University of Groningen the Biology and Impacts of Oreochromis

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen the Biology and Impacts of Oreochromis University of Groningen The biology and impacts of Oreochromis niloticus and Limnothrissa miodon introduced in Lake Kariba Chifamba, Chiyedza Portia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Chifamba, C. P. (2019). The biology and impacts of Oreochromis niloticus and Limnothrissa miodon introduced in Lake Kariba. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 The biology and impacts of Oreochromis niloticus and Limnothrissa miodon introduced in Lake Kariba Portia C. Chifamba 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 1 The research presented in this thesis was conducted at the University Lake Kariba Research Station and the Department of Biological Sciences of the University of Zimbabwe and at the Lake Kariba Fisheries Research Institute, Zimbabwe, according to the requirements of the Graduate School of Science, Faculty of Science and Engineering, Institute of Evolutionary Life Sciences (GELIFES), University of Groningen. This research was funded by Nuffic grant (grant number NFP-PhD.11/ 858) awarded to Portia Chifamba, International Foundation for Science (IFS) Grant awarded to Portia Chifamba (grant number A/3159-1, Tonolli Memorial Fund Fellowship of the International Society of Limnology (SIL), and University of Zimbabwe Research Grant. The printing was supported by the University of Groningen (RUG). The preferred citation for this thesis is: Chifamba PC (2017) The biology and impacts of Oreochromis niloticus and Limnothrissa miodon introduced in Lake Kariba. PhD thesis, University of Groningen, Groningen, The Netherlands. Cover design: Portia C. Chifamba & Jan H. Wanink Lay‐out: Jan H. Wanink & Portia C. Chifamba Figures: Portia C. Chifamba Pictures including cover: Portia C. Chifamba, Jan H. Wanink, social media Printed by: Ipskamp Printing, Enschede, The Netherlands ISBN: 978‐94‐034‐1472‐0 ISBN: 978‐94‐034‐1471‐3 (electronic version) © 2019 Portia C. Chifamba ([email protected]) 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 2 The biology and impacts of Oreochromis niloticus and Limnothrissa miodon introduced in Lake Kariba Proefschrift ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof. dr. E. Sterken en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op maandag 4 maart 2019 om 16.15 uur door Chiyedza Portia Chifamba geboren op 2 augustus 1963 te Guruve, Zimbabwe 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 3 Promotores Prof. dr. H. Olff Prof. dr. B.D.H.K. Eriksson Beoordelingscommissie Prof. dr. ir. C. Both Prof. dr. E. van Donk Prof. dr. P.F.M. Verdonschot 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 4 This thesis is dedicated to my parents who made it all possible. Oh, ik ben zo blij Urombo by Jane Eugenia Chifamba Urombo Urombo Urombo Urombo Mwanasikana muka utarire Nyika yaugere igungwa rebvura Nyatotarira rinoda kukunyudza Vakomana venyika vanokunyengedza Vanokufurira unyangadze vakuseke Uri chirombe, chifuza, chinzenza chamakoko Urombo Urombo Urombo Urombo Ambuya vangu vakafa, havakasiya mari Nambuya vako vakafa, havakasiya mari Taivakirwe chikoro chevanasikana Vaidzidzira kuchengeta nhaka dzavapwere vavo Nzvimbo dzacho dzotinetsza Hwangova urombo O urombo. O urombo. O urombo. O urombo 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 5 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 6 Table of Contents Chapter 1 Introduction 9 PART I BIOLOGY AND IMPACTS OF OREOCHROMIS NILOTICUS Chapter 2 Replacement of the indigenous Oreochromis mortimeri by the 25 invader Oreochromis niloticus in the Southern-African Lake Kariba: in relation to differences in their reproductive potential Chapter 3 Growth rates of alien Oreochromis niloticus and indigenous 41 Oreochromis mortimeri in Lake Kariba, Zimbabwe Chapter 4 Diet overlap between a native and an invasive tilapia species in 57 the Southern-African Lake Kariba Chapter 5 Comparative aggression and dominance of Oreochromis 77 niloticus (Linnaeus, 1758) and Oreochromis mortimeri (Trewavas, 1966) from paired contest in aquaria PART II BIOLOGY AND IMPACTS OF LIMNOTHRISSA MIODON Chapter 6 Developing a sustainable pelagic fishery in an African reservoir: 93 trends in the catches of the introduced freshwater sardine Limnothrissa miodon and associated species in Lake Kariba, Zimbabwe Chapter 7 Growth of the freshwater sardine, Limnothrissa miodon 117 (Boulenger 1906) estimated from diurnal increments in otoliths Chapter 8 Synthesis 139 References 165 Authors affiliations and addresses 193 List of publications 197 Summary 201 Samenvatting (Dutch summary) 207 Curriculum Vitae 213 Acknowledgements 217 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 7 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 8 Introduction Chapter 1 Portia C. Chifamba 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 9 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 10 Introduction World-wide introduction of exotic fish species in waterbodies has had both beneficial 1 and adverse ecological, social and economic outcomes of varying magnitude (Reynolds & Greboval 1988; Welcomme 1988, Balirwa 1992; Witte et al. 1995). Thus, informa- tion on impacts of introduced species and how well they have adapted to their new conditions, is essential when considering management options both to protect indigenous species and to enhance fisheries. In addition, information on the ecological impacts can enhance our understanding of ecological processes caused by introductions. Differences in the modes of introduction might have some bearing on the type of impacts arising from the introduction. Fish introductions are either deliberate or planned, in order to fill a vacant niche or accidental, as a result of escapees invading an already occupied niche (De Silva & Sirisena 1987; Welcomme 1988; Balirwa 1992; van Zwieten et al. 2011). The deliberate introduction of a large predator, Nile perch (Lates niloticus), has well established negative ecological impacts, having caused the extinction of many haplochromine species from Lake Victoria. At the same time, Nile perch brings about large economic benefits from harvesting (Reynolds & Greboval 1988; Witte et al. 1995; Twongo 1995). Nile tilapia, Oreochromis niloticus (Linnaeus 1758), was also deliberately introduced into Lake Victoria. Oreochromis niloticus is today one of the three commercially important species caught in the lake but has caused the disappearance of some native tilapias (Goudswaard et al. 2002; Njiru et al. 2005). The introduction of O. mossambicus increased fish catches in reservoirs in Sri Lanka (De Silva & Sirisena 1987), just as the deliberate introduction of Limno- thrissa miodon in Lake Kivu (de Iongh et al. 1995). Lake Kariba provides a typical case study both for planned introductions of fish into supposedly open ecological niches as well as accidental, unplanned introduc- tions into occupied niches. This was possible as the creation of Lake Kariba, a reservoir in the Zambezi River, created a completely new lacustrine ecosystem whose physical attributes such as oxygen concentration, water depth and distance from the lake margin differed profoundly from the lotic system to which the native riverine species were adapted (Jackson et al. 1988). This new, complex matrix not only presented economic opportunities for fisheries development and fish farming but also raised ecological challenges. First, the newly created and therefore vacant pelagic niche was filled by a freshwater sardine, Limnothrissa miodon (Boulenger 1906). Limnothrissa miodon is native to Lake Tanganyika and was introduced to improve fish production (Bell- Cross & Bell-Cross 1971). Physical and environmental conditions in Lake Kariba were unlike those in Lake Tanganyika, and therefore changes in L. miodon’s bio- logical characteristics were anticipated. For example, L. miodon in Lake Kariba was considered stunted (Marshall 1987a) until studies on growth rate using otoliths showed that the fish in Lake Kariba follows the same growth trajectory as in the 11 528794-L-bw-Chifamba Processed on: 6-2-2019 PDF page: 11 BIOLOGY AND IMPACTS OF OREOCHROMIS NILOTICUS AND LIMNOTHRISSA MIODON native Lake Tanganyika (Chifamba 1992). However, patterns appear to suggest that L. miodon may have inhibited
Recommended publications
  • An Analysis of Primary and Secondary Production in Lake Kariba in a Changing Climate
    AN ANALYSIS OF PRIMARY AND SECONDARY PRODUCTION IN LAKE KARIBA IN A CHANGING CLIMATE MZIME R. NDEBELE-MURISA A thesis submitted in partial fulfillment of the requirements for the degree of Doctor Philosophiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Prof. Charles Musil Co-Supervisor: Prof. Lincoln Raitt May 2011 An analysis of primary and secondary production in Lake Kariba in a changing climate Mzime Regina Ndebele-Murisa KEYWORDS Climate warming Limnology Primary production Phytoplankton Zooplankton Kapenta production Lake Kariba i Abstract Title: An analysis of primary and secondary production in Lake Kariba in a changing climate M.R. Ndebele-Murisa PhD, Biodiversity and Conservation Biology Department, University of the Western Cape Analysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion Into West Africa
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive Marine Incursion: The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion into West Africa Anthony B. Wilson1,2¤*, Guy G. Teugels3, Axel Meyer1 1 Department of Biology, University of Konstanz, Konstanz, Germany, 2 Zoological Museum, University of Zurich, Zurich, Switzerland, 3 Ichthyology Laboratory, Royal Museum for Central Africa, Tervuren, Belgium Abstract The spectacular marine-like diversity of the endemic fauna of Lake Tanganyika, the oldest of the African Great Lakes, led early researchers to suggest that the lake must have once been connected to the ocean. Recent geophysical reconstructions clearly indicate that Lake Tanganyika formed by rifting in the African subcontinent and was never directly linked to the sea. Although the Lake has a high proportion of specialized endemics, the absence of close relatives outside Tanganyika has complicated phylogeographic reconstructions of the timing of lake colonization and intralacustrine diversification. The freshwater herring of Lake Tanganyika are members of a large group of pellonuline herring found in western and southern Africa, offering one of the best opportunities to trace the evolutionary history of members of Tanganyika’s biota. Molecular phylogenetic reconstructions indicate that herring colonized West Africa 25–50MYA, at the end of a major marine incursion in the region. Pellonuline herring subsequently experienced an evolutionary radiation in West Africa, spreading across the continent and reaching East Africa’s Lake Tanganyika during its early formation. While Lake Tanganyika has never been directly connected with the sea, the endemic freshwater herring of the lake are the descendents of an ancient marine incursion, a scenario which may also explain the origin of other Tanganyikan endemics.
    [Show full text]
  • Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species.
    [Show full text]
  • Gill Parasites of Synodontis Spp. (Siluriformes, Mochokidae) from Côte D’Ivoire Enoutchy F
    Three new species of Synodontella (Monogenea, Ancyrocephalidae), gill parasites of Synodontis spp. (Siluriformes, Mochokidae) from Côte d’Ivoire Enoutchy F. Bouah, Valentin N’douba, Antoine Pariselle To cite this version: Enoutchy F. Bouah, Valentin N’douba, Antoine Pariselle. Three new species of Synodontella (Mono- genea, Ancyrocephalidae), gill parasites of Synodontis spp. (Siluriformes, Mochokidae) from Côte d’Ivoire. Parasite, EDP Sciences, 2019, 26, pp.45. 10.1051/parasite/2019044. hal-02968678 HAL Id: hal-02968678 https://hal.archives-ouvertes.fr/hal-02968678 Submitted on 16 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Parasite 26, 45 (2019) Ó E. Bouah et al., published by EDP Sciences, 2019 https://doi.org/10.1051/parasite/2019044 urn:lsid:zoobank.org:pub:FC92E481-4FF7-4DD8-B7C9-9F192F373D2E Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Three new species of Synodontella (Monogenea, Ancyrocephalidae), gill parasites of Synodontis spp. (Siluriformes, Mochokidae) from Coˆ te d’Ivoire Enoutchy F. Bouah1, Valentin N’Douba1, and Antoine Pariselle2,3,* 1 Laboratory of Hydrobiology, UFR Biosciences, Felix Houphouët Boigny University, 22 BP 582 Abidjan 22, Côte d’Ivoire 2 ISEM, Univ.
    [Show full text]
  • A BIBLIOGRAPHY of IMPORTANT TILAPIAS (PISCES: CICHLIDAE) for AQUACULTURE Oreochromisvariabilis, 0 Andersoni, 0
    AMV'__ BIBLIOGRAPHIES 6 A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromisvariabilis, 0 andersoni, 0. esculentus, 0. leucostictus, 0. rortimer, 0. spilurus niger,Sarotherodon melanotheron and Tilapia sparnmani PETER SCHOENEN INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromls variabilis, 0. andersoni, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurus niger, Saro therodon melano theron and Tilapia sparrmanii Peter Schoenen International Collection "Cichlid Papers" The Referencc Service Parkstr. 15 D-5176 Inden 4 Federal Republic of Germany 1985 INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mort/tmer, 0. spilunis niger, Sarotherodon melanothero,, ard -/ilapiasparrmanii PETER SCHOENEN Published by the International Center for Living Aquatic Resources Management, MCC P.O. Box 1501, Makati, Metro Manila, Philippines with financial assistance from the International Development Research Centre of Canada through ICLARM's Selective Information Service project. 1985 Printed in Manila, Philippins This bibliography is produced directly from the author's manuscript in oider to provide tilapia workers with a useful document in the shortest time. The author should be consulted in the event of difficulty ir verifying details of particular references or in locating sources. ISSN 0115-5997 ISBN 971-1022-19-2 Schoenen, P. 1985, A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurut niger, Sarotherodon mela. notheron and Tilapia sparrrnanii. ICLAHM Biblio­ graphies 6,99 p. International Center for Living Aquatic Resources Management, Manila, Philippines.
    [Show full text]
  • Implications for Management AFRICAN GREAT LAKES
    AFRICAN GREAT LAKES CONFERENCE 2nd – 5th MAY 2017, ENTEBBE, UGANDA Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management Robert Kayanda, Anton Taabu-Munyaho, Dismas Mbabazi, Hillary Mrosso, and Chrisphine Nyamweya INTRODUCTION • Lake Victoria with a surface area of 68,800 sqkm is the world’s second largest freshwater body • It supports one of the world’s most productive inland fisheries with the estimated total fish landings from the lake for the period of 2011 to 2014 have been about 1 million tons with a beach value increasing from about US$ 550 Million in 2011 to about US$ 840 million in 2014. • It supports about 220,000 fishers (Frame Survey 2016) • The fish stocks of Lake Victoria have changed dramatically since the introduction of Nile perch Lates niloticus during the late 1950s and early 1960s Fishery Haplochromines The Original Fish Fauna Brycinus sp Protopterus Rastrineobola Mormyrus spp Barbus spp Bagrus docmac Labeo Schilbe intermedius Oreochromis variabilis Clarias gariepinus Mormyrus spp Synodontis victoriae Oreochromis leucostictus INTRODUCTION Currently, the fisheries is dominated by four major commercial important species, these are; •Nile perch •Dagaa •Nile tilapia •Haplochromis Apart from Nile tilapia only estimated through trawl and catch surveys, the other 3 are estimated through trawl, acoustics, and catch INTRODUCTION This paper summarizes current knowledge of the status of the fish stocks and reviews the need for species specific management plans for the major commercial important fish species of Lake Victoria (Nile perch, Nile tilapia, dagaa and haplochromines). Methods • Fisheries dependent – Frame surveys – Catch assessment surveys • Fisheries independent – Acoustic – Bottom trawl Biomass and relative abundance • Total biomass from the surveys 3500 remained fairly stable over time.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • The Coincidence of Ecological Opportunity with Hybridization Explains Rapid Adaptive Radiation in Lake Mweru Cichlid fishes
    ARTICLE https://doi.org/10.1038/s41467-019-13278-z OPEN The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes Joana I. Meier 1,2,3,4, Rike B. Stelkens 1,2,5, Domino A. Joyce 6, Salome Mwaiko 1,2, Numel Phiri7, Ulrich K. Schliewen8, Oliver M. Selz 1,2, Catherine E. Wagner 1,2,9, Cyprian Katongo7 & Ole Seehausen 1,2* 1234567890():,; The process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur. 1 Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution,UniversityofBern,Baltzerstr.6,CH-3012Bern,Switzerland.2 Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
    [Show full text]
  • Genetic Resources for Aquaculture: Status and Trends
    109 Genetic resources for aquaculture: status and trends Roger S.V. Pullin 7A Legaspi Park View, 134 Legaspi Street, Consultant, Philippines 1. SUMMARY Aquaculture, the farming of aquatic plants and animals, has grown consistently since 1970, when it provided only 3.9 percent of world fish supply. In 2004, global production of farmed fish (mainly crustaceans, molluscs and finfish) was over 45 million tonnes, comprising about 32 percent of total world fish supply, while the total production of farmed seaweeds for food and extraction of chemicals, was about 13.9 million t. Aquaculture also provides increasing proportions of the world’s supply of ornamental aquatic organisms. Over 90 percent of aquaculture takes place in developing countries, where it has high importance for poor people in terms of nutrition and livelihoods and where further responsible development of aquaculture, integrated with other natural resource use, has high potential for future growth. Based upon statistics submitted to FAO by its member States, about 84 percent of farmed fish production comes from Asia, with 67 percent coming from the Peoples’ Republic of China. However, aquaculture is increasing in importance in all developing regions and is expected to provide about 50 percent of world food fish supply within the next 20 years. The future of aquaculture will depend in large measure upon the effective management of the genetic resources for farmed aquatic plants (PGR) and farmed fish (FiGR), as well as those for the organisms that provide their food and ecosystem services. Fish farms are agroecosystems and aquatic genetic resources for aquaculture on farms are part of agrobiodiversity.
    [Show full text]
  • Jlb Smith Institute of Ichthyology
    ISSN 0075-2088 J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY GRAHAMSTOWN, SOUTH AFRICA SPECIAL PUBLICATION No. 56 SCIENTIFIC AND COMMON NAMES OF SOUTHERN AFRICAN FRESHWATER FISHES by Paul H. Skelton November 1993 SERIAL PUBLICATIONS o f THE J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY The Institute publishes original research on the systematics, zoogeography, ecology, biology and conservation of fishes. Manuscripts on ancillary subjects (aquaculture, fishery biology, historical ichthyology and archaeology pertaining to fishes) will be considered subject to the availability of publication funds. Two series are produced at irregular intervals: the Special Publication series and the Ichthyological Bulletin series. Acceptance of manuscripts for publication is subject to the approval of reviewers from outside the Institute. Priority is given to papers by staff of the Institute, but manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute. Colour illustrations can be printed at the expense of the author. Publications of the Institute are available by subscription or in exchange for publi­ cations of other institutions. Lists of the Institute’s publications are available from the Publications Secretary at the address below. INSTRUCTIONS TO AUTHORS Manuscripts shorter than 30 pages will generally be published in the Special Publications series; longer papers will be considered for the Ichthyological Bulletin series. Please follow the layout and format of a recent Bulletin or Special Publication. Manuscripts must be submitted in duplicate to the Editor, J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, South Africa. The typescript must be double-spaced throughout with 25 mm margins all round.
    [Show full text]
  • FISH4ACP Unlocking the Potential of Sustainable Fisheries and Aquaculture in Africa, the Caribbean and the Pacific
    FISH4ACP Unlocking the potential of sustainable fisheries and aquaculture in Africa, the Caribbean and the Pacific United Republic of Tanzania FISH4ACP aims to strengthen and safeguard the sardine, sprat and perch value chains in Lake Tanganyika by investing in inclusive growth WHAT WE focus to bolster food security for future generations, reduce poverty and on contribute to the conservation of natural resources. → Comprehensive value chain analysis to make Lake VALUE CHAIN AT A GLANCE Tanganyika sardine, sprat and perch sector more Lake Tanganyika sardine (Limnothrissa miodon), sustainable. sprat (Stolothrissa tanganicae) and perch (Lates stappersii) → Enhancement of fish handling and processing methods to limit post-harvest losses and boost fish product quality. → Reduce harmful health impacts of fish smoking and accelerate energy use efficiency by expanding best practice fish-smoking techniques and using kilns. PRODUCTION METHOD VOLUMES * VALUE * → Capacity building on sustainable fishing practices Night fishing Artisanal. Sprat: 30 995 and use of gear. with lights, lamps and USD 117 lift-nets (sprat and sardine). Sardine: 6 315 Vertical handlines, Perch: 22 264 million → Strengthen value chain jigged lines, gill-nets and tonnes governance and empower lift-nets (perch) institutions for sustainable Source: Food and Agriculture Organization of the United Nations, fisheries management. Original Scientific Illustrations Archive. Reproduced with permission Facts figures The& United Republic of Tanzania is Lake Tanganyika’s principal producer of sardine, sprat and perch, accounting for up to 40% of the annual catch. Exports of Lake Tanganyika sprat, sardine and perch from the United Republic of Tanzania were ©FAO Hashim Muumin ©FAO worth USD 1.1 million in 2018.
    [Show full text]