Article Degradation of Marine Algae‐Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota Miaomiao Li 1,2, Qingsen Shang 1, Guangsheng Li 3, Xin Wang 4,* and Guangli Yu 1,2,* 1 Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and pharmacy, Ocean University of China, Qingdao 266003, China;
[email protected] (M.L.);
[email protected] (Q.S.) 2 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 DiSha Pharmaceutical Group, Weihai 264205, China; gsli‐
[email protected] 4 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control and Zhejiang Key Laboratory of Food Microbiology, Academy of Agricultural Sciences, Hangzhou 310021, China * Correspondence:
[email protected] (X.W.);
[email protected] (G.Y.); Tel.: +86‐571‐8641‐5216 (X.W.); +86‐532‐8203‐1609 (G.Y.) Academic Editor: Paola Laurienzo Received: 2 January 2017; Accepted: 20 March 2017; Published: 24 March 2017 Abstract: Carrageenan, agarose, and alginate are algae‐derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied. Keywords: carrageenan; agarose; alginate; oligosaccharides; Bacteroides xylanisolvens; Bacteroides ovatus; Bacteroides uniforms 1.