Marine Biological Research and Possible Application

Total Page:16

File Type:pdf, Size:1020Kb

Marine Biological Research and Possible Application Marine Biological Research and Possible Application Kazuhiro Kitazawa Advisor Marine Technology and Engineering Center (MARITEC) Japan Agency for-Marine Earth Science and Technology (JAMSTEC) 2 -3 May 2013, New York Intersessional Workshop on Marine Genetic Resources ExploringExploring MarineMarine LifeLife Studies on the origin of life and the Studies of the structures and functions of the mechanisms of its evolution Earth’s biosphere, particularly in the ocean • From the origin of life to • Biogeochemical cycles and their early ecosystem evolution history • Evolution of eukaryotes • Monitoring of the marine environment • Progress from monocellular • Adaptive ecology of organisms in to multicellular organisms extreme environments 4.0 3.0 2.0 Trophic level Trophic 1.0 Rocky shore ecosystem Applied research on microorganisms and functional molecules such as biological materials and enzymes ・Development of reagents and materials using useful enzymes and membrane substances 1 Vessels Vessels GT: Gross tonnage R/V NATSUSIMA R/V KAIYO R/V HAKUHOMARU GT 1,739 t GT 3,350 t GT 3,991 t SWATH-type vessel Multipurpose research vessel Various observations with ROV with large workspace with long-term cruise R/V YOKOSUKA R/V MIRAI R/V KAIREI GT 4,439 t GT 8,687 t GT 4,517 t Support vessel for Large vessel able to perform Surveys the structure of sub- “SHINKAI6500” observation over wide areas bottoms mainly with MCS D/V CHIKYU R/V SHINSEIMARU R/V (under planning) GT 56,752 t GT 1,600 t GT 5,000 t (approx.) (approx.) Operation from 2013 2 Drilling vessel with world-class Multipurpose R/V with an emphasis Operation from 2015 scientific drilling capacity on survey off the coast of TOHOKU Survey for submarine resources Manned/UnmannedManned/Unmanned UnderwaterUnderwater VehiclesVehicles Deep Submergence Vehicle Shinkai6500 Shinkai2000 URASHIMA (Retired) AUV World-class manned submersible Japan's first full-fledged manned submersible for deep-sea research Large AUV capable of long-distance dives ROV ABISMO AUV/ROVPICASSO Automatic Bottom Inspection and Plankton Investigatory Collaborating Sampling Mobile Autonomous Survey System Operon ROVHYPER-DOLPHIN ROVKAIKO 7000 II ROV under construction Operation with high-sensitivity ROV for heavy-duty work Capable of diving up to a 3 camera and manipulators maximum depth of 7,000 m To be launched in 2013 ExamplesExamples ofof SamplingSampling Manned Research Submersible ROV 4 ExamplesExamples ofof SamplingSampling Multiple Corer Bait Trap Piston Corer 5 SampleSample AnalysisAnalysis LaboratoryLaboratory The state-of-the-art facilities for Life and Earth Planetary Sciences Toward systematic understanding of Life, Ocean and our planet Earth through core sample research, Kochi Institute for Core Sample Research will promote the overarching approaches using ultra-high resolution mass and molecular analyses. Secondary ion mass spectrometry (NanoSIMS 50L and IMS1280HR) Single Cell Analysis Lab. in ultra-clean room 6 DevelopmentDevelopment ofof findingsfindings (( NucleicNucleic acidacid extractionextraction fromfrom AgaroseAgarose gelgel )) Relatively large nucleotide fragments can be recovered without damage so that quick DNA and RNA purification became possible. (1)Screening of agarase-producing microorganisms from deep-sea sediments •AGAR-DIGESTING ENZYME AND UTILIZATION Screening of agarase-producing THEREOF (Japanese Patent No. 4441486) microorganisms from deep-sea sediments Enrichment culture Licensed Screened from sediments obtained by Shinkai 6500 at a Deep-sea Halo formations depth of 2,406 m in Suruga Bay sediments on agar medium (2)Hyper-production of target proteins Hyper-production of target proteins Target protein gene •METHOD FOR STABLY RETAINING FOREIGN Strong GENES IN CELLS promoter Plasmid DNA Thermostable β-Agarase (Japanese Unexamined Patent Application Transfor- Publication Number 2009-17840) mation No need to add •NOVEL DNA FRAGMENT,RECOMBINANT antibiotics to VECTOR COMPRISING SAME, the medium TRANSFORMANT TRANSFORMED THEREWITH, produce AND USE THEREOF (Japanese patent No. 5126879) Target protein 7 WhatWhat isis HirondelleaHirondellea gigasgigas?? • They live in the Challenger deep (the deepest point in the world). • They belong to Amphipoda. • They were captured during a R.V. Yokosuka cruise by a bait trap with a cut of fish (1998 & 2009). 8 MysteriesMysteries ofof HirondelleaHirondellea gigasgigas ¾ What does Hirondellea gigas eat? 9 Very low population of fish/plankton in the deep sea ¾ Microorganisms? 9 Very rare in deep-sea sediment ¾ Digestive enzymes? 9 DigestiveDigestive enzymesenzymes Enzyme detection using mashed H. gigas Detected enzyme activities Substrate Source • Protease Protein • Lipase Lipid Animals • Amylase Starch, glycogen • Cellulase Cellulose Plants • Glucomannanase Glucomannnan • Maltase Maltose 10 CellulaseCellulase degradesdegrades cellulosecellulose What is cellulose? • Cellulose is mainly contained in the green plants, algae and oomycetes. • Cellulose is the most common organic carbon on Earth. • Cellulose is a polymer of glucose (ß1-4). CH2OH CH2OH ß1-4 O O OH O OH O OH OH Cellulase n 11 TLCTLC analysisanalysis ofof productsproducts Glucose Cellobiose 01246824 Reaction time (h) 30°C, 10 mM Sodium acetate (pH 5.6) Substrate; 1% Carboxymethyl-cellulose (CMC) 12 ReactionReaction withwith SawdustSawdust andand RecycledRecycled PaperPaper Sawdust (Oak) Enzyme reaction at 35°C CMC µg/ml) Sawdust ( Glucose Recycled Paper Reaction Time(hour) Enzyme reaction at room temperature Glucose in a red colour Before enzyme reaction 15 hours later 13 WhatWhat drivesdrives scientists?scientists? Scientific Interest Sampling Basic Research Lab Work Application Industry Commercial Benefit? 14 Acknowledgement: Special thanks to Dr Hideki Kobayashi, JAMSTEC Dr Yuji Hatada, JAMSTEC Contact Details: Dr Kazuhiro Kitazawa [email protected].
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • EXPLORING DEEP SEA HYDROTHERMAL VENTS on EARTH and OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the Invader Team. 1Impossible Sensing, St
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2505.pdf EXPLORING DEEP SEA HYDROTHERMAL VENTS ON EARTH AND OCEAN WORLDS. P. Sobron1,2, L. M. Barge3, the InVADER Team. 1Impossible Sensing, St. Louis, MO ([email protected]) 2SETI Institute, Mtn. View, CA, , 3Jet Propulsion Laboratory, Pasadena, CA The Mission: InVADER (In-situ Vent Analysis precipitates showing exposed minerals and organic Divebot for Exobiology Research, Figure 4.1, content. The UNOLS ROV will use our coring tool and https://invader-mission.org/) is NASA’s most advanced its own manipulator and cameras to take ground truth subsea sensing payload, a tightly integrated imaging and samples as part of the InVADER deplotment. laser Raman spectroscopy/laser-induced breakdown In contrast to existing methods, InVADER allows spectroscopy/laser induced native fluorescence in-situ, autonomous, non-destructive measurements of instrument capable of in-situ, rapid, long-term these vent characteristics. InVADER will fill these gaps, underwater analyses of vent fluid and precipitates. and advance readiness in vent exploration on Earth and Such analyses are critical for finding and studying Ocean Worlds by simplifying operational strategies for life and life’s precursors at vent systems on Ocean identifying and characterizing seafloor environments. Worlds. To demonstrate the scientific potential and We will use statistical analysis tools for the fusion of functionality of the instrument, in July 2021 our team multi-sensor datasets, and develop real-time science will deploy InVADER on the Ocean Observatories data evaluation and payload control routines to Initiative’s (OOI) Regional Cabled Array (RCA), a establish, and then validate, adaptive science operations power/data distribution network off the Oregon coast, at strategies that maximize science return in a mission-like the underwater hydrothermal systems of Axial scenario.
    [Show full text]
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • Ocean-Climate.Org
    ocean-climate.org THE INTERACTIONS BETWEEN OCEAN AND CLIMATE 8 fact sheets WITH THE HELP OF: Authors: Corinne Bussi-Copin, Xavier Capet, Bertrand Delorme, Didier Gascuel, Clara Grillet, Michel Hignette, Hélène Lecornu, Nadine Le Bris and Fabrice Messal Coordination: Nicole Aussedat, Xavier Bougeard, Corinne Bussi-Copin, Louise Ras and Julien Voyé Infographics: Xavier Bougeard and Elsa Godet Graphic design: Elsa Godet CITATION OCEAN AND CLIMATE, 2016 – Fact sheets, Second Edition. First tome here: www.ocean-climate.org With the support of: ocean-climate.org HOW DOES THE OCEAN WORK? OCEAN CIRCULATION..............................………….....………................................……………….P.4 THE OCEAN, AN INDICATOR OF CLIMATE CHANGE...............................................…………….P.6 SEA LEVEL: 300 YEARS OF OBSERVATION.....................……….................................…………….P.8 The definition of words starred with an asterisk can be found in the OCP little dictionnary section, on the last page of this document. 3 ocean-climate.org (1/2) OCEAN CIRCULATION Ocean circulation is a key regulator of climate by storing and transporting heat, carbon, nutrients and freshwater all around the world . Complex and diverse mechanisms interact with one another to produce this circulation and define its properties. Ocean circulation can be conceptually divided into two Oceanic circulation is very sensitive to the global freshwater main components: a fast and energetic wind-driven flux. This flux can be described as the difference between surface circulation, and a slow and large density-driven [Evaporation + Sea Ice Formation], which enhances circulation which dominates the deep sea. salinity, and [Precipitation + Runoff + Ice melt], which decreases salinity. Global warming will undoubtedly lead Wind-driven circulation is by far the most dynamic. to more ice melting in the poles and thus larger additions Blowing wind produces currents at the surface of the of freshwaters in the ocean at high latitudes.
    [Show full text]
  • Alpha-Agarases Define a New Family of Glycoside Hydrolases, Distinct from Beta-Agarase Families
    Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families Didier Flament, Tristan Barbeyron, Murielle Jam, Philippe Potin, Mirjam Czjzek, Bernard Kloareg, Gurvan Michel To cite this version: Didier Flament, Tristan Barbeyron, Murielle Jam, Philippe Potin, Mirjam Czjzek, et al.. Alpha- agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Applied and Environmental Microbiology, American Society for Microbiology, 2007, 73 (14), pp.4691-4694. 10.1128/AEM.00496-07. hal-00616725 HAL Id: hal-00616725 https://hal.univ-brest.fr/hal-00616725 Submitted on 5 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Short communication 2 3 Alpha-agarases define a new family of glycoside hydrolases, distinct from 4 beta-agarase families 5 6 Didier FLAMENT §, Tristan BARBEYRON, Murielle JAM, Philippe POTIN, Mirjam 7 CZJZEK, Bernard KLOAREG and Gurvan MICHEL* 8 9 Centre National de la Recherche Scientifique; Université Pierre et Marie Curie-Paris6, Unité 10 Mixte de Recherche 7139 "Marine
    [Show full text]
  • Isolation and Characterization of an Antarctic Flavobacterium Strain with Agarase and Alginate Lyase Activities
    vol. 37, no. 3, pp. 403–419, 2016 doi: 10.1515/popore-2016-0021 Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities Paris LAVÍN1*, Cristian ATALA2, Jorge GALLARDO-CERDA1, Marcelo GONZALEZ-ARAVENA1, Rodrigo DE LA IGLESIA3, Rómulo OSES4, Cristian TORRES-DÍAZ5, Nicole TREFAULT6, Marco A. MOLINA-MONTENEGRO4,7 and H. Dail LAUGHINGHOUSE IV8 1 Departamento Científico, Instituto Antártico Chileno (INACH), Punta Arenas, Chile 2 Laboratorio de Anatomía y Ecología Funcional de Plantas, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile <[email protected]> 3 Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile 4 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile 5 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile 6 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile 7 Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca, Chile 8 Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA * Corresponding author Abstract: Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodo- phyta), in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psy- chrotrophic due to its optimal temperature (17 ºC) and maximum temperature (20°C) of growth.
    [Show full text]
  • A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods
    water Review A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods Elahe Akbari 1,2, Seyed Kazem Alavipanah 1,*, Mehrdad Jeihouni 1, Mohammad Hajeb 1,3, Dagmar Haase 4,5 and Sadroddin Alavipanah 4 1 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran 1417853933, Iran; [email protected] (E.A.); [email protected] (M.J.); [email protected] (M.H.) 2 Department of Climatology and Geomorphology, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran 3 Department of Remote Sensing and GIS, Shahid Beheshti University, Tehran 1983963113, Iran 4 Department of Geography, Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany; [email protected] (D.H.); [email protected] (S.A.) 5 Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany * Correspondence: [email protected]; Tel.: +98-21-6111-3536 Received: 3 October 2017; Accepted: 16 November 2017; Published: 14 December 2017 Abstract: Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors.
    [Show full text]
  • Rip Currents and Alongshore Flows in Single Channels Dredged in the Surf
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Rip currents and alongshore flows in single channels dredged 10.1002/2016JC012222 in the surf zone Key Points: Melissa Moulton1,2 , Steve Elgar2 , Britt Raubenheimer2 , John C. Warner3 , and Rip currents, feeder currents, and Nirnimesh Kumar4 meandering alongshore currents were observed in single channels 1 2 dredged in the surf zone Applied Physics Laboratory, University of Washington, Seattle, Washington, USA, Department of Applied Ocean Physics 3 The model COAWST reproduces the and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, United States Geological observed circulation patterns, and is Survey, Coastal and Marine Geology Program, Woods Hole, Massachusetts, USA, 4Department of Civil and Environmental used to investigate dynamics for a Engineering, University of Washington, Seattle, Washington, USA wider range of conditions A parameter based on breaking-wave-driven setup patterns and alongshore currents predicts Abstract To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average offshore-directed flow speeds 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, Correspondence to: circulation was simulated with the numerical modeling system COAWST, initialized with the observed M. Moulton, incident waves and channel bathymetry, and with an extended set of wave conditions and channel [email protected] geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms Citation: Moulton, M., S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,124,103 B2 Yusibov Et Al
    USOO81241 03B2 (12) United States Patent (10) Patent No.: US 8,124,103 B2 Yusibov et al. (45) Date of Patent: *Feb. 28, 2012 (54) INFLUENZA ANTIGENS, VACCINE 5,383,851 A 1/1995 McKinnon, Jr. et al. 5,403.484 A 4/1995 Ladner et al. COMPOSITIONS, AND RELATED METHODS 5,417,662 A 5/1995 Hjertman et al. 5,427,908 A 6/1995 Dower et al. (75) Inventors: Vidadi Yusibov, Havertown, PA (US); 5,466,220 A 11/1995 Brenneman Vadim Mett, Newark, DE (US); 5,480,381 A 1/1996 Weston 5,502,167 A 3, 1996 Waldmann et al. Konstantin Musiychuck, Swarthmore, 5,503,627 A 4/1996 McKinnon et al. PA (US) 5,520,639 A 5/1996 Peterson et al. 5,527,288 A 6/1996 Gross et al. (73) Assignee: Fraunhofer USA, Inc, Plymouth, MI 5,530,101 A 6/1996 Queen et al. 5,545,806 A 8/1996 Lonberg et al. (US) 5,545,807 A 8, 1996 Surani et al. 5,558,864 A 9/1996 Bendig et al. (*) Notice: Subject to any disclaimer, the term of this 5,565,332 A 10/1996 Hoogenboom et al. patent is extended or adjusted under 35 5,569,189 A 10, 1996 Parsons U.S.C. 154(b) by 0 days. 5,569,825 A 10/1996 Lonberg et al. 5,580,717 A 12/1996 Dower et al. This patent is Subject to a terminal dis 5,585,089 A 12/1996 Queen et al. claimer. 5,591,828 A 1/1997 Bosslet et al.
    [Show full text]