Geological and Chemical Conditions of Formation of Red Beryl, Wah Wah Mountains, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Geological and Chemical Conditions of Formation of Red Beryl, Wah Wah Mountains, Utah Utah Geological Association Publication 23 155 GEOLOGICAL AND CHEMICAL CONDITIONS OF FORMATION OF RED BERYL, WAH WAH MOUNTAINS, UTAH JEFFREY D. KEITH! ERIC H. CHRISTIANSEN! AND DAVID G. TINGEY! ABSTRACT Several geological and chemical factors appear to have contributed to the formation of unique gem­ quality red beryl in a topaz rhyolite lava flow in the Wah Wah Mountains, Utah. All beryl crystals in the flow occur exclusively along shrinkage fractures in devitrified rhyolite, rather than in lithophysal pockets, as is often the case for topaz, or in unfractured rock. The flow occupies a graben and perhaps a significant paleo-drainage. Both beryl-bearing fractures and the host rhyolite show an unusual amount of clay alteration compared to other topaz rhyolite flows in the Wah Wah Mountains and elsewhere in the western United States. Hydrothermal alteration does not appear to be associated with volcanic vents, but may be related to incursion of surface water along shrinkage fractures within the cooling flow. Beryllium was likely transported with fluoride complexes; fluoride concentrations would remain at optimal levels for Be transport only if concentrations of Ca were low. Whole-rock concentrations of CaO within the host rhyolite are very low (<0.01% to 0.18%) compared to other topaz rhyolites while Be concentrations are about average. Beryl growth occurred at temperatures below magmatic values (-300- 6500C), but above the temperature of kaolin development (200-300°C) as fluoride-rich vapors, released during devitrification, encountered fractures. If the rhyolite flow was partially bathed in surface water during cooling, a water-rich low-density fluid, or vapor, probably permeated shrinkage fractures during beryl formation. Beryllium-fluoride complexes reacted with alkali feldspar, water, and Fe-Mn oxides along fractures to produce red beryl. Continued equilibration of the flow with surface water at lower temperatures would likely produce a boiling, more acidic fluid capable of producing the kaolin lined fractures and argillic alteration which are commonly present. Consequently, eruption of low-Ca topaz rhyolite lava followed by incursion of surface water into some medial portions of the flow at high temperatures are critical factors that led to formation of bery1 in this unique deposit. No proven mine reserves exist. However, there is no evidence that most or all of the productive fractures have been found and mined. In the main pit, productive fractures occur every few meters. There is no reason to suspect that beryl-bearing fractures of equal gem-quality do not occur within a few meters or tens of meters of the current pit walls or at other locations in the flow. Probable reserves of red beryl may greatly exceed the amount that has been produced. INTRODUCTION Utah (Christiansen and others, 1986,) and in the Black Range, New Mexico (Kimbler and Haynes, 1980), but neither of these The only known occurrence, and most-valued variety, of has produced crystals suitable for faceting. East Grants Ridge, gem-quality red beryl in the world is in the Wah Wah New Mexico and San Luis Potosi, Mexico also may have Mountains, Utah (Shigley and Foord, 1984). Red beryl at this similar occurrences of beryl, but these have not been well locality (essentially "red emerald", although the name emerald documented (Ream, 1979). Most of the marketable crystals is reserved exclusively for green stones) occurs as a vapor­ from the Wah Wah Mountains have been produced from the phase mineral in topaz rhyolite and was precipitated by Violet Mine which has operated on a limited scale since 1976, escaping gases after eruption of rhyolite lava. Only a few under the ownership of the Harris family of Delta, Utah. similar occurrences of rhyolite-hosted beryl have been Production figures for the mine from 1989-1993 are 2.3 documented worldwide. These occur in the Thomas Range, million dollars with an inventory of 1.1 million dollars of 1Department of Geology, Brigham Young University, Provo, UT 84602 156 Cenozoic Geology and Geothermal Systems of Southwestern Utah unsold gems (Rex Harris, written communication). No Weaver, 1980). Tertiary volcanism in the area began about 34 drilling or other exploration techniques have been used to Ma and consisted dominantly of large volume dacitic ash flows determine proven or probable reserves of the mine. However, and lesser volumes of low-silica rhyolite and andesitic lava in April of 1994 Kennecott Exploration leased the mine and flows. Beginning about 23 Ma the style and composition of surrounding claims to determine reserves and feasibility of gem volcanism changed to smaller-volume ash-flow and recovery by other mining and milling techniques. dome-forming eruptions of high-silica rhyolite and Previous work on the occurrence of rhyolite-hosted red trachyandesitic lava flows. This bimodal magmatism is part beryl has dealt mainly with crystallographic, chemical, and of a roughly east-west belt of Miocene igneous rocks and optical properties of the crystals (Nassau and Wood, 1968; mineral deposits stretching from Pioche, Nevada to Marysvale Flamini and others, 1983; Shigley and Foord, 1984; Utah (figure 1). It has been termed the Pioche-Marysvale Aurisicchio and others, 1990; Hosaka and others, 1993) with igneous belt (Rowley and others, 1979), the Pioche mineral only general descriptions of the geology (Ream, 1979). belt (Shawe and Stewart, 1976), the Wah Wah - Tushar belt Recently proposed models of formation for red beryl have (Hilpert and Roberts, 1964), and the Blue Ribbon lineament modified only slightly the original suggestions of Hillebrand (Rowley and others, 1978). (1905); the unusual conditions needed for formation of red The Miocene volcanic activity in the belt can be divided beryl have not been well constrained. It is generally proposed into two distinct episodes; the first episode, from 23 to 18 Ma, that beryl originates in a manner that is similar to other vapor­ formed rhyolitic tuffs and domes and trachyandesitic lava flows phase minerals; namely, by precipitation in fractures and vugs which have been designated the Blawn Formation (figure 1; from high-temperature gases as they are released from slowly­ Best and others, 1987a). A subsequent episode (12 to 13 Ma) cooled rhyolite lava. Dozens of topaz rhyolite flows and of bimodal magmatism produced the Steamboat Mountain domes, similar in composition to the beryl-bearing flow in the Formation, the rhyolitic part of which is often topaz-bearing. Wah Wah Mountains, occur across the western United States The character of the early Miocene magmatism is of (Christiansen and others, 1986). All of these flows, particular concern here, inasmuch as this episode produced the comprising a total area of 100-200 kffi2, devitrified to form beryl-bearing rhyolite flow. Abbott and others (1983) report a vapor-phase topaz and locally other vapor-phase minerals such K-Ar age of 22.1 ±0.8 Ma for the beryl-bearing flow; as bixbyite, garnet, hematite, pseudobrookite, and fluorite, but stratigraphically, it is the youngest member of the Blawn the occurrence of beryl is exceptionally rare. Even within the Formation which is present along the eastern side of the Wah rhyolite flow which hosts the red beryl, the productive open Wah Mountains. The oldest member of the Blawn Formation pits comprise only 0.02% of the surface area of the flow. in the central Wah Wah Mountains is the garnet-bearing tuff Consequently, the conditions that favor the formation of red member which vented from Pine Grove, about 18 km beryl are apparently rarely achieved -- even within the premier northwest of the beryl rhyolite (figure 1). The vent at Pine beryl-bearing flow! Clearly, if a better understanding of the Grove was subsequently filled by rhyolite domes. 40 Arf39 Ar conditions of formation could be had, then exploration for ages for the garnet-bearing tuff member and subsequent domes additional deposits and new mine reserves would be aided. range from 22.9 ± 0.3 Ma to 21.7 ± 0.3 Ma (Keith and others, This report describes the occurrence of red beryl in the 1986). A well-dated regional ash-flow tuff with an age of Wah Wah Mountains, Utah and chemical and geological 22.74 ± 0.05 Ma (Myron Best, oral communication, 1993), factors which may have favored its formation in this particular the Bauers Tuff Member of the Condor Canyon Formation, rhyolite flow over very similar topaz rhyolite flows which are also underlies the beryl rhyolite. This rhyolitic tuff was apparently barren. In addition, it examines the possibility that derived from the Caliente caldera complex 125 km to the additional reserves of gem material may exist within the flow. southwest. Three other dated occurrences of topaz rhyolite Potential exploration guides are also discussed. Topaz occur in the central Wah Wah Mountains. They are the Tetons rhyolites are also genetically related to the large emplaced at 18.3 ± 0.7 Ma (Best and others, 1987a), the Staats bertrandite/phenakite deposits of west-central Utah. pluton at 20.2 ± 0.9 (Rowley and others 1978), and the Lou Conditions which may favor the formation of beryl rather than rhyolite at 19.1 ±0.2 (Keith and others, 1986). These data bertrandite or phenakite will be discussed. suggest that the beryl rhyolite is probably the oldest topaz rhyolite flow in the Wah Wah Mountains. Blawn magmatism is characterized by initial eruptions of GEOLOGIC SETTING rhyolitic tuffs and flows which are high-silica (75-77% SiOz) but not as strongly enriched in lithophile elements as most The rhyolite flow which hosts the red beryl deposit is topaz rhyolites (Keith and others, 1986). These early Blawn located along the eastern flank of the Wah Wah Mountains, rhyolites do not exhibit conspicuous vapor-phase Utah (figure 1). Pre-volcanic rocks in the Wah Wah Mountains mineralization and can be classified as calc-alkaline rhyolites consist of Proterozoic, Paleozoic, and Mesozoic sedimentary (Christiansen and others, 1986) and may have fractionated from rocks that were folded and thrust to the east during the Sevier dacitic precursors (Keith, 1982).
Recommended publications
  • Kennedyite, a New Mineral of the Pseudobrookite Series
    676 Kennedyite, a new mineral of the pseudobrookite series. By O. VON KNORRING, Ph.D., and K. G. Cox, Ph.D. Research Institute of African Geology, University of Leeds. [Read 26 January 1961.] Summary. A new mineral with the approximate composition of F%MgTiaOxoand isostructural with pseudobrookite F%Ti2010has been observed in an olivine-augite- alkali-feldsparrock of the Karroo succession from the Mateke Hills area in south- eastern Southern Rhodesia. Chemical analysis and indexed X-ray powder data (a 9"77, b 9-95, c 3"73 ~.) of the mineral are given, and the name kennedyite is pro- posed. The name karrooite is proposed for the artificial product MgTi~O5. HE Mateke Hills area lies in the south-eastern part of Southern T Rhodesia and is characterized by several ring-complexes of late- Karroo age, which are emplaced in an extensive trough of Karroo vol- canics with generally thin basal sediments. The Karroo rocks rest un- conformably on the paragneisses of the Limpopo valley. The lower part of the Karroo volcanic succession consists mainly of olivine-rich rocks. These are in part extrusive and may be termed in general limburgites, and in part intrusive as sills, dykes, and plugs. The intrusive rocks are fine- to medium-grained and vary in composition from olivine-dolerites to pieritic and shonkinitic types. The specimens containing the new mineral were collected from what is believed to be an extensive sill at the base of the volcanic succession immediately overlying the Cave Sandstone. Petrographic description. Under the microscope the rock (table I, anal. 1) consists predominantly of broken and abraded olivine pheno- crysts from 1 to 5 mm.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Fe2tio5) Based Thick films
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serbian Academy of Science and Arts Digital Archive (DAIS) Accepted Manuscript Title: Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films Authors: Maria Vesna Nikolic, Zorka Z. Vasiljevic, Miloljub D. Lukovic, Vera P. Pavlovic, Jelena Vujancevic, Milan Radovanovic, Jugoslav B. Krstic, Branislav Vlahovic, Vladimir B. Pavlovic PII: S0925-4005(18)31683-6 DOI: https://doi.org/10.1016/j.snb.2018.09.063 Reference: SNB 25369 To appear in: Sensors and Actuators B Received date: 15-5-2018 Revised date: 23-8-2018 Accepted date: 15-9-2018 Please cite this article as: Nikolic MV, Vasiljevic ZZ, Lukovic MD, Pavlovic VP, Vujancevic J, Radovanovic M, Krstic JB, Vlahovic B, Pavlovic VB, Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films, Sensors and Actuators: B. Chemical (2018), https://doi.org/10.1016/j.snb.2018.09.063 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films Maria Vesna Nikolic1*, Zorka Z. Vasiljevic2, Miloljub D. Lukovic1, Vera P. Pavlovic3, Jelena Vujancevic2, Milan Radovanovic4, Jugoslav B. Krstic5, Branislav Vlahovic6, Vladimir B.
    [Show full text]
  • Tourmaline Announces Formation of Topaz Energy, Unlocking Value in Tourmaline's Significant Asset Base
    NOT FOR DISTRIBUTION IN THE UNITED STATES OR DISSEMINATION OVER UNITED STATES NEWSWIRE SERVICES. NEWS RELEASE OCTOBER 10, 2019 TOURMALINE ANNOUNCES FORMATION OF TOPAZ ENERGY, UNLOCKING VALUE IN TOURMALINE'S SIGNIFICANT ASSET BASE Calgary, Alberta - Tourmaline Oil Corp. (TSX:TOU) ("Tourmaline") is pleased to announce the formation of Topaz Energy Corp. (“Topaz”), a new private royalty and infrastructure energy company. Tourmaline will sell to Topaz: a royalty interest on Tourmaline lands, a non-operated interest in two of Tourmaline‘s existing 19 natural gas processing plants, and a contracted interest in a portion of Tourmaline‘s current third-party revenue for total cash and share consideration of $775 million. Topaz will be a low-risk, high-distribution, hybrid royalty and infrastructure energy company with long-term growth plans. Topaz will be capitalized initially with a $150 to $200 million third-party equity private placement, with Tourmaline retaining a 75% to 81% equity ownership interest. Tourmaline intends to reduce a portion of its ownership as Topaz participates in future acquisition activities and an anticipated Topaz public liquidity event in 2020. The initial acquisition from Tourmaline is expected to generate approximately $90 million in revenue(1) in 2020, of which it is anticipated approximately 75% will be paid out in quarterly dividends ($0.80 per share annually, 8% yield). The assets to be acquired from Tourmaline will consist of three components: 1. A gross overriding royalty (“GORR”) on natural gas, oil, and condensate production on 100% of Tourmaline’s existing lands (approximately 2.2 million net acres). 2. A non-operated 45% working interest in two natural gas processing plants underpinned by long-term take- or-pay commitments from Tourmaline.
    [Show full text]
  • The Red Emerald
    The Red Emerald Black Album Words by Seth William Rozendaal Photos by David Rozendaal This work is for the enjoyment of gemstone aficionados around the world and throughout time, and dedicated to the divine muse who inspires everything. This book celebrates the Red Emerald’s public debut at the 2017 Tucson Gem and Mineral Show. Graphics taken from the Mineralogical Record Volume 47 Number 1: Colombian Emeralds where noted. The two photos of the Heart matrix specimen on the top of the page in Section VI were taken by Wayne Schrimp. Seth Rozendaal is responsible for the landscape photo in Section II, the beveled heart in Section VI and Office Suite Graphics. The Suite Treasure necklace photo in Section XIII was taken at the Brent Isenberger Studio. Cover and all other interior photos in this album were taken by David Rozendaal. Without his tireless dedication, this publication would not have been possible. For additional information, please contact: Seth William Rozendaal (515) 868-7207 [email protected] Index I - Red Beryl IS Red Emerald II - Formation III - Matrix Specimens IV - Wafers V - Prisms VI - Twins VII - Clusters VIII - Bixbyite Combinations IX - Topaz Combinations X - Hourglass Patterning XI - The Scarlet Spectrum XII - Facet-Grade Red Emerald XIII - The Red Emerald Suite Treasure I ~ Red Beryl IS Red Emerald The human infatuation with Emeralds runs so deep, and our desire for them traces so far back… It's one of the only gemstones found in rank-signifying Neolithic headdresses. Yeah, you heard me: Caveman Crowns. Aja Raden - Author, Historian and Scientist Diamonds may be forever, but only Emeralds are eternal; our appreciation of Emeralds stretches from the beginning of human civilization to the very end.
    [Show full text]
  • Intergrown Emerald Specimen from Chivor Tity Was Confirmed by Raman Spectroscopy
    Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula Intergrown Emerald Specimen from Chivor tity was confirmed by Raman spectroscopy. The inclusion exhibited a well-formed hexagonal prismatic shape with Colombia’s Chivor emerald mines are located in the east- pyramid-like termination (figure 2). Although intergrowth ern zone of the Eastern Cordillera range of the Andes emerald crystals have been described and documented in Mountains. Chivor translates to “green and rich land” in the literature several times (G. Grundmann and G. Giu- Chibcha, the language of the indigenous people who were liani, “Emeralds of the world,” in G. Giuliani et al., Eds., already mining emerald more than 500 years ago, before Emeralds of the World, extraLapis English, No. 2, 2002, pp. the arrival of the Spanish conquistadors (D. Fortaleché et al., “The Colombian emerald industry: Winds of change,” Fall 2017 G&G, pp. 332–358). Chivor emeralds exhibit a bright green color with a tint of blue; they have relatively Figure 1. An emerald crystal inclusion measuring high clarity and fewer inclusions than emeralds found in ~2.67 × 2.71 × 5.43 mm is found inside this large Colombia’s western belt. emerald specimen (18.35 × 10.69 × 9.79 mm) from Colombia’s Chivor mine. Photo by John Jairo Zamora. The authors recently examined a rough emerald crystal specimen (figure 1), measuring 18.35 × 10.69 × 9.79 mm, reportedly from Chivor. This crystal weighed 3.22 g (16.10 ct) and had a prismatic hexagonal crystal shape. Standard gemological examination confirmed the gemstone to be emerald, and ultraviolet/visible/near-infrared (UV-Vis-NIR) spectroscopy showed a classic Colombian emerald absorp- tion spectrum.
    [Show full text]
  • Lapidary Journal Jewelry Artist March 2012
    INDEX TO VOLUME 65 Lapidary Journal Jewelry Artist April 2011-March 2012 INDEX BY FEATURE/ Signature Techniques Part 1 Resin Earrings and Pendant, PROJECT/DEPARTMENT of 2, 20, 09/10-11 30, 08-11 Signature Techniques Part 2 Sagenite Intarsia Pendant, 50, With title, page number, of 2, 18, 11-11 04-11 month, and year published Special Event Sales, 22, 08-11 Silver Clay and Wire Ring, 58, When to Saw Your Rough, 74, 03-12 FEATURE ARTICLES Smokin’*, 43, 09/10-11 01/02-12 Argentium® Tips, 50, 03-12 Spinwheel, 20, 08-11 Arizona Opal, 22, 01/02-12 PROJECTS/DEMOS/FACET Stacking Ring Trio, 74, Basic Files, 36, 11-11 05/06-11 DESIGNS Brachiopod Agate, 26, 04-11 Sterling Safety Pin, 22, 12-11 Alabaster Bowls, 54, 07-11 Create Your Best Workspace, Swirl Step Cut Revisited, 72, Amethyst Crystal Cross, 34, 28, 11-11 01/02-12 Cut Together, 66, 01/02-12 12-11 Tabbed Fossil Coral Pendant, Deciphering Chinese Writing Copper and Silver Clay 50, 01/02-12 Linked Bracelet, 48, 07-11 12, 07-11 Stone, 78, 01/02-12 Torch Fired Enamel Medallion Site of Your Own, A, 12, 03-12 Easier Torchwork, 43, 11-11 Copper Wire Cuff with Silver Necklace, 33, 09/10-11 Elizabeth Taylor’s Legendary Wire “Inlay,” 28, 07-11 Trillion Diamonds Barion, 44, SMOKIN’ STONES Jewels, 58, 12-11 Coquina Pendant, 44, 05/06-11 Alabaster, 52, 07-11 Ethiopian Opal, 28, 01/02-12 01/02-12 Turquoise and Pierced Silver Ametrine, 44, 09/10-11 Find the Right Findings, 46, Corrugated Copper Pendant, Bead Bracelet – Plus!, 44, Coquina, 42, 01/02-12 09/10-11 24, 05/06-11 04-11 Fossilized Ivory, 24, 04-11
    [Show full text]
  • Lts Ficez 5Coz7'a1ra
    ltS FicEz 5coZ7'a1ra he most valuable gem- Gem-quality red beryl on quality red beryl comes white devitri- from thc Wah Wah fied rhyolite Mountains of south- matrix. This western Utah (Fig. 1). sample mea- Red beryl occurs as a secondary sures 9 x 26 mm (O.35 x 1 mineral in topaz rhyolite. Market- in.l. (Photo by able crystals from the Wah Wah Sky Hall.) Mountains have been produced from the Violet Mine, operated on a limited scale since 1976 under the ownership of the Harris family of Delta, UT. From 1989 to 1995. oroduction from the mine amounted to more than $3 million with an inventory of several million dollars of unsold gems (Harris, 1995). In 7994, Kennecott Exploration leased the mine and surrounding claims to de- termine reserves and feasibility of gem recovery. Mining and explora- E.H. Christiansen and tion activity are continuing. J.D. Keith are proles- Previous work on red beryl has s0rs arld T.J. dealt mainly with crystallographic, Thompson is a student, chemical and optical properties of the crystals (Shigley and Foord, Ieparlment of Geohgy, 1984) with only general descriptions Brigham Yrung Univer- of the geology (Ream, 1979). How- sitt Brx 251 I l, Prlvn, ever. the conditions needed for for- mation of red beryl have not been UT 84fi[2 well constrained. It is generally pro- posed that beryl originates by pre- cipitation in fractures and vugs from high-temperature silica rhyolite and andesitic lava flows. gases as they are released from slowly cooled rhyolite Beginning about 23 Ma, the style and composition of lava.
    [Show full text]
  • The Confusion Range, West-Central Utah: Fold-Thrust Deformation and a Western Utah Thrust Belt in the Sevier Hinterland
    The Confusion Range, west-central Utah: Fold-thrust deformation and a western Utah thrust belt in the Sevier hinterland David C. Greene* Department of Geosciences, Denison University, Granville, Ohio 43023, USA ABSTRACT INTRODUCTION tions together while delineating the lateral and oblique thrust ramps that form a signifi cant The Confusion Range in west-central Utah The Confusion Range is a collection of ridges complicating factor in the structure of the fold- has been considered a broad structural trough and small ranges that together form a low moun- thrust system. Together, these fi ve cross sections or synclinorium with little overall shorten- tain range in western Utah, between the more total almost 300 km in map length. Enlarged ing. However, new structural studies indicate imposing Snake Range on the west and House versions of the cross sections at a scale of that the Confusion Range is more accurately Range on the east (Figs. 1 and 2). The range is 1:50,000, along with a discussion of the petro- characterized as an east-vergent, fold-thrust named for its “rugged isolation and confusing leum potential of the region, may be found in system with ~10 km of horizontal shortening topography” (Van Cott, 1990). The Confusion Greene and Herring (2013). during Late Jurassic to Eocene Cordilleran Range exposes ~5000 m of Ordovician through Similar structural style and fold-thrust struc- contractional deformation. For this study, Triassic strata in what has been considered a tures are continuous southward throughout the four balanced and retrodeformable cross broad structural trough or synclinorium (e.g., length of the originally proposed synclinorium, sections across the Confusion Range and Hose, 1977; Anderson, 1983; Hintze and Davis, forming a fold-thrust belt more than 130 km in adjacent Tule Valley were constructed using 2003; Rowley et al., 2009).
    [Show full text]
  • Symposium on Agate and Cryptocrystalline Quartz
    Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Abstract Spectroscopic Characterization of Fluorite
    ABSTRACT SPECTROSCOPIC CHARACTERIZATION OF FLUORITE: RELATIONSHIPS BETWEEN TRACE ELEMENT ZONING, DEFECTS AND COLOR By Carrie Wright This thesis consists of two separate papers on color in fluorite. In the first paper, synthetic fluorites doped with various REEs (10-300 ppm) were analyzed using direct current plasma spectrometry, optical absorption spectroscopy, fluorescence spectrophotometry, and electron paramagnetic resonance spectroscopy before and after receiving 10-25 Mrad of 60Co gamma irradiation. The combined results of these techniques indicate that the irradiation-induced color of the Y-, Gd-, La- and Ce-doped samples are the result of a REE-associated fluorine vacancy that traps two electrons. Divalent samarium may be the cause of the irradiation-induced green color of the Sm- doped sample. In the second paper, fluorite crystals from Bingham, NM, Long Lake, NY, and Westmoreland, NH were similarly investigated to determine the relationship between sectorally zoned trace elements, defects, and color. The results indicate causes of color similar to those in the synthetic samples with the addition of simple F-centers. SPECTROSCOPIC CHARACTERIZATION OF FLUORITE: RELATIONSHIPS BETWEEN TRACE ELEMENT ZONING, DEFECTS AND COLOR A Thesis Submitted to the Faculty of Miami University In partial fulfillment of The requirements for the degree of Master of Science Department of Geology By Carrie Wright Miami University Oxford, OH 2002 Advisor_____________________ Dr. John Rakovan Reader______________________ Dr. Hailiang Dong TABLE OF CONTENTS Chapter 1: Introduction to the cause of color in fluorite 1 Manuscript 1-Chapter 2 29 “Spectroscopic investigation of lanthanide doped CaF2 crystals: implications for the cause of color” Manuscript 2-Chapter 3 95 “Spectroscopic characterization of fluorite from Bingham, NM, Long Lake, NY and Westmoreland, NH: relationships between trace element zoning, defects and color ii TABLE OF FIGURES Chapter 1 Figures 21 Figure 1a.
    [Show full text]