linsenbarth (przewodniczący), Andrzej Ciołkosz (zast. przewodniczącego), Teresa Baranowska, Stanisław Białousz (Wydział Geodezji i Kartografii PW), Hanna Ciołkosz (sekretarz), Wojciech Janusz, Jan R. Olędzki (Wydział Geografii i Studiów Regionalnych UW), Andrzej Sas–Uhrynowski, Karol Szeliga, Janusz Zieliński (Centrum Badań Kosmicznych) Redaktor naukowy Rocznika Astronomicznego Jan Kryński Sekretarz: Marcin Sękowski Okładkę projektował Łukasz Żak Adres Redakcji: Instytut Geodezji i Kartografii Warszawa, ul. Jasna 2/4 email: [email protected] http: www.igik.edu.pl ISSN 0209-0341 INSTYTUT GEODEZJI I KARTOGRAFII Arkuszy wydawniczych 24.85. Papier offsetowy kl. III, g 90, 707–500 mm. Do druku od- dano 14.XII.2001 r. Druk ukończono w grudniu 2001 r. na zamówienie ZAGiGS/IGiK/2001 DRUK: INSTYTUT GEODEZJI I KARTOGRAFII — WARSZAWA, ul. Jasna 2/4 SPIS TREŚCI Przedmowa .................................................................................. 5 Skróty stosowane w Roczniku Astronomicznym .............................................. 6 Dni świąteczne, pory roku, stałe precesyjne, obserwatoria astronomiczne ...................... 7 Czas gwiazdowy Greenwich .............................................................. 8÷11 Słońce, współrzędne równikowe, wschody i zachody w Warszawie ........................ 12÷19 Księżyc, współrzędne równikowe, wschody i zachody w Warszawie ....................... 20÷27 Pozorne położenie Słońca ................................................................... 28 Planety, współrzędne równikowe ............................................................ 28 Fazy Księżyca, apogeum i perigeum ........................................................ 29 Tablice do obliczania czasu wschodu i zachodu Słońca i Księżyca poza Warszawą ........ 30÷31 Wschód i zachód Słońca w niektórych miastach Polski .................................. 32÷33 Wschód i zachód Słońca w niektórych stolicach europejskich ................................ 34 Wykresy wschodu i zachodu Słońca oraz wybranych planet w Warszawie .................... 35 Konfiguracje planet ........................................................................ 37 Zaćmienia Słońca i Księżyca ............................................................ 38÷39 Współrzędne północnego bieguna Ziemi i czas uniwersalny .............................. 40÷41 Sygnały czasu .............................................................................. 42 Miejsca średnie gwiazd ................................................................. 43÷61 Wielkości redukcyjne ................................................................... 62÷69 Miejsca pozorne gwiazd o deklinacji mniejszej niż 80 stopni ............................. 70÷83 Miejsca pozorne Biegunowej i gwiazd okołobiegunowych ................................. 84÷93 Przybliżony azymut Biegunowej ............................................................ 94 Przybliżona odległość zenitalna Biegunowej ................................................. 95 Szerokość geograficzna z wysokości Biegunowej .............................................. 96 Współczynniki do wzorów interpolacyjnych ................................................. 97 Refrakcja i ekstynkcja .................................................................. 98÷99 Zamiana czasu słonecznego na gwiazdowy i zamiana odwrotna ........................ 100÷105 Zamiana godzin, minut i sekund czasu na ułamek doby .................................... 106 Zamiana miary stopniowej kąta na czasową i zamiana odwrotna ............................ 107 Zamiana dziesiętnych części stopnia na minuty i sekundy oraz zamiana odwrotna ........... 108 Zgeneralizowana mapa deklinacji magnetycznej ............................................ 109 Zestawienie gwiazdozbiorów .......................................................... 110÷111 Mapa nieba gwiaździstego ............................................................ 112÷115 Niektóre stałe, definicje i wzory astronomiczne i geodezyjne ........................... 116÷118 Objaśnienia i przykłady .............................................................. 119÷138 4 PRZEDMOWA Niniejszy, LVII tom Rocznika Astronomicznego jest kontynuacją serii roczników astrono- micznych opracowywanych i wydawanych nakładem Instytutu Geodezji i Kartografii w Warszawie od pierwszego roku istnienia Instytutu. Został on opracowany w ramach tematu ”Wyznaczanie zmian astronomiczno–geodezyjno–grawimetrycznych parametrów podstawowego punktu polskiej sieci w Obserwatorium Geodezyjno–Geofizycznym IGiK w Borowej Górze, z wykorzystaniem me- tod kosmicznych, w powiązaniach z międzynarodowymi badaniami nieregularności ruchu obroto- wego Ziemi” wchodzącego w zakres badań statutowych Zakładu Astronomii Geodezyjnej i Geodezji Satelitarnej IGiK. Niniejszy tom Rocznika zawiera szereg uzupełnień, w szczególności w jego części opisowej. Zespół autorski LVII tomu Rocznika Astronomicznego stanowią: Marcin Sękowski, Jan Kryński i Helena Bieniewska. Zawartość większości tablic w Roczniku stanowi wynik obliczeń wykonanych w Zakładzie Astronomii Geodezyjnej i Geodezji Satelitarnej IGiK przy użyciu programów opracowanych przez Marcina Sękowskiego. Program do interpolacji izogon deklinacji magnetycznej oraz mapę tych deklinacji na rok 2002 sporządziła Elżbieta Welker z Zakładu Geodezji Fizycznej IGiK. Przykłady zamieszczone w części opisowej Rocznika zostały przeliczone przez Macieja Moskwińskiego. Obliczenia dotyczące zaćmień i konfiguracji planet w roku 2002 wykonano wykorzystując pa- kiet programowy AE v.3 autorstwa Instytutu Astronomii Stosowanej Rosyjskiej Akademii Nauk w Sankt Petersburgu. Do sporządzenia efemeryd Słońca, Księżyca i planet układu słonecznego posłużyły dane w systemie DE403/LE403. Współrzędne chwilowego bieguna północnego Ziemi oraz różnice UT1–UTC zaczerpnięto z wydawnictw Centralnego Biura Międzynarodowej Służby Ruchu Obrotowego Ziemi (IERS) w Pa- ryżu. Począwszy od bieżącego wydania Rocznika zrezygnowano z publikowania ostatecznych, wy- równanych danych nt. bieguna, publikowanych w corocznych sprawozdaniach IERS. Sprawozdania te ukazują się z dwuletnim opóźnieniem i na ogół nie są dostępne w chwili wydawania Rocznika. Informacje o radiowych sygnałach czasu oparte są na danych dostarczonych przez Bureau Interna- tional des Poids et Mesures w S`evres. Definicje, wzory i wielkości stałych astronomicznych użyte w Roczniku są oparte na rezolu- cjach podjętych przez Międzynarodową Unię Astronomiczną (IAU) na kolejnych Zgromadzeniach Generalnych (Grenoble, 1976, Montreal, 1979, Patras, 1982), które stały się podstawą Systemu Stałych Astronomicznych IAU 1976 oraz Zgromadzenia Generalnego IUGG (Canberra, 1979), na którym przyjęto obowiązujący Geodezyjny System Odniesienia GRS 1980. System Stałych Astro- nomicznych IAU 1976, zgodnie z uchwałą IAU, od 1984 r. obowiązuje we wszystkich pracach astronomicznych oraz krajowych i zagranicznych rocznikach. Nowy system stałych i jednostek astronomicznych, zaaprobowany przez Zgromadzenie Gene- ralne IAU (Buenos Aires, 1991), obligatoryjnie jeszcze nie wprowadzony, został przedstawiony na stronach 136–145, XLVII tomu Rocznika Astronomicznego z roku 1992. Obecnie jest on uaktual- niany. Projekt najnowszego systemu stałych astronomicznych 2000 jest przedmiotem dyskusji na forum IAU. Podobnie, nowy geodezyjny układ odniesienia dyskutowany podczas Zgromadzenia Generalnego IUGG (Birmingham, 1999) nie doczekał się jeszcze akceptacji jako obowiązujący. Obok dotychczasowej wersji drukowanej, Rocznik opracowany został po raz pierwszy także w formie elektronicznej, w formacie pdf . W najbliższym czasie przewiduje się publikację Rocznika na internetowych stronach IGiK (www.igik.edu.pl). Jan Kryński Redaktor naukowy Rocznika Astronomicznego SKRÓTY STOSOWANE W ROCZNIKU BG – Borowa Góra CEO – Celestial Ephemeris Origin (początek niebieskiego układu efemerydalnego) CIO – Conventional International Origin (międzynarodowy umowny średni biegun północny Ziemi) CIP – Celestial Intermediate Pole (pośredni biegun niebieski) CSE – czas środkowoeuropejski (objaśnienie na str. 122) DORIS – Doppler Orbit Determination and Radio Positioning Integrated on Satellite (francuski globalny system nawigacyjny dla obiektów naziemnych i kosmicznych) DUT1 – różnica czasów UT1 i UTC ET – czas efemeryd (objaśnienie na str. 120) FK4 – czwarty fundamentalny katalog gwiazd FK5 – piąty fundamentalny katalog gwiazd GPS – Global Positioning System (system nawigacji globalnej) GRS – Geodetic Reference System (geodezyjny układ odniesienia) IAU – International Astronomical Union (Międzynarodowa Unia Astronomiczna) ICRS – International Celestial Reference System (międzynarodowy niebieski układ odniesienia) IERS – International Earth Rotation Service (Międzynarodowa Służba Ruchu Obrotowego Ziemi) IRP – IERS Reference Pole (biegun odniesienia IERS) IUGG – International Union of Geodesy and Geophysics (Międzynarodowa Unia Geodezji i Geofizyki) JD – dzień juliański (objaśnienie na str. 122) JPL – Jet Propulsion Laboratory JSD – juliański dzień gwiazdowy (objaśnienie na str. 123) LLR – Lunar Laser Ranging (laserowe pomiary odległości do Księżyca) MJD – zmodyfikowany dzień juliański (objaśnienie na str. 122) PRARE – Precision Range and Range Rate Experiment (niemiecki globalny system nawigacyjny dla obiektów naziemnych i kosmicznych) RA – Rocznik Astronomiczny
Recommended publications
  • Binocular Universe: Northern Exposure
    Binocular Universe: Northern Exposure March 2013 Phil Harrington he northern circumpolar sky holds many binocular targets that we can enjoy throughout the year. This month, let's take aim at the constellation Ursa TMinor, the Little Bear. You may know it better as the Little Dipper, an asterism made up of the seven brightest stars in the Little Bear. Above: Winter star map from Star Watch by Phil Harrington. Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm Call it what you will, this star group is most famous as the home of the North Star, Polaris [Alpha (α) Ursae Minoris]. Earth's rotational axis is aimed just three- quarters of a degree away from Polaris, causing it to trace out a very tiny circle around that invisible point every 24 hours. The North Celestial Pole is slowly moving closer to Polaris. It will continue to close to within 14 minutes of arc around the year 2105, when it will slowly start to pull away. While Polaris is currently the pole star, the 26,000-year wobble of Earth's axis, called precession, causes the Celestial Pole's aim to trace a 47° circle in the sky. For instance, during the building of the pyramids nearly 4,600 years ago, the North Pole was aimed toward the star Thuban in Draco. Fast forward 5,200 years from now and the pole will be point near Alderamin in Cepheus. Most of us at one time or another have heard someone misspeak by referring to Polaris as the brightest star in the night sky.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Planetary Companions Around the K Giant Stars 11 Ursae Minoris and HD 32518
    A&A 505, 1311–1317 (2009) Astronomy DOI: 10.1051/0004-6361/200911702 & c ESO 2009 Astrophysics Planetary companions around the K giant stars 11 Ursae Minoris and HD 32518 M. P. Döllinger1, A. P. Hatzes2, L. Pasquini1, E. W. Guenther2, and M. Hartmann2 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany Received 22 January 2009 / Accepted 10 August 2009 ABSTRACT Context. 11 UMi and HD 32518 belong to a sample of 62 K giant stars that has been observed since February 2004 using the 2m Alfred Jensch telescope of the Thüringer Landessternwarte (TLS) to measure precise radial velocities (RVs). Aims. The aim of this survey is to investigate the dependence of planet formation on the mass of the host star by searching for plane- tary companions around intermediate-mass giants. Methods. An iodine absorption cell was used to obtain accurate RVs for this study. Results. Our measurements reveal that the RVs of 11 UMi show a periodic variation of 516.22 days with a semiamplitude of −1 −7 K = 189.70 m s . An orbital solution yields a mass function of f (m) = (3.608 ± 0.441) × 10 solar masses (M) and an eccentricity of e = 0.083 ± 0.03. The RV curve of HD 32518 shows sinusoidal variations with a period of 157.54 days and a semiamplitude of −1 −8 K = 115.83 m s . An orbital solution yields an eccentricity, e = 0.008 ± 0.03 and a mass function, f (m) = (2.199 ± 0.235) × 10 M.
    [Show full text]
  • Science Academic Standards Over the Course of the Cyclical Review Process and Their Efforts and Input Are Appreciated
    SOUTH CAROLINA ACADEMIC STANDARDS AND PERFORMANCE INDICATORS FOR SCIENCE Mick Zais, Ph.D. State Superintendent of Education South Carolina Department of Education Columbia, South Carolina This document approved by Education Oversight Committee and State Board of Education Contents Acknowledgements ........................................................................................................................ iii Introduction .................................................................................................................................... 1 Academic Standards and Performance Indicators for Science Kindergarten .................................................................................................................................... 5 Grade 1 .......................................................................................................................................... 11 Grade 2 .......................................................................................................................................... 18 Grade 3 .......................................................................................................................................... 25 Grade 4 .......................................................................................................................................... 32 Grade 5 .......................................................................................................................................... 39 Grade 6 .........................................................................................................................................
    [Show full text]
  • Manganese Spread in Ursa Minor As a Proof of Sub-Classes of Type Ia
    Astronomy & Astrophysics manuscript no. paperMn6 c ESO 2018 September 22, 2018 Manganese spread in Ursa Minor as a proof of sub-classes of type Ia supernovae G. Cescutti1,3 ⋆ and C. Kobayashi2,3 1 INAF, Osservatorio Astronomico di Trieste, I-34131 Trieste, Italy 2 Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 3 BRIDGCE UK Network (www.bridgce.net), UK Received xxxx / Accepted xxxx ABSTRACT Context. Recently, new sub-classes of Type Ia supernovae (SNe Ia) were discovered, including SNe Iax. The suggested progenitors of SNe Iax are relatively massive, possibly hybrid C+O+Ne white dwarfs, which can cause white dwarf winds at low metallicities. There is another class that can potentially occur at low or zero metallicities; sub-Chandrasekhar mass explosions in single and/or double degenerate systems of standard C+O white dwarfs. These explosions have different nucleosynthesis yields compared to the normal, Chandrasekhar mass explosions. Aims. We test these SN Ia channels using their characteristic chemical signatures. Methods. The two sub-classes of SNe Ia are expected to be rarer than normal SNe Ia and do not affect the chemical evolution in the solar neighbourhood; however, because of the shorter delay time and/or weaker metallicity dependence, they could influence the evolution of metal-poor systems. Therefore, we have included both in our stochastic chemical evolution model for the dwarf spheroidal galaxy Ursa Minor. Results. The model predicts a butterfly-shape spread in [Mn/Fe] in the interstellar medium at low metallicity and - at the same time - a decrease of [α/Fe] ratios at lower [Fe/H] than in the solar neighbourhood, both of which are consistent with the observed abundances in stars of Ursa Minor.
    [Show full text]
  • Arxiv:2001.10147V1
    Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis.
    [Show full text]
  • Determination of Stellar Parameters for M-Dwarf Stars: the NIR Approach
    Determination of stellar parameters for M-dwarf stars: the NIR approach by Daniel Thaagaard Andreasen A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Departamento de Fisica e Astronomia University of Porto c Copyright 2017 by Daniel Thaagaard Andreasen Dedication To Linnea, Henriette, Rico, and Else For always supporting me ii Acknowledgements When doing a PhD it is important to remember it is more a team effort than the work of an individual. This is something I learned quickly during the last four years. Therefore there are several people I would like to thank. First and most importantly are my two supervisors, Sérgio and Nuno. They were after me in the beginning of my studies because I was too shy to ask for help; something that I quickly learned I needed to do. They always had their door open for me and all my small questions. It goes without saying that I am thankful for all their guidance during my studies. However, what I am most thankful for is the freedom I have had to explorer paths and ideas on my own, and with them safely on the sideline. This sometimes led to failures and dead ends, but it make me grow as a researcher both by learning from my mistake, but also by prioritising my time. When I thank Sérgio and Nuno, my official supervisors, I also have to thank Elisa. She has been my third unofficial supervisor almost from the first day. Although she did not have any experience with NIR spectroscopy, she was never afraid of giving her opinion and trying to help.
    [Show full text]
  • Effects of the Galactic Winds on the Stellar Metallicity Distribution of Dwarf Spheroidal Galaxies
    A&A 468, 927–936 (2007) Astronomy DOI: 10.1051/0004-6361:20066576 & c ESO 2007 Astrophysics Effects of the galactic winds on the stellar metallicity distribution of dwarf spheroidal galaxies G. A. Lanfranchi1,2,3 and F. Matteucci3,4 1 Núcleo de Astrofísica Teórica, CETEC, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP, Brazil e-mail: [email protected] 2 IAG-USP, R. do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP, Brazil 3 Dipartimento di Astronomia-Universitá di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italy 4 INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy Received 16 October 2006 / Accepted 12 March 2007 ABSTRACT Aims. To study the effects of galactic winds on the stellar metallicity distributions and on the evolution of Draco and Ursa Minor dwarf spheroidal galaxies (dSphs), we compared the predictions of several chemical evolution models, adopting different prescriptions for the galactic winds (including a model with no wind), with the photometrically-derived stellar metallicity distributions (SMDs) of both galaxies. Methods. We adopted chemical evolution models for Draco and Ursa Minor, which are able to reproduce several observational features of these two galaxies, such as the [α/Fe], [Eu/Fe], [Ba/Fe] ratios and the present gas mass. The models take up-to-date nucleosynthesis into account for intermediate-mass stars and supernovae of both types, as well as the effect of these objects on the energetics of the systems. The predictions were compared to the photometric SMDs, which are accurate enough for a global comparison with general aspects such as metallicity range, shape, position of the peak, and high-metallicity tail, leaving aside minor details of the distributions.
    [Show full text]
  • Binocular Challenges
    This page intentionally left blank Cosmic Challenge Listing more than 500 sky targets, both near and far, in 187 challenges, this observing guide will test novice astronomers and advanced veterans alike. Its unique mix of Solar System and deep-sky targets will have observers hunting for the Apollo lunar landing sites, searching for satellites orbiting the outermost planets, and exploring hundreds of star clusters, nebulae, distant galaxies, and quasars. Each target object is accompanied by a rating indicating how difficult the object is to find, an in-depth visual description, an illustration showing how the object realistically looks, and a detailed finder chart to help you find each challenge quickly and effectively. The guide introduces objects often overlooked in other observing guides and features targets visible in a variety of conditions, from the inner city to the dark countryside. Challenges are provided for viewing by the naked eye, through binoculars, to the largest backyard telescopes. Philip S. Harrington is the author of eight previous books for the amateur astronomer, including Touring the Universe through Binoculars, Star Ware, and Star Watch. He is also a contributing editor for Astronomy magazine, where he has authored the magazine’s monthly “Binocular Universe” column and “Phil Harrington’s Challenge Objects,” a quarterly online column on Astronomy.com. He is an Adjunct Professor at Dowling College and Suffolk County Community College, New York, where he teaches courses in stellar and planetary astronomy. Cosmic Challenge The Ultimate Observing List for Amateurs PHILIP S. HARRINGTON CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao˜ Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521899369 C P.
    [Show full text]
  • CONSTELLATION URSA MINOR, the LITTLE BEAR Ursa Minor
    CONSTELLATION URSA MINOR, THE LITTLE BEAR Ursa Minor (Latin: "Smaller She-Bear", to contrast with Ursa Major), also known as the Little Bear, is a constellation in the northern sky. Like the Great Bear, the tail of the Little Bear may also be seen as the handle of a ladle, hence the North American name, Little Dipper. It has seven main stars with four in its bowl, like its partner the Big Dipper. It was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and remains one of the 88 modern constellations. Ursa Minor has traditionally been important for navigation, particularly by mariners, because of Polaris (at the end of the tail) being the North Star. Alpha Ursae Minoris, better known as Polaris, is the brightest star in the constellation, is a yellow-white supergiant and the brightest Cepheid variable star in the night sky, ranging from an apparent magnitude of 1.97 to 2.00. Beta Ursae Minoris, also known as Kochab, is an aging star that has swollen and cooled to become an orange giant with an apparent magnitude of 2.08, only slightly fainter than Polaris. Gamma Ursae Minoris, magnitude 3 and Kochab have been called the "guardians of the pole star". Planets have been detected orbiting four of the stars, including Kochab. The constellation also contains an isolated neutron star—Calvera—and H1504+65, the hottest white dwarf yet discovered, with a surface temperature of 200,000 K. HISTORY AND MYTHOLOGY In the Babylonian star catalogues, Ursa Minor was known as the Wagon of Heaven, Damkianna.
    [Show full text]
  • Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
    Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes.
    [Show full text]
  • Planetary Companions in K Giants Β Cancri, Μ Leonis, and Β Ursae Minoris,
    A&A 566, A67 (2014) Astronomy DOI: 10.1051/0004-6361/201322608 & c ESO 2014 Astrophysics Planetary companions in K giants β Cancri, μ Leonis, and β Ursae Minoris, B.-C. Lee1,I.Han1,M.-G.Park2, D. E. Mkrtichian3,4, A. P. Hatzes5,andK.-M.Kim1 1 Korea Astronomy and Space Science Institute, 776, Daedeokdae-Ro, Youseong-Gu, 305-348 Daejeon, Korea e-mail: [bclee;iwhan;kmkim]@kasi.re.kr 2 Department of Astronomy and Atmospheric Sciences, Kyungpook National University, 702-701 Daegu, Korea e-mail: [email protected] 3 National Astronomical Research Institute of Thailand, 50200 Chiang Mai, Thailand 4 Crimean Astrophysical Observatory, Taras Shevchenko National University of Kyiv, Nauchny, 98409 Crimea, Ukraine e-mail: [email protected] 5 Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] Received 5 September 2013 / Accepted 1 May 2014 ABSTRACT Aims. The aim of our paper is to investigate the low-amplitude and long-period variations in evolved stars with a precise radial velocity survey. Methods. The high-resolution, the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from 2003 to 2013 for a radial velocity survey of giant stars as part of the exoplanet search program at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of three new planetary companions orbiting the K giants β Cnc, μ Leo, and β UMi. The planetary nature of the radial velocity variations is supported by analyzes of ancillary data. The Hipparcos photometry shows no variations with periods close to those in radial velocity variations and there is no strong correlation between the bisector velocity span (BVS) and the radial velocities for each star.
    [Show full text]