MIAMI UNIVERSITY the Graduate School Certificate for Approving The

Total Page:16

File Type:pdf, Size:1020Kb

MIAMI UNIVERSITY the Graduate School Certificate for Approving The MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Sandra J. Connelly Candidate for the Degree: Doctor of Philosophy __________________________________________ Director Dr. Craig E. Williamson __________________________________________ Reader Dr. Maria González __________________________________________ Reader Dr. David L. Mitchell __________________________________________ Graduate School Representative Dr. A. John Bailer ABSTRACT EFFECTS OF ULTRAVIOLET RADIATION (UVR) INDUCED DNA DAMAGE AND OTHER ECOLOGICAL DETERMINANTS ON CRYPTOSPORIDIUM PARVUM, GIARDIA LAMBLIA, AND DAPHNIA SPP. IN FRESHWATER ECOSYSTEMS Sandra J. Connelly Freshwater ecosystems are especially susceptible to climatic change, including anthropogenic-induced changes, as they are directly influenced by the atmosphere and terrestrial ecosystems. A major environmental factor that potentially affects every element of an ecosystem, directly or indirectly, is ultraviolet radiation (UVR). UVR has been shown to negatively affect the DNA of aquatic organisms by the same mechanism, formation of photoproducts (cyclobutane pyrimidine dimers; CPDs), as in humans. First, the induction of CPDs by solar UVR was quantified in four aquatic and terrestrial temperate ecosystems. Data show significant variation in CPD formation not only between aquatic and terrestrial ecosystems but also within a single ecosystem and between seasons. Second, there is little quantitative data on UV-induced DNA damage and the effectiveness of DNA repair mechanisms on the damage induced in freshwater invertebrates in the literature. The rate of photoproduct induction (CPDs) and DNA repair (photoenzymatic and nucleotide excision repair) in Daphnia following UVR exposures in artificial as well as two natural temperate lake systems was tested. The effect of temperature on the DNA repair rates, and ultimately the organisms’ survival, was tested under controlled laboratory conditions following artificial UVB exposure. The results of these studies suggest a significant interaction of UVR and temperature on individual survival and ultimately population dynamics in freshwater systems. Lastly, freshwater human pathogens have negative effects ranging from gastrointestinal distress in otherwise healthy individuals to death in the immunocompromised and elderly. The control of infectious pathogens in water treatment is imperative. The abiotic and biotic environmental stressors of human pathogens are not well understood. Herein, solar radiation and artificial UVB are shown to significantly decrease the infectivity of Cryptosporidium parvum in vitro. The generalist filter feeder, Daphnia pulicaria, was shown to have significant effects on the viability, excystation, and infectivity of both Cryptosporidium parvum and Giardia lamblia under laboratory- controlled conditions. Both of these studies have significant implications for the natural control and potable water pretreatment approaches to human pathogen control. EFFECTS OF ULTRAVIOLET RADIATION (UVR) INDUCED DNA DAMAGE AND OTHER ECOLOGICAL DETERMINANTS ON CRYPTOSPORIDIUM PARVUM, GIARDIA LAMBLIA, AND POTENTIAL ZOOPLANKTON GRAZERS IN FRESHWATER ECOSYSTEMS A DISSERTATION Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Zoology by Sandra J. Connelly Miami University Oxford, Ohio 2007 Dr. Craig E. Williamson, Miami University, Chair, Major Advisor Dr. Maria González, Miami University Dr. David L. Mitchell, MD Andersen Cancer Center, University of Texas Dr. James Oris, Miami University Dr. Michael Vanni, Miami University Dr. A. John Bailer, Miami University, Graduate School Representative © Sandra J. Connelly 2007 ii Table of Contents LIST OF TABLES IV LIST OF FIGURES IV DEDICATION VI ACKNOWLEDGEMENTS VII CHAPTER 1: INTRODUCTION AND OVERVIEW 1 CHAPTER 2: ANNUAL AND SEASONAL VARIABILITY OF UV-INDUCED DNA DAMAGE IN A TEMPERATE ECOSYSTEM ASSESSED BY DOSIMETRY 15 CHAPTER 3: EXAMINATION OF UV-INDUCED DNA DAMAGE IN DAPHNIIDS: DNA DAMAGE VS. REPAIR AT DEPTH IN TWO LAKE SYSTEMS 37 CHAPTER 4: TEMPERATURE EFFECTS ON UV-INDUCED DNA DAMAGE AND ITS REPAIR: BIOLOGICAL RESPONSES OF FOUR SPECIES OF THE FRESHWATER CLADOCERAN DAPHNIA 61 CHAPTER 5: ARTIFICIAL UV-B AND SOLAR RADIATION REDUCE IN VITRO INFECTIVITY OF THE HUMAN PATHOGEN CRYPTOSPORIDIUM PARVUM 88 CHAPTER 6: IMPACT OF ZOOPLANKTON GRAZING ON THE EXCYSTATION, VIABILITY, OR INFECTIVITY OF THE PROTOZOAN PATHOGENS CRYPTOSPORIDIUM PARVUM AND GIARDIA LAMBLIA 108 CONCLUDING REMARKS 129 iii List of Tables TABLE 2.1. AQUATIC IRRADIANCE MEASURES IN LAKES GILES AND LACAWAC (2005-2006)............................................................................................................... 24 TABLE 2.2. INCIDENT SOLAR IRRADIANCE (APRIL & JULY 2006).................................. 24 TABLE 3.1. ABIOTIC MEASUREMENTS IN LAKES GILES AND LACAWAC (APRIL – AUGUST 2006) ........................................................................................... 45 TABLE 4.1. RATE OF REPAIR ± PHOTOREPAIR RADIATION IN DAPHNIA......................... 86 TABLE 4.2. UVB RESPONSE PARAMETER COMPARISON OF DAPHNIA ............................ 87 TABLE 5.1. SOLAR EXPOSURES OF CRYPTOSPORIDIUM PARVUM (JULY & SEPTEMBER 2006) ..................................................................................... 96 TABLE 5.2. IN VITRO INFECTIVITY OF CRYPTOSPORIDIUM PARVUM FOLLOWING UVB AND SOLAR EXPOSURE.............................................................................................. 99 TABLE 6.1. CLEARANCE RATES OF CRYPTOSPORIDIUM PARVUM , GIARDIA LAMBLIA, AND SELENASTRUM BY DAPHNIA PULICARIA ................................................................. 119 TABLE 6.2. VIABILITY, EXCYSTATION, OR INFECTIVITY OF CRYPTOSPORIDIUM PARVUM AND GIARDIA LAMBLIA POST GRAZING BY DAPHNIA PULICARIA ............................ 121 iv List of Figures FIGURE 1.1: SCHEMATIC OF DISSERTATION HYPOTHESES.................................................... 5 FIGURE 2.1. TERRESTRIAL UV-INDUCED DNA DAMAGE (2005-2006) ............................. 26 FIGURE 2.2. AQUATIC UV-INDUCED DNA DAMAGE (2005-2006) .................................... 27 FIGURE 2.3. TERRESTRIAL NITRATE AND NITRITE ACTINOMETRY (APRIL & JULY 2006)... 29 FIGURE 2.4. AQUATIC NITRATE AND NITRITE ACTINOMETRY (APRIL & JULY 2006).......... 30 FIGURE 3.1. UVB LAMP EMISSION SPECTRUM ................................................................... 43 FIGURE 3.2. SEASONAL AQUATIC UV-INDUCED DNA DAMAGE (APRIL – AUGUST 2006). 54 FIGURE 4.1. UVB LAMP AND PHOTOREACTIVE RADIATION (PRR) EMISSION SPECTRA...... 67 2 FIGURE 4.2.SURVIVAL OF DAPHNIA AT TWO TEMPERATURES (20 KJ/M UVR EXPOSURE).72 FIGURE 4.3. DNA DAMAGE INDUCTION IN DAPHNIA (20 KJ/M2 UVR EXPOSURE)............. 73 FIGURE 4.4. PHOTOPROTECTION IN DAPHNIA AT 10° AND 20°C ........................................ 74 FIGURE 4.5. DNA REPAIR RATES IN DAPHNIA AT 10° AND 20°C........................................ 75 FIGURE 4.6. NON-REPAIRABLE DAMAGE IN DAPHNIA ± PHOTOREPAIR RADIATION ............ 76 FIGURE 6.1. DAPHNIA PULICARIA GUT CONTENT (CRYPTOSPORIDIUM PARVUM AND GIARDIA LAMBLIA) .................................................................................................................. 113 FIGURE 6.2. NAMARSKI CONTRAST IMAGE OF GIARDIA LAMBLIA, CRYPTOSPORIDIUM PARVUM, AND SELENASTRUM USED IN DAPHNIA PULICARIA GRAZING EXPERIMENTS .. 114 FIGURE 6.3. PERCENT CHANGE IN EXCYSTATION, VIABILITY, OR INFECTIVITY OF GIARDIA LAMBLIA OR CRYPTOSPORIDIUM PARVUM POST GRAZING BY DAPHNIA PULICARIA ...... 122 v Dedication To all those who have shared in this journey – we made it! This final compilation of many years of work, which was full of both great achievements and heart-wrenching failures, was only possible through the support, compassion, and unending love of my family, my boyfriend, and the amazing network of friends that I have amassed over the years. My mother and father have taught me that only through hard work and persistence will we ever prove to ourselves how great we can be. My siblings have taught me that no matter the problems that life throws at you, it is nothing that a little ice cream can’t fix! My boyfriend has taught me that anything can be overcome if you are passionate. My friends have taught me that life is not life without the love of friends and that when all else fails, friends will never fail you. This dissertation is dedicated to these people, and so many more. Seemingly insurmountable mountains were no more than pebbles in the road because of you – thank you. vi Acknowledgements The work herein would never have been possible without the guidance, support, and undying commitment of my major advisor, Dr. Craig Williamson, my DNA damage mentor, Dr. David Mitchell, and my pathogen mentor, Dr. Kristen Jellison. They have taught me so much and helped me grow not only as a scientist and teacher, but as a person. Thank you. Thanks to my doctoral committee and the Department of Zoology at Miami for being so amenable during my transfer between Universities. A special thanks to the members of the Williamson Ecology of UV Lab, past and present, especially Dr. Robert Moeller, Erin Overholt, and Dr. Gaby Dee for both the positive and negative critiques through the years! Without them both, I would have never made it this far! Thanks to the students and technicians that have been a driving force in my research, both in the lab and the field, through the years. Thanks to the undergraduates
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
    The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number .
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water As Vectors for Non-Indigenous Species Introductions to the Great Lakes
    A Final Report for the Project Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-indigenous Species Introductions to the Great Lakes Principal Investigators: Thomas Johengen, CILER-University of Michigan David Reid, NOAA-GLERL Gary Fahnenstiel, NOAA-GLERL Hugh MacIsaac, University of Windsor Fred Dobbs, Old Dominion University Martina Doblin, Old Dominion University Greg Ruiz, Smithsonian Institution-SERC Philip Jenkins, Philip T Jenkins and Associates Ltd. Period of Activity: July 1, 2001 – December 31, 2003 Co-managed by Cooperative Institute for Limnology and Ecosystems Research School of Natural Resources and Environment University of Michigan Ann Arbor, MI 48109 and NOAA-Great Lakes Environmental Research Laboratory 2205 Commonwealth Blvd. Ann Arbor, MI 48105 April 2005 (Revision 1, May 20, 2005) Acknowledgements This was a large, complex research program that was accomplished only through the combined efforts of many persons and institutions. The Principal Investigators would like to acknowledge and thank the following for their many activities and contributions to the success of the research documented herein: At the University of Michigan, Cooperative Institute for Limnology and Ecosystem Research, Steven Constant provided substantial technical and field support for all aspects of the NOBOB shipboard sampling and maintained the photo archive; Ying Hong provided technical laboratory and field support for phytoplankton experiments and identification and enumeration of dinoflagellates in the NOBOB residual samples; and Laura Florence provided editorial support and assistance in compiling the Final Report. At the Great Lakes Institute for Environmental Research, University of Windsor, Sarah Bailey and Colin van Overdijk were involved in all aspects of the NOBOB shipboard sampling and conducted laboratory analyses of invertebrates and invertebrate resting stages.
    [Show full text]
  • Phylogenetic Analysis of 18S Rdna of Freshwater Copepods Neodiaptomus Species and Mesocyclops Species
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/313010364 Phylogenetic analysis of 18s rDNA of freshwater copepods neodiaptomus species and mesocyclops species Article in Journal of Advanced Zoology · December 2016 CITATION READS 1 202 5 authors, including: Sivakumar Kandasamy M.R Dhivya Shree Karpaga Vinayaga College of Engineering and Technology KLE Institute of Technology 27 PUBLICATIONS 80 CITATIONS 2 PUBLICATIONS 2 CITATIONS SEE PROFILE SEE PROFILE P. Muthupriya Kareem Altaff D.G.Vaishnav College AMET DEEMED TO BE UNIVERSITY 17 PUBLICATIONS 17 CITATIONS 66 PUBLICATIONS 350 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Meiofaunal studies of Palk bay sandy beaches View project Copepods View project All content following this page was uploaded by Sivakumar Kandasamy on 28 January 2017. The user has requested enhancement of the downloaded file. J. Adv. Zool. 2016: 37(2): 64-74 ISSN-0253-7214 PHYLOGENETIC ANALYSIS OF 18S rDNA OF FRESHWATER COPEPODS NEODIAPTOMUS SPECIES AND MESOCYCLOPS SPECIES K. Sivakumar1, K. Archana1, M. Shree Rama1, P. Muthupriya2 and K. Altaff3 1Department of Biotechnology Karpaga Vinayaga College of Engineering and Technology GST Road, Chinna Kolambakkam, Padalam-603 308, Kanchipuram (Dt.), India 2Department of Biotechnology DG Vaishnav College, Chennai – 600 106 3Department of Zoology The New College, Chennai-600 014 †corresponding author: [email protected] ABSTRACT: The present work is emphasized on analyzing the molecular characteristics of Mesocyclops sp. and Neodiaptomus sp. Molecular markers 18s rDNA region was used to resolve the evolutionary relationship between the species. The Mesocyclops sp.
    [Show full text]
  • Methods for Selection of Daphnia Resting Eggs: the Influence of Manual Decapsulation and Sodium Hypoclorite Solution on Hatching Rates T
    http://dx.doi.org/10.1590/1519-6984.09415 Original Article Methods for selection of Daphnia resting eggs: the influence of manual decapsulation and sodium hypoclorite solution on hatching rates T. A. S. V. Paesa, A. C. Rietzlera and P. M. Maia-Barbosaa* aPostgraduate Programme in Ecology, Conservation and Management of Wildlife – ECMVS, Laboratory of Limnology, Ecotoxicology and Aquatic Ecology, Universidade Federal de Minas Gerais – UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil *e-mail: [email protected] Received: June 19, 2015 – Accepted: October 7, 2015 – Distributed: November 30, 2016 (Wtih 4 figures) Abstract Cladocerans are able to produce resting eggs inside a protective resistant capsule, the ephippium, that difficults the visualization of the resting eggs, because of the dark pigmentation. Therefore, before hatching experiments, methods to verify viable resting eggs in ephippia must be considered. This study aimed to evaluate the number of eggs per ephippium of Daphnia from two tropical aquatic ecosystems and the efficiency of some methods for decapsulating resting eggs. To evaluate the influence of methods on hatching rates, three different conditions were tested: immersion in sodium hypochlorite, manually decapsulated resting eggs and intact ephippia. The immersion in hypochlorite solution could evaluate differences in numbers of resting eggs per ephippium between the ecosystems studied. The exposure to sodium hypochlorite at a concentration of 2% for 20 minutes was the most efficient method for visual evaluation and isolation of the resting eggs. Hatching rate experiments with resting eggs not isolated from ephippia were underestimated (11.1 ± 5.0%), showing the need of methods to quantify and isolate viable eggs.
    [Show full text]
  • Copépodos (Crustacea: Hexanauplia) Continentales De Colombia: Revisión Y Adiciones Al Inventario
    DOI: 10.21068/c2019.v20n01a04 Gaviria & Aranguren-Riaño Continental copepods (Crustacea: Hexanauplia) of Colombia: revision and additions to the inventory Copépodos (Crustacea: Hexanauplia) continentales de Colombia: revisión y adiciones al inventario Santiago Gaviria and Nelson Aranguren-Riaño Abstract We present the compilation of published and unpublished records of continental copepods of Colombia, as well as personal observations by the authors, yielding an additional list of 52 species and subspecies (7 calanoids, 20 cyclopoids, 25 harpacticoids). In addition to our former inventory (2007) of 69 species, the total number now reaches 121 taxa, increasing by 75 % the known number of continental copepods. Freshwater taxa increased in 15 species and subspecies. The number of brackish species (and marine species collected in brackish environments), recorded from coastal lagoons and temporal offshore ponds reached 39 species and subspecies. Thirteen taxa with locus typicus in Colombia have been described since 2007. Between 2007 and 2018, thirty-nine departmental records were made, and 43 new habitat records were reported (not including the species recorded as new for the country). Parasitic copepods of fish reached six species. However, the number of species is expected to increase with the survey of poorly studied regions like the Amazon and the Eastern Plains, and habitats like groundwater, benthos of lakes and ponds, semiterrestrial environments and additional coastal lagoons. Keywords. Biodiversity. Geographic distribution. Meiobenthos. Neotropical region. Zooplankton. Resumen Como resultado de la compilación de datos publicados y no publicados de copépodos continentales de Colombia, así como de observaciones personales de los autores, se estableció una lista adicional de 52 especies y subespecies (7 calanoideos, 20 cyclopoideos, 25 harpacticoideos).
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Distribución Geográfica De Boeckella Y Neoboeckella (Calanoida: Centropagidae) En El Perú TRABAJOS ORIGINALES
    Revista peruana de biología 21(3): 223 - 228 (2014) ISSN-L 1561-0837 Distribución de BOECKELLA y NEOBOECKELLA en el Perú doi: http://dx.doi.org/10.15381/rpb.v21i3.10895 FACULTAD DE CIENCIAS BIOLÓGICAS UNMSM TRABAJOS ORIGINALES Distribución geográfica deBoeckella y Neoboeckella (Calanoida: Centropagidae) en el Perú Geographical distribution of Boeckella and Neoboeckella (Calanoida: Centropagidae) in Peru Iris Samanez y Diana López Departamento de Limnología, Museo de Historia Natural de la Universidad Nacional Mayor de San Resumen Marcos. Av. Arenales 1256, Jesús María- Lima El análisis de muestras de plancton colectadas en diferentes localidades a lo largo de los 14, Perú. Andes peruanos, dieron como resultado el registro de siete especies de Boeckella (gracilis, Email Iris Samanez: [email protected] gracilipes, calcaris, poopoensis, occidentalis, titicacae y palustris) y dos de Neoboeckella Email Diana López: [email protected] (kinzeli y loffleri). Todas las especies citadas, exceptuando a las especies de Neoboeckella, fueron registradas en la cuenca del lago Titicaca (Puno). Además, B. palustris, B. gracilipes y B. calcaris fueron también reportadas en Moquegua, Apurímac y Pasco (Andes del sur y central). Boeckella titicacae parece estar restringida a la cuenca del lago Titicaca. Boeckella poopoensis ocurre en cuerpos de agua con elevada conductividad reportándose sólo en Las Salinas en Arequipa. Boeckella occidentalis fue la especie con mayor rango de distribución desde el sur en Puno hasta el norte en Cajamarca y se registra por primera vez para el país Neoboeckella loffleri. Las muestras están depositadas en la Colección de Plancton del De- partamento de Limnología del Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima-Perú.
    [Show full text]
  • Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio
    Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 January 2012 Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller* and Kenneth A. Krieger Acknowledgements The authors are grateful for the assistance of Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve, for providing funding for this project, directing us to updated taxonomic resources and critically reviewing drafts of this atlas. We also thank Dr. Brenda Hann, Department of Biological Sciences at the University of Manitoba, for her thorough review of the final draft. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S.
    [Show full text]
  • Leptodiaptomus Ashlandi) Following the 107
    Krist et al.: Life History in a Copepod (Leptodiaptomus Ashlandi) Following the 107 LIFE HISTORY IN A COPEPOD (LEPTODIAPTOMUS ASHLANDI) FOLLOWING THE INVASION OF LAKE TROUT IN YELLOWSTONE LAKE, WYOMING AMY KRIST LUSHA TRONSTAD HEATHER JULIEN UNIVERSITY OF WYOMING LARAMIE TODD KOEL CENTER FOR RESOURCES YELLOWSTONE NATIONAL PARK INTRODUCTION prey based on body size, selection on life-history traits may be altered for one or more organisms in the Introduced, non-native predators often food web because size-selective predation typically impact native species and ecosystems. These effects causes mortality rates to differ between adults and can be particularly devastating to native organisms juveniles. Size-selective predation is a powerful because they are often naïve to the effects of non- selective agent on life histories. Many studies have native predators (Park 2004, Lockwood et al. 2007). shown shifts in life-history traits from size-specific Interestingly, naïve prey are more common in mortality as a result of fishing and hunting practices freshwater than in terrestrial ecosystems (Cox and (e.g., Coltman, O‘Donoghue et al. 2003, Law 2007) Lima 2006). For example, introduced predators in and in many natural systems (e.g., Reznick and lakes have caused local extinctions of native animals Endler 1982; Reznick et al. 1990, Fisk et al. 2007). (e.g., Brooks and Dodson 1965, Witte et al. 1992) and altered food webs (e.g., Witte et al. 1992; Assuming that size-selective predation is Tronstad, Hall, Koel, in review). Because predators age-specific, theoretical and empirical work on life- eliminate a prey's fitness, predation is an important history evolution predicts that mortality of large selective force.
    [Show full text]
  • A New Species in the Daphnia Curvirostris (Crustacea: Cladocera)
    JOURNAL OF PLANKTON RESEARCH VOLUME 28 NUMBER 11 PAGES 1067–1079 2006 j j j j A new species in the Daphnia curvirostris (Crustacea: Cladocera) complex from the eastern Palearctic with molecular phylogenetic evidence for the independent origin of neckteeth ALEXEY A. KOTOV1*, SEIJI ISHIDA2 AND DEREK J. TAYLOR2 1 2 A. N. SEVERTSOV INSTITUTE OF ECOLOGY AND EVOLUTION, LENINSKY PROSPECT 33, MOSCOW 119071, RUSSIA AND DEPARTMENT OF BIOLOGICAL SCIENCES, UNIVERSITY AT BUFFALO, THE STATE UNIVERSITY OF NEW YORK, BUFFALO, NY 14260, USA *CORRESPONDING AUTHOR: [email protected] Received February 22, 2006; accepted in principle June 22, 2006; accepted for publication August 31, 2006; published online September 8, 2006 Communicating editor: K.J. Flynn Little is known of the biology and diversity of the environmental model genus Daphnia beyond the Nearctic and western Palearctic. Here, we describe Daphnia sinevi sp. nov., a species superficially similar to Daphnia curvirostris Eylmann, 1878, from the Far East of Russia. We estimated its phylogenetic position in the subgenus Daphnia s. str. with a rapidly evolving mitochondrial protein coding gene [NADH-2 (ND2)] and a nuclear protein-coding gene [heat shock protein 90 (HSP90)]. Daphnia curvirostris, D. sinevi sp. nov., Daphnia tanakai and D. sp. from Ootori- Ike, Japan, (which, probably, is D. morsei Ishikawa, 1895) formed a monophyletic clade modestly supported by ND2 and strongly supported by HSP90. Our results provide evidence of hidden species diversity in eastern Palearctic Daphnia, independent origins of defensive neckteeth and phylogenetic informativeness of nuclear protein-coding genes for zooplankton genera. INTRODUCTION morphological and genetic approach, Ishida et al.
    [Show full text]