Leptodiaptomus Ashlandi) Following the 107

Total Page:16

File Type:pdf, Size:1020Kb

Leptodiaptomus Ashlandi) Following the 107 Krist et al.: Life History in a Copepod (Leptodiaptomus Ashlandi) Following the 107 LIFE HISTORY IN A COPEPOD (LEPTODIAPTOMUS ASHLANDI) FOLLOWING THE INVASION OF LAKE TROUT IN YELLOWSTONE LAKE, WYOMING AMY KRIST LUSHA TRONSTAD HEATHER JULIEN UNIVERSITY OF WYOMING LARAMIE TODD KOEL CENTER FOR RESOURCES YELLOWSTONE NATIONAL PARK INTRODUCTION prey based on body size, selection on life-history traits may be altered for one or more organisms in the Introduced, non-native predators often food web because size-selective predation typically impact native species and ecosystems. These effects causes mortality rates to differ between adults and can be particularly devastating to native organisms juveniles. Size-selective predation is a powerful because they are often naïve to the effects of non- selective agent on life histories. Many studies have native predators (Park 2004, Lockwood et al. 2007). shown shifts in life-history traits from size-specific Interestingly, naïve prey are more common in mortality as a result of fishing and hunting practices freshwater than in terrestrial ecosystems (Cox and (e.g., Coltman, O‘Donoghue et al. 2003, Law 2007) Lima 2006). For example, introduced predators in and in many natural systems (e.g., Reznick and lakes have caused local extinctions of native animals Endler 1982; Reznick et al. 1990, Fisk et al. 2007). (e.g., Brooks and Dodson 1965, Witte et al. 1992) and altered food webs (e.g., Witte et al. 1992; Assuming that size-selective predation is Tronstad, Hall, Koel, in review). Because predators age-specific, theoretical and empirical work on life- eliminate a prey's fitness, predation is an important history evolution predicts that mortality of large selective force. Selection on prey can occur directly individuals should select for earlier maturity (Stearns on morphology, behavior and life-history traits by and Koella, 1986, Kozlowski and Uchmanski 1987, altering the mean expression of a trait in a Kozlowski, Wiegert 1987, Kawecki and Stearns population. Selection on prey can also act indirectly, 1993), higher reproductive effort (Gadgil and Bossert favoring phenotypic plasticity which ameliorates the 1970, Schaffer 1974, Charlesworth and Leon 1976, effects of predation. Thus, among the many impacts Law 1979, Michod 1979, Kozlowski and Uchmanski of non-native predators in their introduced range, 1987) and smaller offspring (Reznick and Endler these animals can alter the morphology, behavior and 1982, Reznick et al. 1990). Furthermore, when early life-history traits of their prey (e.g., Reznick and maturity occurs at a smaller size, mature adults can Endler 1982, Crowl and Covich 1990, Skelly and have smaller body sizes in species with determinate Werner 1990, Krist 2002). or asymptotic growth. Evolutionary consequences of invasive Predator-induced phenotypic plasticity is predators should be widespread because invasive another common consequence of predation. For species often alter natural selection on native species example, zooplankton in lakes use kairomones to (Sakai et al. 2001). When introduced predators select detect potential predators (Dodson 1989b). In Published by Wyoming Scholars Repository, 2009 1 University of Wyoming National Park Service Research Center Annual Report, Vol. 32 [2009], Art. 17 108 zooplankton, predator-induced responses can alter more benthic invertebrates when these fish were less morphology, behavior or life-histories traits (Larsson abundant. Cutthroat trout primarily consume large and Dodson 1993, Lass and Spaak 2003) and often zooplankton because they are retained in their gill protect the animals from predation. For example, rakers while small individuals pass through uneaten. within 11 years after the introduction of a size- Longer cutthroat trout have wider inter-gill raker selective predator, body size, size at first spaces and can filter only larger zooplankton. Thus, reproduction, and clutch size of Daphnia spp. and cutthroat trout are size-selective predators of Bosmina longirostris changed relative to pre- zooplankton in Yellowstone Lake. Consequently, introduction (Amundsen, Siwertsson, Primicerio, and after the introduction of lake trout and decline of Bohn, 2009). These traits are likely beneficial to cutthroat trout, zooplankton in Yellowstone Lake zooplankton in the presence of predators, because were largely released from size-selective predation. they reduce the chance of being consumed. For Therefore, after the decline of cutthroat trout, example, in cladocerans, smaller clutch sizes and a zooplankton should have experienced relaxed smaller size at first reproduction (which leads to selection for life-history traits that were favored by smaller adult body sizes) decreased their visibility to size-selective predation. We addressed whether life- predators (Gliwicz 1981, Latta et al. 2007). history traits differed between pre-lake trout and Similarly, female Cyclops (Copepoda) carrying large post-lake trout invasion in Leptodiaptomus ashlandi, numbers of eggs are more susceptible to predation by the most common copepod species in Yellowstone planktivorous brook trout (Dawidowicz and Gliwicz Lake. 1983). Thus, another possible outcome of the introduction of non-native predators is adaptive Changes in life-history traits between (beneficial; sensu Gotthard and Nylin 1995) changes copepods from before and after the introduction of in life-history traits resulting from phenotypic lake trout could be either genetically based or plasticity. phenotypically plastic shifts or a combination of both. Genetically based changes are possible because The introduction of predaceous lake trout of changes in selection pressure from the recent may have indirectly altered the life histories of release of zooplankton from size-selective predation. zooplankton in Yellowstone Lake, Yellowstone Plasticity is possible because the number of cutthroat National Park, Wyoming. Non-native lake trout trout releasing cues have changed between the past (Salvelinus namaycush) were illegally introduced to and recent. For either changes in genotype Yellowstone Lake (Kaeding et al. 1996) around 1985 frequencies or phenotypically plastic traits, size- (Munro et al. 2005). Following the introduction of selective predation is predicted to lead to a smaller this piscivorous fish, which primarily eat native size at first reproduction, larger clutch sizes, and Yellowstone cutthroat trout (Oncorhynchus clarki smaller offspring. First, under adult-specific bouvieri) in Yellowstone Lake (Ruzycki et al. 2003), mortality, life-history theory predicts earlier maturity the abundance of cutthroat trout declined. In fact, (Stearns and Koella 1986, Kozlowski and Uchmanski cutthroat trout abundance decreased by 60% in 1987, Kozlowski and Wiegert 1987, Kawecki and Yellowstone Lake and 99% in Clear Creek, a Stearns 1993). Because copepods do not grow after spawning stream since 1990 (Koel et al. 2005). they become mature (Williamson and Reid 2001), Presently indices of cutthroat trout abundance are the earlier maturity should also lead to a smaller adult lowest in the historical record (Koel et al. 2007). size. Likewise, if adaptive plasticity is occurring, This decline is of grave concern because Yellowstone smaller size at first reproduction is predicted because Lake is the largest remaining stronghold of smaller cladocerans are less conspicuous to predators Yellowstone cutthroat trout (Varley and Gresswell (Gliwicz 1981, Latta et al. 2007). Presumably 1988). smaller copepods are also less conspicuous to visual predators like cutthroat trout. Second, both selection The extreme decline in Yellowstone for genetically based traits and for adaptive cutthroat trout abundance has severely reduced phenotypic plasticity predict larger clutch sizes. predation on zooplankton in Yellowstone Lake Under adult-specific mortality, life-history theory because a large proportion of the diet of these fish predicts higher reproductive effort (Gadgil and consists of zooplankton. For example, Jones et al., Bossert 1970, Schaffer 1974, Charlesworth and Leon (1990) found that 80% of the volume of food in 1976, Law 1979, Michod 1979, Kozlowski and cutthroat trout stomachs were zooplankton. Uchmanski 1987). Larger clutch sizes are one metric Furthermore, Tronstad et al. (in prep) discovered that of greater investment in reproduction. Likewise, with cutthroat trout ate more zooplankton when these fish adaptive plasticity, larger clutches are predicted were abundant. However, cutthroat trout consumed under size-specific predation of large individuals. In 2 Krist et al.: Life History in a Copepod (Leptodiaptomus Ashlandi) Following the 109 this case, larger clutch sizes are a side effect of small species of cladocerans (Daphnia schødleri and D. size at maturity. In cladocerans, small Daphnia pulicaria). We chose to study L. ashlandi, because produce smaller offspring (Lampert 1993). this species is much more abundant than the other Assuming a trade-off between number and size of copepods. Also, for both past and present samples, offspring (Stearns 1992), organisms producing we had an adequate number of reproducing smaller offspring make more of them. Finally, individuals that we could analyze for total length, several empirical studies have shown that selection number of eggs, and egg size. We did not measure by adult-specific mortality leads to smaller offspring the response of cladocerans because previous (Reznick and Endler 1982, Reznick et al. 1990). preservation methods may have caused eggs to be These differences
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Variation in Body Shape Across Species and Populations in a Radiation of Diaptomid Copepods
    Variation in Body Shape across Species and Populations in a Radiation of Diaptomid Copepods Stephen Hausch¤a*, Jonathan B. Shurin¤b, Blake Matthews¤c 1 Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada Abstract Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses.
    [Show full text]
  • Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water As Vectors for Non-Indigenous Species Introductions to the Great Lakes
    A Final Report for the Project Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-indigenous Species Introductions to the Great Lakes Principal Investigators: Thomas Johengen, CILER-University of Michigan David Reid, NOAA-GLERL Gary Fahnenstiel, NOAA-GLERL Hugh MacIsaac, University of Windsor Fred Dobbs, Old Dominion University Martina Doblin, Old Dominion University Greg Ruiz, Smithsonian Institution-SERC Philip Jenkins, Philip T Jenkins and Associates Ltd. Period of Activity: July 1, 2001 – December 31, 2003 Co-managed by Cooperative Institute for Limnology and Ecosystems Research School of Natural Resources and Environment University of Michigan Ann Arbor, MI 48109 and NOAA-Great Lakes Environmental Research Laboratory 2205 Commonwealth Blvd. Ann Arbor, MI 48105 April 2005 (Revision 1, May 20, 2005) Acknowledgements This was a large, complex research program that was accomplished only through the combined efforts of many persons and institutions. The Principal Investigators would like to acknowledge and thank the following for their many activities and contributions to the success of the research documented herein: At the University of Michigan, Cooperative Institute for Limnology and Ecosystem Research, Steven Constant provided substantial technical and field support for all aspects of the NOBOB shipboard sampling and maintained the photo archive; Ying Hong provided technical laboratory and field support for phytoplankton experiments and identification and enumeration of dinoflagellates in the NOBOB residual samples; and Laura Florence provided editorial support and assistance in compiling the Final Report. At the Great Lakes Institute for Environmental Research, University of Windsor, Sarah Bailey and Colin van Overdijk were involved in all aspects of the NOBOB shipboard sampling and conducted laboratory analyses of invertebrates and invertebrate resting stages.
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School Certificate for Approving The
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Sandra J. Connelly Candidate for the Degree: Doctor of Philosophy __________________________________________ Director Dr. Craig E. Williamson __________________________________________ Reader Dr. Maria González __________________________________________ Reader Dr. David L. Mitchell __________________________________________ Graduate School Representative Dr. A. John Bailer ABSTRACT EFFECTS OF ULTRAVIOLET RADIATION (UVR) INDUCED DNA DAMAGE AND OTHER ECOLOGICAL DETERMINANTS ON CRYPTOSPORIDIUM PARVUM, GIARDIA LAMBLIA, AND DAPHNIA SPP. IN FRESHWATER ECOSYSTEMS Sandra J. Connelly Freshwater ecosystems are especially susceptible to climatic change, including anthropogenic-induced changes, as they are directly influenced by the atmosphere and terrestrial ecosystems. A major environmental factor that potentially affects every element of an ecosystem, directly or indirectly, is ultraviolet radiation (UVR). UVR has been shown to negatively affect the DNA of aquatic organisms by the same mechanism, formation of photoproducts (cyclobutane pyrimidine dimers; CPDs), as in humans. First, the induction of CPDs by solar UVR was quantified in four aquatic and terrestrial temperate ecosystems. Data show significant variation in CPD formation not only between aquatic and terrestrial ecosystems but also within a single ecosystem and between seasons. Second, there is little quantitative data on UV-induced DNA damage and the effectiveness of DNA repair mechanisms on the damage induced in freshwater invertebrates in the literature. The rate of photoproduct induction (CPDs) and DNA repair (photoenzymatic and nucleotide excision repair) in Daphnia following UVR exposures in artificial as well as two natural temperate lake systems was tested. The effect of temperature on the DNA repair rates, and ultimately the organisms’ survival, was tested under controlled laboratory conditions following artificial UVB exposure.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • Length-Weight Regression Equations Used to Estimate Individual Zooplankton Dry Weight (W in Μg) from Body Length (L in Mm)
    HISTORY OF CHEMICAL, PHYSICAL AND BIOLOGICAL METHODS, SAMPLE LOCATIONS AND LAKE MORPHOMETRY FOR THE DORSET ENVIRONMENTAL SCIENCE CENTRE (1973 - 2006) Report prepared by: R.E. Girard B.J. Clark1, N.D. Yan1, 2 R.A. Reid1, S.M. David3, R.G. Ingram1 and J.G. Findeis1, 4 1 Ontario Ministry of the Environment Dorset Environmental Science Centre P. O. Box 39 Dorset, Ontario P0A 1E0 2 York University, Department of Biology 4700 Keele Street Toronto, Ontario M3J 1P3 3 SMD Technical Services P.O.Box 331 Dorset, Ontario P0A 1E0 4 Trent University Environmental and Resource Studies 1600 West Bank Drive Peterborough, Ontario K9J 7B8 DATA REPORT 2007/ PREFACE This report is published to provide a readily available source of basic environmental, limnological and water quality information collected on lakes and watersheds from many regions of Ontario by staff of the Dorset Environmental Science Centre. These data were collected as part of aquatic research and monitoring programs that were developed to support major Provincial and Federal pollution abatement initiatives beginning in 1973 when the Ontario Ministry of the Environment (MOE) was created from the former Ontario Water Resources Commission (OWRC). One of the most intensive aquatic research studies in North America began with the limnological portion of the Sudbury Environmental Study (1973-1980). This study was initiated to investigate the effects of acidification on aquatic habitats in the greater Sudbury area and to characterize the distance and direction of long range transport of the smelter emissions. The core set of four study lakes have been monitored throughout the ice-free seasons of 1973-2006 and provides temporal data for chemical, physical and biological variables.
    [Show full text]
  • Senckenberg.De]; Sahar Khodami [[email protected]]; Terue C
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2018 Band/Volume: 76 Autor(en)/Author(s): Mercado-Salas Nancy F., Khodami Sahar, Kihara Terue C., Elias-Gutierrez Manuel, Martinez Arbizu Pedro Artikel/Article: Genetic structure and distributional patterns of the genus Mastigodiaptomus (Copepoda) in Mexico, with the description of a new species from the Yucatan Peninsula 487-507 76 (3): 487– 507 11.12.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Genetic structure and distributional patterns of the genus Mastigodiaptomus (Copepoda) in Mexico, with the de- scription of a new species from the Yucatan Peninsula Nancy F. Mercado-Salas*, 1, Sahar Khodami 1, Terue C. Kihara 1, Manuel Elías-Gutiérrez 2 & Pedro Martínez Arbizu 1 1 Senckenberg am Meer Wilhelmshaven, Südstrand 44, 26382 Wilhelmshaven, Germany; Nancy F. Mercado-Salas * [nancy.mercado@ senckenberg.de]; Sahar Khodami [[email protected]]; Terue C. Kihara [[email protected]], Pedro Martí- nez Arbizu [[email protected]] — 2 El Colegio de la Frontera Sur, Av. Centenario Km. 5.5, 77014 Chetumal Quintana Roo, Mexico; Manuel Elías-Gutiérrez [[email protected]] — * Corresponding author Accepted 09.x.2018. Published online at www.senckenberg.de/arthropod-systematics on 27.xi.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. Mastigodiaptomus is the most common diaptomid in the Southern USA, Mexico, Central America and Caribbean freshwaters, nevertheless its distributional patterns and diversity cannot be stablished because of the presence of cryptic species hidden under wide distributed forms. Herein we study the morphological and molecular variation of the calanoid fauna from two Biosphere Reserves in the Yucatan Peninsula and we describe a new species of the genus Mastigodiaptomus.
    [Show full text]
  • Plankton Trophic Structure Within Lake Michigan As Revealed by Stable Carbon and Nitrogen Isotopes Zachery G
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations 5-1-2014 Plankton Trophic Structure Within Lake Michigan as Revealed By Stable Carbon and Nitrogen Isotopes Zachery G. Driscoll University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, and the Fresh Water Studies Commons Recommended Citation Driscoll, Zachery G., "Plankton Trophic Structure Within Lake Michigan as Revealed By Stable Carbon and Nitrogen Isotopes" (2014). Theses and Dissertations. 435. https://dc.uwm.edu/etd/435 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PLANKTON TROPHIC STRUCTURE WITHIN LAKE MICHIGAN AS REVEALED BY STABLE CARBON AND NITROGEN ISOTOPES by Zachery G. Driscoll A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Freshwater Sciences and Technology at The University of Wisconsin-Milwaukee May 2014 ABSTRACT PLANKTON TROPHIC STRUCTURE WITHIN LAKE MICHIGAN AS REVEALED BY STABLE CARBON AND NITROGEN ISOTOPES by Zachery G. Driscoll The University of Wisconsin-Milwaukee, 2014 Under the Supervision of Professor Harvey Bootsma Zooplankton represent a critical component of aquatic food webs in that they transfer energy from primary producers to higher trophic positions. However, their small size makes the application of traditional trophic ecology techniques difficult. Fortunately, novel techniques have been developed that can be used to elucidate feeding information between zooplankton species.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 0130572 Potential competition among young-of-year fish in western Lake Erie Trauben, Bruce Kenneth, Ph.D. The Ohio State University, 1991 Copyright ©1991 by Trauben, Bruce Kenneth.
    [Show full text]
  • Calibration of the Multi-Gene Metabarcoding Approach As an Efficient and Accurate Biomonitoring Tool
    Calibration of the multi-gene metabarcoding approach as an efficient and accurate biomonitoring tool Guang Kun Zhang Department of Biology McGill University, Montréal April 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Guang Kun Zhang 2017 1 TABLE OF CONTENTS Abstract .................................................................................................................. 3 Résumé .................................................................................................................... 4 Acknowledgements ................................................................................................ 5 Contributions of Authors ...................................................................................... 6 General Introduction ............................................................................................. 7 References ..................................................................................................... 9 Manuscript: Towards accurate species detection: calibrating metabarcoding methods based on multiplexing multiple markers.................................................. 13 References ....................................................................................................32 Tables ...........................................................................................................41 Figures ........................................................................................................
    [Show full text]