Phylogenetic Analysis of 18S Rdna of Freshwater Copepods Neodiaptomus Species and Mesocyclops Species

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Analysis of 18S Rdna of Freshwater Copepods Neodiaptomus Species and Mesocyclops Species See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/313010364 Phylogenetic analysis of 18s rDNA of freshwater copepods neodiaptomus species and mesocyclops species Article in Journal of Advanced Zoology · December 2016 CITATION READS 1 202 5 authors, including: Sivakumar Kandasamy M.R Dhivya Shree Karpaga Vinayaga College of Engineering and Technology KLE Institute of Technology 27 PUBLICATIONS 80 CITATIONS 2 PUBLICATIONS 2 CITATIONS SEE PROFILE SEE PROFILE P. Muthupriya Kareem Altaff D.G.Vaishnav College AMET DEEMED TO BE UNIVERSITY 17 PUBLICATIONS 17 CITATIONS 66 PUBLICATIONS 350 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Meiofaunal studies of Palk bay sandy beaches View project Copepods View project All content following this page was uploaded by Sivakumar Kandasamy on 28 January 2017. The user has requested enhancement of the downloaded file. J. Adv. Zool. 2016: 37(2): 64-74 ISSN-0253-7214 PHYLOGENETIC ANALYSIS OF 18S rDNA OF FRESHWATER COPEPODS NEODIAPTOMUS SPECIES AND MESOCYCLOPS SPECIES K. Sivakumar1, K. Archana1, M. Shree Rama1, P. Muthupriya2 and K. Altaff3 1Department of Biotechnology Karpaga Vinayaga College of Engineering and Technology GST Road, Chinna Kolambakkam, Padalam-603 308, Kanchipuram (Dt.), India 2Department of Biotechnology DG Vaishnav College, Chennai – 600 106 3Department of Zoology The New College, Chennai-600 014 †corresponding author: [email protected] ABSTRACT: The present work is emphasized on analyzing the molecular characteristics of Mesocyclops sp. and Neodiaptomus sp. Molecular markers 18s rDNA region was used to resolve the evolutionary relationship between the species. The Mesocyclops sp. and Neodiaptomus sp. were sequenced and deposited in Gen Bank database. The similarity sequence was searched by BLAST programme and data was retrieved for construction of phylogenetic tree among the group. The percentage of similarity was found in the range of 80-83% and 97-100% in 18s rDNA region of Neodiaptomus sp. and Mesocyclops sp. to other species respectively. The phylogenetic tree was constructed using Neighbour-Joining method. Neodiaptomus sp. 18s rDNA region shows close relationship to Leptodiaptomus siciloides, Eudiaptomus wolterecki and Mastigodiaptomus albuquerquensis. Mesocyclops sp. 18srDNA region shows high similarity to Thermocyclops crassus and Mesocyclops leuckarti and less similarity to Mesocyclops edax clone. KEYWORDS: Neodiaptomus, Mesocyclops, NJ method and BLAST INTRODUCTION nutritional quality of copepods is Zooplankton plays an important role generally accepted to be very good for in energy and matter transfer through the marine fish larvae, and belived to be of a aquatic ecosystem1. Most zooplankton higher quality than the commonly used occupies second or third trophic level of live food Artemia5,6. Cyclopoidae is the the aquatic food web. In zooplankton, mostly found family among copepod copepod and cladoceran are the dominant species. The joint lies between fourth and groups in freshwater2. Copepods form a fifth segments of the body7. Calanoida is subclass belonging to subphylum another important species in an order of crustaceans, and it divided into ten copepods, they include around 40 orders. But only three are common in families, with about 1800 species of both plankton samples: such as Cyclopoida, marine and freshwater copepod. Poecilostomatida and Calanoid3,4. The 64 J. Adv. Zool. 2016 : 37 (2) Morphological identification copepod biodiversity and it is effective methods provide accurate information for the study of species level about species diversity8. Microscopic identification of calanoid copepods17. 18s discrimination of copepods is feasible rRNA is widely used for diversity only at the late copepodite and adult research in eukaryotes and also it has stages9. Identification of copepods at egg been used for resolving phylogenetic and larval stages are difficult using relationship among cyclopoid copepods microscope and also this method is time at higher level18. Nuclear DNA consuming and ambiguous. Therefore, it approximately 166,000 times larger than is necessary to develop alternative mtDNA and also provides set of markers method for identification of diversity of that potentially segregate independently samples10. Molecular techniques have and also phylogenetic studies carried at potential to provide species identification higher systemic level19. A molecular even the smaller aquatic organisms10. phylogenetic study is to recover the order Molecular techniques are useful for evolutionary events and represent them in identification of the species at early stage evolutionary trees that graphically depict level and shown sometimes significant relationship among species or genus over genetic differentiation among species11,12. time20. In molecular level, different techniques MATERIALS AND METHODS are available such as RFLP, RAPD, Collection and Preservation of the Multiplex PCR and genomic DNA sample: sequences used to discriminate the The Copepods samples were closely related specie13. Recently DNA collected from Padalam, Kancheepuram sequencing provides thousands rather District using plankton net (0.35 mouth than tens of characters enabling the diameter) made up of bolting silk cloth reconstruction of better resolved and (No 10, 158µm for 20-30 mins). The more robust phylogenetic trees14. samples were transported to the Currently few nuclear and mitochondrial laboratory immediately and they were markers have been used to successfully fixed in 90% ethanol for taxonomical resolve phylogenetic relationship in studies. The copepod had identified on copepods15,16. The main reason for the basis of morphological by using a selecting these two markers is highly binocular microscope. Copepod samples conserved regions. are first screened through 500µm mesh to The nuclear rRNA is the good remove fish and prawn larvae. The molecular marker for the study of rinsing is made repeatedly to reduce the 65 J. Adv. Zool. 2016 : 37 (2) contamination after rinsing the desired Amplification conditions consisted of copepod is picked from zooplankton 5min at 950C and then 40sec at 950C, samples with the help of fine capillary 25sec at 500C, 3min at 720C for 40 tubes and needles. Then the copepod is cycles, and extension for 15min at 720C washed with double distilled water and 23. preserved in 90% ethanol to facilitate Gene Sequencing: DNA isolation 21. DNA sequencing was carried out on DNA Isolation: an automated DNA sequencer. Proof DNA was isolated by Saline reading, editing, and alignments were Citrate Solution method (SCS). 200mg of performed using the program Sequencer copepod samples were suspended in 4.1 24. 800µl of saline citrate solution (0.14M Phylogenetic Analysis: Nacl and 0.02M Tri Sodium Citrate) and DNA homology searches were homogenized by morter and pestle. The performed using BLASTn 2.2.24 homogenate is transferred into a fresh programs at NCBI and similarity centrifuge tube and centrifuged at sequences were retrieved for 3000rpm for 10min and after phylogenetic analysis. Obtained centrifugation the supernatant will be sequences were verified, corrected and discarded and the pellet is resuspend in assembled with MEGA tool and aligned Saline Citrate Solution and then by ClustalW algorithm. Phylogenetic centrifuged at 3000 rpm for 5min. Again relationships were evaluated of 18s rRNA the pellet resuspended in 400µl of 2M nuclear genes by Neighbour Joining Nacl solution and centrifuged at method 25. 10000rpm for 15min at 40C. Followed by centrifugation the supernatant was RESULTS AND DISCUSSION collected in fresh centrifuge tubes. To this DNA Isolation and amplification: double the volume of ethanol is added The DNA was extracted and and the DNA is allowed to precipitation amplified of 18s rDNA region from for 6min 22. Neodiaptomus sp. (Fig. 1) and DNA Amplification: Amplification Mesocyclops sp. (Fig. 2). The molecular reaction of the 18s rDNA gene will be weight of amplified DNA was 1176 carried out using the primers 18s rRNA (Neodiaptomus sp.) and 1363 bp Forward 5’-GCA AGT CTG GTG CCA (Mesocyclops sp.). DNA Isolation done GCA GCC -3’ and 18s rRNA Reverse 5’- by using SCS method extracted DNA in TGA TCC TTC CGC AGG TTC AC -3’. the range of 2027 to 23130 bp for both 66 J. Adv. Zool. 2016 : 37 (2) Neodiaptomus sp. and Mesocyclops sp. in Lane 1 – Lambda DNA / Hind III Digest 18s rDNA region. The extracted DNA Marker; Lane 2 – Genomic DNA. Lane 1 – 1Kb DNA Ladder; Lane 2 – PCR was further amplified and nucleotide product. sequence of 1176 and 1363 base pair of 18s rDNA gene sequence analysis 18s rDNA was determined for Neodiaptomus sp. (Fig 1) and The 18s rDNA gene is one of the Mesocyclops sp. (Fig 2), respectively. most frequently used molecular marker Fig.1: DNA Isolation and PCR product of 18s for eukaryotes in determining generic and rRNA region of Neodiaptomus species specific level relationships and higher order analyses of phylogeny26. Similarity of sequences of Neodiaptomus sp. and Mesocyclops sp. was retrieved by BLASTn program. List of accession numbers and organism are give below in Table 1 and 2. The Neodiaptomus sp. and Mesocyclops sp. found maximum identity of 98% and 100% for 18s rDNA region, respectively. Blastn program were used to find the similarity of species based on maximum identity and E value. In 18s Lane 1 – Lambda DNA / Hind III Digest Marker; Lane 2 – Genomic DNA. Lane 1 – rDNA region of Neodiaptomus species
Recommended publications
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Sandra J. Connelly Candidate for the Degree: Doctor of Philosophy __________________________________________ Director Dr. Craig E. Williamson __________________________________________ Reader Dr. Maria González __________________________________________ Reader Dr. David L. Mitchell __________________________________________ Graduate School Representative Dr. A. John Bailer ABSTRACT EFFECTS OF ULTRAVIOLET RADIATION (UVR) INDUCED DNA DAMAGE AND OTHER ECOLOGICAL DETERMINANTS ON CRYPTOSPORIDIUM PARVUM, GIARDIA LAMBLIA, AND DAPHNIA SPP. IN FRESHWATER ECOSYSTEMS Sandra J. Connelly Freshwater ecosystems are especially susceptible to climatic change, including anthropogenic-induced changes, as they are directly influenced by the atmosphere and terrestrial ecosystems. A major environmental factor that potentially affects every element of an ecosystem, directly or indirectly, is ultraviolet radiation (UVR). UVR has been shown to negatively affect the DNA of aquatic organisms by the same mechanism, formation of photoproducts (cyclobutane pyrimidine dimers; CPDs), as in humans. First, the induction of CPDs by solar UVR was quantified in four aquatic and terrestrial temperate ecosystems. Data show significant variation in CPD formation not only between aquatic and terrestrial ecosystems but also within a single ecosystem and between seasons. Second, there is little quantitative data on UV-induced DNA damage and the effectiveness of DNA repair mechanisms on the damage induced in freshwater invertebrates in the literature. The rate of photoproduct induction (CPDs) and DNA repair (photoenzymatic and nucleotide excision repair) in Daphnia following UVR exposures in artificial as well as two natural temperate lake systems was tested. The effect of temperature on the DNA repair rates, and ultimately the organisms’ survival, was tested under controlled laboratory conditions following artificial UVB exposure.
    [Show full text]
  • Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need
    Prepared by Wisconsin Department of Natural Resources with Assistance from Conservation Partners Natural Resources Board Approved August 2005 U.S. Fish & Wildlife Acceptance September 2005 Wisconsin’s Strategy for Wildlife Species of Greatest Conservation Need Governor Jim Doyle Natural Resources Board Gerald M. O’Brien, Chair Howard D. Poulson, Vice-Chair Jonathan P Ela, Secretary Herbert F. Behnke Christine L. Thomas John W. Welter Stephen D. Willet Wisconsin Department of Natural Resources Scott Hassett, Secretary Laurie Osterndorf, Division Administrator, Land Paul DeLong, Division Administrator, Forestry Todd Ambs, Division Administrator, Water Amy Smith, Division Administrator, Enforcement and Science Recommended Citation: Wisconsin Department of Natural Resources. 2005. Wisconsin's Strategy for Wildlife Species of Greatest Conservation Need. Madison, WI. “When one tugs at a single thing in nature, he finds it attached to the rest of the world.” – John Muir The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington D.C. 20240. This publication can be made available in alternative formats (large print, Braille, audio-tape, etc.) upon request. Please contact the Wisconsin Department of Natural Resources, Bureau of Endangered Resources, PO Box 7921, Madison, WI 53707 or call (608) 266-7012 for copies of this report. Pub-ER-641 2005
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 122, NUMBER 2 NEW AND INADEQUATELY KNOWN NORTH AMERICAN SPECIES OF THE COPEPOD GENUS DIAPTOMUS BY MILDRED STRATTON WILSON Arctic Health Research Center U. S. Public Health Service Anchorage, Alaska (Publication 4132) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 4, 1953 Z$l Bovi (gaftimore (preee BALTIMORE, LID., XT. S. A. NEW AND INADEQUATELY KNOWN NORTH AMERICAN SPECIES OF THE COPEPOD GENUS DIAPTOMUS By MILDRED STRATTON WILSON Arctic Health Research Center U. S. Public Health Service Anchorage, Alaska INTRODUCTION In the preparation of a new key to the calanoid Copepoda for the revised edition of Ward and Whipple's "Fresh-Water Biology," some new species of Diaptomns have been recognized and the status and distribution of other species have been clarified. In order that these new forms may be included in the key, the following diagnostic de- scriptions and notes are presented. More detailed treatment is reserved for the future monographic review of the North American species. A considerable part of the present report deals with the species that have in one way or another been confused with Diaptomus shoshone Forbes. It became apparent early in the study of the subgenus Hes- perodiaptomus that it would be necessary to establish the typical form of D. shoshone before it and several closely related species could be correctly separated from one another. All that remains of the orig- inal collection, which is in the Illinois State Natural History Survey, are slides consisting mostly of dissected appendages. These have been found adequate to determine both the important and unknown diagnostic characters of the type.
    [Show full text]
  • Practical Guide to Identifying Freshwater Crustacean Zooplankton
    Practical Guide to Identifying Freshwater Crustacean Zooplankton Cooperative Freshwater Ecology Unit 2004, 2nd edition Practical Guide to Identifying Freshwater Crustacean Zooplankton Lynne M. Witty Aquatic Invertebrate Taxonomist Cooperative Freshwater Ecology Unit Department of Biology, Laurentian University 935 Ramsey Lake Road Sudbury, Ontario, Canada P3E 2C6 http://coopunit.laurentian.ca Cooperative Freshwater Ecology Unit 2004, 2nd edition Cover page diagram credits Diagrams of Copepoda derived from: Smith, K. and C.H. Fernando. 1978. A guide to the freshwater calanoid and cyclopoid copepod Crustacea of Ontario. University of Waterloo, Department of Biology. Ser. No. 18. Diagram of Bosminidae derived from: Pennak, R.W. 1989. Freshwater invertebrates of the United States. Third edition. John Wiley and Sons, Inc., New York. Diagram of Daphniidae derived from: Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the Great Lakes: A guide to the identification and ecology of the common crustacean species. The University of Wisconsin Press. Madison, Wisconsin. Diagrams of Chydoridae, Holopediidae, Leptodoridae, Macrothricidae, Polyphemidae, and Sididae derived from: Dodson, S.I. and D.G. Frey. 1991. Cladocera and other Branchiopoda. Pp. 723-786 in J.H. Thorp and A.P. Covich (eds.). Ecology and classification of North American freshwater invertebrates. Academic Press. San Diego. ii Acknowledgements Since the first edition of this manual was published in 2002, several changes have occurred within the field of freshwater zooplankton taxonomy. Many thanks go to Robert Girard of the Dorset Environmental Science Centre for keeping me apprised of these changes and for graciously putting up with my never ending list of questions. I would like to thank Julie Leduc for updating the list of zooplankton found within the Sudbury Region, depicted in Table 1.
    [Show full text]
  • 2013 ‘Thinking About Mandalas’ Environmentalist, John Ruskin
    www.limnology.org Volume 62 - June 2013 ‘Thinking about Mandalas’ environmentalist, John Ruskin. Very little is really new! From the President That leads my train of thought to our lot as While care is taken to accurately report Over the course of a year, David George scientists and the privileged positions we have. information, SILnews is not responsible Haskell, Professor of Biology at the University of We are paid to think, to examine, to reconsider, for information and/or advertisements published herein and does not endorse, the South, in Sewanee, Tennessee, observed the to put order into things, to question their truth. approve or recommend products, programs ecology of a metre-squared patch of woodland We need not be bound by party manifestos, the or opinions expressed. floor in an old-growth forest; and wrote a rules of organisations, the dogmas of belief or book about it. This small area he likened to a the policies of institutions: at least not in our microcosm of the biosphere, in the manner of a heads. At our desks we might be less free, and we Buddhist mandala. He had to cheat a little, for might be starting to jeopardise the value of what In This Issue some of his observations concern the woodland we do. For we now rarely sit and contemplate clearing, the trees and rocks around it and the because we are busy writing grant applications, From the Editor- Ramesh D. Gulati .... 2 flight of birds above it, but no matter. He writes filling-in forms, filing reports, and churning about the modern science of litter and mites, out lots of papers, many of which, dare I say it, 32nd SIL Congress ..............................
    [Show full text]
  • An Introduction and Key to the Freshwater Calanoid Copepods (Crustacea) of British Columbia
    AN INTRODUCTION AND KEY TO THE FRESHWATER CALANOID COPEPODS (CRUSTACEA) OF BRITISH COLUMBIA G.A. Sandercock Vancouver B.C. And G.G.E. Scudder Dept. of Zoology University of British Columbia Vancouver B.C. March 1994 CONTENTS INTRODUCTION…………………………………………………………………………………………………… 1 THE CLANOID COPEPODS……………………………………………………………………………………… 2 GENERAL BIOLOGY Developmental stages: the egg, nauplius, copepodite and adult…………………………………………… 4 Variations in Life Cycles………………………………………………………………………………………… 4 Population Studies………………………………………………………………………………………………. 6 Copepod Body Size and Coexistence………………………………………………………………………… 6 Mating Behaviour………………………………………………………………………………………………… 8 Swimming Behaviour…………………………………………………………………………………………… 8 Mouthpart Structure and Feeding……………………………………………………………………………… 9 Feeding Behaviour……………………………………………………………………………………………… 11 Herbivores – Suspension Feeding Calanoids……………………………………………………………… 11 Passive Feeding on Algae………………………………………………………………………………………. 11 Active Feeding on Algae…………………………………………………………………………………….… 12 Omnivores………………………………………………………………………………………………………. 12 Predatory Copepods…………………………………………………………………………………………… 12 ROLE OF CALANOID COPEPODS IN THE AQUATIC HABITAT…………………………………………… 13 IDENTIFICATION………………………………………………………………………………………………….. 16 Material and Methods Collection Methods……………………………………………………………………………………………… 16 Materials………………………………………………………………………………………………………… 17 Dissection Methods…………………………………………………………………………………………….. 19 Drawing Methods……………………………………………………………………………………………….. 20 Identification Methods – Background Information
    [Show full text]
  • A Comparison of Metabarcoding Results from DNA Extracted From
    bioRxiv preprint doi: https://doi.org/10.1101/575928; this version posted March 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Watered-down biodiversity? A comparison of metabarcoding results from 2 DNA extracted from matched water and bulk tissue biomonitoring samples 3 4 Mehrdad Hajibabaei1*, Teresita M. Porter1, 2, Chloe V. Robinson1, Donald J. 5 Baird3, Shadi Shokralla1, Michael Wright1 6 7 1. Centre for Biodiversity Genomics and Department of Integrative Biology, 8 University of Guelph, 50 Stone Road East, Guelph, ON Canada 9 10 2. Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen Street 11 East, Sault Ste. Marie, ON Canada 12 13 3. Environment and Climate Change Canada @ Canadian Rivers Institute, 14 Department of Biology, University of New Brunswick, Fredericton, NB Canada 15 16 17 * Corresponding author: [email protected] 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/575928; this version posted March 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 23 24 Abstract 25 26 Biomonitoring programs have evolved beyond the sole use of morphological 27 identification to determine the composition of invertebrate species assemblages in 28 an array of ecosystems.
    [Show full text]
  • Insular Ecosystems of the Southeastern United States: a Regional Synthesis to Support Biodiversity Conservation in a Changing Climate
    U.S. Department of the Interior Southeast Climate Science Center Insular Ecosystems of the Southeastern United States: A Regional Synthesis to Support Biodiversity Conservation in a Changing Climate Professional Paper 1828 U.S. Department of the Interior U.S. Geological Survey Cover photographs, left column, top to bottom: Photographs are by Alan M. Cressler, U.S. Geological Survey, unless noted otherwise. Ambystoma maculatum (spotted salamander) in a Carolina bay on the eastern shore of Maryland. Photograph by Joel Snodgrass, Virginia Polytechnic Institute and State University. Geum radiatum, Roan Mountain, Pisgah National Forest, Mitchell County, North Carolina. Dalea gattingeri, Chickamauga and Chattanooga National Military Park, Catoosa County, Georgia. Round Bald, Pisgah and Cherokee National Forests, Mitchell County, North Carolina, and Carter County, Tennessee. Cover photographs, right column, top to bottom: Habitat monitoring at Leatherwood Ford cobble bar, Big South Fork Cumberland River, Big South Fork National River and Recreation Area, Tennessee. Photograph by Nora Murdock, National Park Service. Soil island, Davidson-Arabia Mountain Nature Preserve, Dekalb County, Georgia. Photograph by Alan M. Cressler, U.S. Geological Survey. Antioch Bay, Hoke County, North Carolina. Photograph by Lisa Kelly, University of North Carolina at Pembroke. Insular Ecosystems of the Southeastern United States: A Regional Synthesis to Support Biodiversity Conservation in a Changing Climate By Jennifer M. Cartwright and William J. Wolfe U.S. Department of the Interior Southeast Climate Science Center Professional Paper 1828 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S.
    [Show full text]
  • Zooplankton Use of Terrestrial Organic Matter in Aquatic Food Webs
    UNIVERSITÉ DU QUÉBEC À CHICOUTIMI ZOOPLANKTON USE OF TERRESTRIAL ORGANIC MATTER IN AQUATIC FOOD WEBS THE SIS PRÉSENTED AS PARTIAL REQUIREMENT OF THE DOCTORATE OF BIO LOG Y EXTENDED OF L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL BY GUILLAUME GROISBOIS MARCH2017 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.0?-2011 ). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l 'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» UNIVERSITÉ DU QUÉBEC À CHICOUTIMI UTILISATION DE LA MATIÈRE ORGANIQUE TERRESTRE PAR LE ZOOPLANCTON DANS LES RÉSEAUX TROPHIQUES AQUATIQUES BORÉAUX THÈSE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN BIOLOGIE EXTENSIONNÉE DE L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL PAR GUILLAUME GROSBOIS MARS 2017 REMERCIEMENTS I would like to thank my advisor, Milla Rautio, who established this expertise in zooplankton in Chicoutimi and trusted me with this PhD project.
    [Show full text]
  • Using Patterns of Appendage Development to Group Taxa of Labidocera, Diaptomidae and Cyclopidae (Copepoda)
    Proceedings of the Fourth International Conference on Copepoda; Bull. Plankton Soc. Japan, Spec. Vol. (1991) 115 Using Patterns of Appendage Development to Group Taxa of Labidocera, Diaptomidae and Cyclopidae (Copepoda) Frank D. Ferrari Smithsonian Oceanographic Sorting Center, Museum of Natural History Smithsonian Institution, Washington, D. C. 20560, USA Abstract Developmental patterns for post-maxillipedal legs of copepods are used to identify (A) two monophyletic groups among 10 species of Labidocera, (1) L. aestiva, L. rotunda & L. wollastoni; and (2) L. bengalensis, L. fluviatilis & L. pectinata; (B) two monophyletic groups among 14 genera of Diaptomidae, (1) Aglaodiaptomus, Diaptomus. Heliodiap- tomus, Leptodiaptomus, Megadiaptomus, Notodiaptomus, Phyllodiaptomus, Scolodiaptomus, & Tumeodiaptomus; and (2) Allodiaptomus & Tropodiaptomus; (C) three monophyletic groups among 12 genera of Cyclopidae, (1) Acanthocyclops, Cyclops, Ectocyclops & Eucyclops; (2) Diacyclops & Mesocyclops; and (3) Allocyclops & Apocyclops. To define these groups a method of weighting developmental patterns is applied which involves determining a proportion of occurrence of the pattern among all copepods and ex- trapolating from this proportion to an inferred possibility for the pattern's convergence within an hypothesized monophyletic lineage. Introduction Use of developmental patterns of copepod appendages, instead of appendage mor- phology of the adult alone, to infer phylogenetic relationships has been suggested recently (Ferrari 1988). Relatively complete descriptions of developmental patterns for post-maxillipedal legs have been reported for 180 taxa in five copepod orders: 56 Calanoida, 26 Cyclopoida, 53 Harpacticoida, 24 Poecilostomatoida, 21 Siphonostomatoida. Descriptions from incomplete series of copepodids add informa- tion about 5 taxa for leg 6, 16 for leg 5, 7 for leg 4, and 2 for leg 3.
    [Show full text]
  • A Comparison of Metabarcoding Results from DNA Extracted From
    bioRxiv preprint first posted online Mar. 12, 2019; doi: http://dx.doi.org/10.1101/575928. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license. 1 Watered-down biodiversity? A comparison of metabarcoding results from 2 DNA extracted from matched water and bulk tissue biomonitoring samples 3 4 Mehrdad Hajibabaei1*, Teresita M. Porter1, 2, Chloe V. Robinson1, Donald J. 5 Baird3, Shadi Shokralla1, Michael Wright1 6 7 1. Centre for Biodiversity Genomics and Department of Integrative Biology, 8 University of Guelph, 50 Stone Road East, Guelph, ON Canada 9 10 2. Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen Street 11 East, Sault Ste. Marie, ON Canada 12 13 3. Environment and Climate Change Canada @ Canadian Rivers Institute, 14 Department of Biology, University of New Brunswick, Fredericton, NB Canada 15 16 17 * Corresponding author: [email protected] 18 19 20 21 22 1 bioRxiv preprint first posted online Mar. 12, 2019; doi: http://dx.doi.org/10.1101/575928. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license. 23 24 Abstract 25 26 Biomonitoring programs have evolved beyond the sole use of morphological 27 identification to determine the composition of invertebrate species assemblages in 28 an array of ecosystems.
    [Show full text]