Balcer Part 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD. -
SMITH B.Sc., University of British Columbia, 2005
Drivers of Wetland Zooplankton Community Structure in a Rangeland Landscape of the Southern Interior of British Columbia by LINDSEY MARGARET SMITH B.Sc., University of British Columbia, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCES in the Department of Natural Resource Sciences Thesis examining committee: Brian Heise (Ph.D.) (Thesis Supervisor), Associate Professor, Natural Resource Sciences, Thompson Rivers University Darryl Carlyle-Moses (Ph.D.), Associate Professor, Geography & Environmental Studies, Thompson Rivers University Lauchlan Fraser (Ph.D.), Professor, Natural Resource Sciences, Thompson Rivers University Louis Gosselin (Ph.D.), Associate Professor, Biological Sciences, Thompson Rivers University Ian Walker (Ph.D.) (External Examiner), Professor, Biology, University of British Columbia-Okanagan May 2012 Thompson Rivers University Lindsey Margaret Smith, 2012 ii Thesis Supervisor: Brian Heise (Ph.D.) ABSTRACT Zooplankton play a vital role in aquatic ecosystems and communities, demonstrating community responses to environmental disturbances. Surrounding land use practices can impact zooplankton communities indirectly through hydrochemistry and physical environmental changes. This study examined the effects of cattle disturbance on zooplankton community structure in wetlands of the Southern Interior of British Columbia. Zooplankton samples were obtained from fifteen morphologically similar freshwater wetlands in the summer of 2009. Physical, chemical and biological characteristics of the wetlands were also assessed. Through the use of Cluster Analysis and Non-metric Multidimensional Scaling (NMDS), differences in community assemblages were found amongst wetlands. Correlations of environmental variables with NMDS axes and multiple regression analyses indicated that both cattle impact (measured by percent of shoreline impacted by cattle) and salinity heavily influenced community structure (species richness and composition). -
Catching It All Chequamegon Bay, Apostle Islands by Dick Ellis
www.onwisconsinoutdoors.com June 22, 2009 Catching It All Chequamegon Bay, Apostle Islands By Dick Ellis Still a bit early to pursue a I pondered Kastern’s offer. deep water search for lake trout Superior was quiet and the fore- near the Apostle Islands, Guide cast called for the big lake to stay Aron Kastern had left the target of flat with gentle winds. Although choice to me; take the sure bet- Kastern knows better lake trout bite and chase Chequamegon fishing is on the horizon as the Bay’s trophy-class smallmouth calendar pages burn away into bass, or vertical jig for lakers in July and August, if we did find water that can reach depths of fish we might tangle with a fero- hundreds of feet with no guarantee cious fighter weighing in at 10 that we would find fish. pounds, 20…or who knows how “I also have a great bite on big. Most appealing to a writer right now casting for walleyes,” who had only fished for lakers on the multi-species guide said on a the Superior hardwater, Kastern bluebird, mid-June morning. “We loves to vertical jig the deep. Most caught lots of nice fish the last other anglers prefer to motor troll. several days on crankbaits in shal- Even a bad day of fishing is low water. We will catch walleyes still fishing, I thought, considering if we go for it. But that can wait the possibility of photographing until late afternoon. Or we can do the dreaded skunk for this column. it all.” We would still be on big, beautiful Kastern does it all. -
Molecular Systematics of Freshwater Diaptomid Species of the Genus Neodiaptomus from Andaman Islands, India
www.genaqua.org ISSN 2459-1831 Genetics of Aquatic Organisms 2: 13-22 (2018) DOI: 10.4194/2459-1831-v2_1_03 RESEARCH PAPER Molecular Systematics of Freshwater Diaptomid Species of the Genus Neodiaptomus from Andaman Islands, India B. Dilshad Begum1, G. Dharani2, K. Altaff3,* 1 Justice Basheer Ahmed Sayeed College for Women, P. G. & Research Department of Zoology, Teynampet, Chennai - 600 018, India. 2 Ministry of Earth Sciences, Earth System Science Organization, National Institute of Ocean Technology, Chennai - 600 100, India. 3 AMET University, Department of Marine Biotechnology, Chennai - 603112, India. * Corresponding Author: Tel.: +9444108110; Received 10 April 2018 E-mail: [email protected] Accepted 29 July 2018 Abstract Calanoid copepods belonging to the family Diaptomidae occur commonly and abundantly in different types of freshwater environment. Based on morphological taxonomic key characters 48 diaptomid species belonging to 13 genera were reported from India. Taxonomic discrimination of many species of these genera is difficult due to their high morphological similarities and minute differences in key characters. In the present study two species of the genus, Neodiaptomus, N. meggiti and N. schmackeri from Andaman Islands were examined based on morphological and molecular characters which showed low variation in morphology and differences in their distributions. The morphological taxonomy of Copepoda with genetic analysis has shown complementing values in understanding the genetic variation and phylogeny of the contemporary populations. In this study, a molecular phylogenetic analysis of N. meggiti and N. schmackeri is performed on the basis of mitochondrial Cytochrome c oxidase subunit I (COI) gene. The mtDNA COI sequence of N. meggiti and N. -
Great Lakes/Big Rivers Fisheries Operational Plan Accomplishment
U.S. Fish & Wildlife Service Fisheries Operational Plan Accomplishment Report for Fiscal Year 2004 March 2003 Region 3 - Great Lakes/Big Rivers Partnerships and Accountability Aquatic Habitat Conservation and Management Workforce Management Aquatic Species Conservation and Aquatic Invasive Species Management Cooperation with Native Public Use Leadership in Science Americans and Technology To view monthly issues of “Fish Lines”, see our Regional website at: (http://www.fws.gov/midwest/Fisheries/) 2 Fisheries Accomplishment Report - FY2004 Great Lakes - Big Rivers Region Message from the Assistant Regional Director for Fisheries The Fisheries Program in Region 3 (Great Lakes – Big Rivers) is committed to the conservation of our diverse aquatic resources and the maintenance of healthy, sustainable populations of fish that can be enjoyed by millions of recreational anglers. To that end, we are working with the States, Tribes, other Federal agencies and our many partners in the private sector to identify, prioritize and focus our efforts in a manner that is most complementary to their efforts, consistent with the mission of our agency, and within the funding resources available. At the very heart of our efforts is the desire to be transparent and accountable and, to that end, we present this Region 3 Annual Fisheries Accomplishment Report for Fiscal Year 2004. This report captures our commitments from the Region 3 Fisheries Program Operational Plan, Fiscal Years 2004 & 2005. This document cannot possibly capture the myriad of activities that are carried out by any one station in any one year, by all of the dedicated employees in the Fisheries Program, but, hopefully, it provides a clear indication of where our energy is focused. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Chequamegon Bay and Its Communities I Ashland Bayfield La Pointe a Brief History 1659-1883
Chequamegon Bay And Its Communities I Ashland Bayfield LaPointe A Brief Hi story 1659-1883 Chequamegon Bay And Its Communities I Ashland Bayfield La Pointe A Brief History 1659-1883 Lars Larson PhD Emeriti Faculty University of Wisconsin-Whitewater CHEQUAMEGON BAY Chequamegon, sweet lovely bay, Upon thy bosom softly sway. In gentle swells and azure bright. Reflections of the coming night; Thy wooded shores of spruce and pine. Forever hold thee close entwine. Thy lovely isles and babbling rills. Whose music soft my soul enthrills; What wondrous power and mystic hands. Hath wrought thy beach of golden sands. What artist's eye mid painter's brush. Hath caught thy waters as they rush. And stilled them all and then unfurled. The grandest picture of the world— So fair, so sweet to look upon. Thy beauteous bay, Chequamegon. Whitewater Wisconsin 2005 Table of Contents Acknowledgements 3 The Chequamegon Bay Historians 4 Odes to Chequamegon Bay 7 Introduction 13 Chapter 1—An Overview of Wisconsin History to 1850 26 Chapter 2—Chequamegon Bay and La Pointe 1659-1855 44 Chapter 3—The Second Era of Resource Exploitation 82 Chapter 4—Superior 1853-1860 92 Chapter 5—Ashland 1854-1860 112 Chapter 6—Bayfield 1856-1860 133 Chapter 7—Bayfield 1870-1883 151 Chapter 8—Ashland 1870-1883 186 Chapter 9—The Raikoad Land Grants: Were The Benefits Worth The Cost? 218 Bibliographies 229 Introduction 230 Wisconsin History 23 4 Chequamegon Bay and La Pointe 241 Second Era of Resource Exploitation 257 Superior 264 Ashland 272 Bayfield 293 Introduction 1860-1870 301 Railroad Land Grants 304 Acknowledgements I am deeply indebted to the staffs of the Andersen Library of the University of Wisconsin-Whitewater, and the Library of the State Historical Society of Wisconsin, mid to the Register of Deeds of Bayfield County, for their indispensable assistance mid support in the preparation of this study. -
Order HARPACTICOIDA Manual Versión Española
Revista IDE@ - SEA, nº 91B (30-06-2015): 1–12. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Maxillopoda: Copepoda Order HARPACTICOIDA Manual Versión española CLASS MAXILLOPODA: SUBCLASS COPEPODA: Order Harpacticoida Maria José Caramujo CE3C – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. [email protected] 1. Brief definition of the group and main diagnosing characters The Harpacticoida is one of the orders of the subclass Copepoda, and includes mainly free-living epibenthic aquatic organisms, although many species have successfully exploited other habitats, including semi-terrestial habitats and have established symbiotic relationships with other metazoans. Harpacticoids have a size range between 0.2 and 2.5 mm and have a podoplean morphology. This morphology is char- acterized by a body formed by several articulated segments, metameres or somites that form two separate regions; the anterior prosome and the posterior urosome. The division between the urosome and prosome may be present as a constriction in the more cylindric shaped harpacticoid families (e.g. Ectinosomatidae) or may be very pronounced in other familes (e.g. Tisbidae). The adults retain the central eye of the larval stages, with the exception of some underground species that lack visual organs. The harpacticoids have shorter first antennae, and relatively wider urosome than the copepods from other orders. The basic body plan of harpacticoids is more adapted to life in the benthic environment than in the pelagic environment i.e. they are more vermiform in shape than other copepods. Harpacticoida is a very diverse group of copepods both in terms of morphological diversity and in the species-richness of some of the families. -
Miocene Cladocera from Poland Henri J
www.nature.com/scientificreports OPEN Miocene cladocera from Poland Henri J. Dumont1, Agnieszka Pociecha2*, Edyta Zawisza3, Krystyna Szeroczyńska3, Elżbieta Worobiec4 & Grzegorz Worobiec4 The Bełchatów Lignite Mine of Poland is a treasure-cove for mid-to late Miocene plant and animal fossils, deposited in a slow-fowing river valley with swamps and oxbow lakes. Here, we report the fnding of abundant fossil anomopod cladocerans. Some are three-dimensionally preserved, including the taxonomically important trunk limbs. They pertain to the families Chydoridae and Bosminidae, with species similar to but distinct from modern ones. All are members of the zooplankton, though some are littoral while others are pelagic in nature. Morphological stasis in these families is not outspoken as in the Daphniidae and the stasis hypothesis, based on ephippia only, is challenged. The absence of Daphnia is conspicuous and ascribed to a combination of fsh predation and local water chemistry. Its place in the oxbow lakes is taken by at least two Bosmina species, one of which is undescribed. We consider this a case of paleo-competitive release. For Bosminidae, these are the frst certifed fossils predating the Pleistocene. Te lignite mine at Bełchatów, Central Poland (Fig. 1), has recently yielded abundant Miocene remains of several species of branchiopod microcrustaceans. Tey pertain to the order Anomopoda or water feas, families Chydori- dae and Bosminidae. Te main synapomorphy of the anomopods is the ephippium, a structure in which sexual or resting eggs are deposited and that forms when external conditions deteriorate. Te Daphniidae include the well-known and speciose genus Daphnia, a highly specialized pelagic component of the freshwater zooplankton. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Variation in Body Shape Across Species and Populations in a Radiation of Diaptomid Copepods
Variation in Body Shape across Species and Populations in a Radiation of Diaptomid Copepods Stephen Hausch¤a*, Jonathan B. Shurin¤b, Blake Matthews¤c 1 Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada Abstract Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. -
Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water As Vectors for Non-Indigenous Species Introductions to the Great Lakes
A Final Report for the Project Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-indigenous Species Introductions to the Great Lakes Principal Investigators: Thomas Johengen, CILER-University of Michigan David Reid, NOAA-GLERL Gary Fahnenstiel, NOAA-GLERL Hugh MacIsaac, University of Windsor Fred Dobbs, Old Dominion University Martina Doblin, Old Dominion University Greg Ruiz, Smithsonian Institution-SERC Philip Jenkins, Philip T Jenkins and Associates Ltd. Period of Activity: July 1, 2001 – December 31, 2003 Co-managed by Cooperative Institute for Limnology and Ecosystems Research School of Natural Resources and Environment University of Michigan Ann Arbor, MI 48109 and NOAA-Great Lakes Environmental Research Laboratory 2205 Commonwealth Blvd. Ann Arbor, MI 48105 April 2005 (Revision 1, May 20, 2005) Acknowledgements This was a large, complex research program that was accomplished only through the combined efforts of many persons and institutions. The Principal Investigators would like to acknowledge and thank the following for their many activities and contributions to the success of the research documented herein: At the University of Michigan, Cooperative Institute for Limnology and Ecosystem Research, Steven Constant provided substantial technical and field support for all aspects of the NOBOB shipboard sampling and maintained the photo archive; Ying Hong provided technical laboratory and field support for phytoplankton experiments and identification and enumeration of dinoflagellates in the NOBOB residual samples; and Laura Florence provided editorial support and assistance in compiling the Final Report. At the Great Lakes Institute for Environmental Research, University of Windsor, Sarah Bailey and Colin van Overdijk were involved in all aspects of the NOBOB shipboard sampling and conducted laboratory analyses of invertebrates and invertebrate resting stages.