Restriction Endonucleases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endogenous Reverse Transcriptase and Rnase H-Mediated Antiviral Mechanism in Embryonic Stem Cells
www.nature.com/cr www.cell-research.com ARTICLE Endogenous reverse transcriptase and RNase H-mediated antiviral mechanism in embryonic stem cells Junyu Wu1, Chunyan Wu1, Fan Xing1, Liu Cao1, Weijie Zeng1, Liping Guo1, Ping Li1, Yongheng Zhong1, Hualian Jiang1, Manhui Luo1, Guang Shi2, Lang Bu1, Yanxi Ji1, Panpan Hou1, Hong Peng1, Junjiu Huang2, Chunmei Li1 and Deyin Guo 1 Nucleic acid-based systems play important roles in antiviral defense, including CRISPR/Cas that adopts RNA-guided DNA cleavage to prevent DNA phage infection and RNA interference (RNAi) that employs RNA-guided RNA cleavage to defend against RNA virus infection. Here, we report a novel type of nucleic acid-based antiviral system that exists in mouse embryonic stem cells (mESCs), which suppresses RNA virus infection by DNA-mediated RNA cleavage. We found that the viral RNA of encephalomyocarditis virus can be reverse transcribed into complementary DNA (vcDNA) by the reverse transcriptase (RTase) encoded by endogenous retrovirus-like elements in mESCs. The vcDNA is negative-sense single-stranded and forms DNA/RNA hybrid with viral RNA. The viral RNA in the heteroduplex is subsequently destroyed by cellular RNase H1, leading to robust suppression of viral growth. Furthermore, either inhibition of the RTase activity or depletion of endogenous RNase H1 results in the promotion of virus proliferation. Altogether, our results provide intriguing insights into the antiviral mechanism of mESCs and the antiviral function of endogenized retroviruses and cellular RNase H. Such a natural nucleic acid-based antiviral mechanism in mESCs is referred to as ERASE (endogenous RTase/RNase H-mediated antiviral system), which is an addition to the previously known nucleic acid-based antiviral mechanisms including CRISPR/Cas in bacteria and RNAi in plants and invertebrates. -
Crystal Structure of the Targeting Endonuclease of the Human LINE-1 Retrotransposon
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 12, 975–986, June, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.str.2004.04.011 Crystal Structure of the Targeting Endonuclease of the Human LINE-1 Retrotransposon Oliver Weichenrieder,1,* Kostas Repanas,1 transcriptase. Depending on the DNA integration mech- and Anastassis Perrakis* anism, two classes of retrotransposons are distin- The Netherlands Cancer Institute guished. The first class contains long terminal repeat Department of Molecular Carcinogenesis-H2 (LTR) retrotransposons and retroviruses. These retroele- Plesmanlaan 121 ments use an integrase that recognizes the LTRs of the 1066 CX Amsterdam double-stranded DNA copy. The second, much larger, The Netherlands and more ancient class includes all non-LTR retro- transposons. Those are thought to integrate via target- primed reverse transcription (TPRT), a process in which Summary reverse transcription and integration are coupled (Eick- bush and Malik, 2002; Kazazian, 2004). An endonuclease The human L1 endonuclease (L1-EN) is encoded by that is part of the same polypeptide chain as the reverse the non-LTR retrotransposon LINE-1 (L1). L1 is re- transcriptase nicks the genomic DNA and hands over sponsible for more than 1.5 million retrotransposition the resulting ribose 3Ј-hydroxyl end as a primer for re- events in the history of the human genome, contribut- verse transcription of associated template RNA (Cost ing more than a quarter to human genomic DNA (L1 et al., 2002; Luan et al., 1993). and Alu elements). L1-EN is related to the well-under- Most non-LTR retrotransposons encode an endonu- stood human DNA repair endonuclease APE1, and its clease located N-terminally of the reverse transcriptase. -
Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface. -
Phosphate Steering by Flap Endonuclease 1 Promotes 50-flap Specificity and Incision to Prevent Genome Instability
ARTICLE Received 18 Jan 2017 | Accepted 5 May 2017 | Published 27 Jun 2017 DOI: 10.1038/ncomms15855 OPEN Phosphate steering by Flap Endonuclease 1 promotes 50-flap specificity and incision to prevent genome instability Susan E. Tsutakawa1,*, Mark J. Thompson2,*, Andrew S. Arvai3,*, Alexander J. Neil4,*, Steven J. Shaw2, Sana I. Algasaier2, Jane C. Kim4, L. David Finger2, Emma Jardine2, Victoria J.B. Gotham2, Altaf H. Sarker5, Mai Z. Her1, Fahad Rashid6, Samir M. Hamdan6, Sergei M. Mirkin4, Jane A. Grasby2 & John A. Tainer1,7 DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 50-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 50-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 50polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 50-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 50-flap specificity and catalysis, preventing genomic instability. 1 Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. -
Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis
Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis Plasmid DNA isolation introduction: diatomaceous earth. After RNaseA treatment, The application of molecular biology techniques the DNA containing supernatant is bound to the to the analysis of complex genomes depends on diatomaceous earth in a chaotropic buffer, the ability to prepare pure plasmid DNA. Most often guanadine chloride or urea. The plasmid DNA isolation techniques come in two chaotropic buffer will force the silica flavors, simple - low quality DNA preparations (diatomaceous earth) to interact and more complex, time-consuming high quality DNA preparations. For many DNA manipulations such as restriction enzyme analysis, subcloning and agarose gel electrophoresis, the simple methods are sufficient. The high quality preparations are required for most DNA sequencing, PCR manipulations, transformation hydrophobically with the DNA. Purification using and other techniques. silica-technology is based on a simple bind- wash-elute procedure. Nucleic acids are The alkaline lysis preparation is the most adsorbed to the silica-gel membrane in the commonly used method for isolating small presence of high concentrations of amounts of plasmid DNA, often called minipreps. chaotropic salts, which remove water from This method uses SDS as a weak detergent to hydrated molecules in solution. Polysaccharides denature the cells in the presence of NaOH, and proteins do not adsorb and are removed. which acts to hydrolyze the cell wall and other After a wash step, pure nucleic acids are eluted cellular molecules. The high pH is neutralized by under low-salt conditions in small volumes, ready the addition of potassium acetate. The for immediate use without further concentration. -
Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopa
The Journal of Neuroscience, June 15, 2002, 22(12):5188–5197 Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning Tracy M. Reed,1,3 David R. Repaske,2* Gretchen L. Snyder,4 Paul Greengard,4 and Charles V. Vorhees1* Divisions of 1Developmental Biology and 2Endocrinology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229, 3Department of Biology, College of Mount St. Joseph, Cincinnati, Ohio 45233, and 4Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021 Using homologous recombination, we generated mice lack- maze spatial-learning deficits. These results indicate that en- ing phosphodiesterase-mediated (PDE1B) cyclic nucleotide- hancement of cyclic nucleotide signaling by inactivation of hydrolyzing activity. PDE1B Ϫ/Ϫ mice showed exaggerated PDE1B-mediated cyclic nucleotide hydrolysis plays a signifi- hyperactivity after acute D-methamphetamine administra- cant role in dopaminergic function through the DARPP-32 and tion. Striatal slices from PDE1B Ϫ/Ϫ mice exhibited increased related transduction pathways. levels of phospho-Thr 34 DARPP-32 and phospho-Ser 845 Key words: phosphodiesterases; DARPP-32; dopamine- GluR1 after dopamine D1 receptor agonist or forskolin stimu- stimulated locomotor activity; spatial learning and memory; lation. PDE1B Ϫ/Ϫ and PDE1B ϩ/Ϫ mice demonstrated Morris Morris water maze; methamphetamine; SKF81297; forskolin Calcium/calmodulin-dependent phosphodiesterases (CaM- (CaMKII) and calcineurin and have the potential to activate PDEs) are members of one of 11 families of PDEs (Soderling et CaM-PDEs. Dopamine D1 or D2 receptor activation leads to al., 1999;Yuasa et al., 2001) and comprise the only family that acts adenylyl cyclase activation or inhibition, respectively (Traficante ϩ as a potential point of interaction between the Ca 2 and cyclic et al., 1976; Monsma et al., 1990; Cunningham and Kelley, 1993; nucleotide signaling pathways. -
Ep 2522723 B1
(19) TZZ ¥_T (11) EP 2 522 723 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/22 (2006.01) C12N 15/55 (2006.01) 03.12.2014 Bulletin 2014/49 C12N 15/10 (2006.01) A61K 48/00 (2006.01) A01K 67/027 (2006.01) A01H 1/00 (2006.01) (21) Application number: 12176308.0 (22) Date of filing: 28.01.2004 (54) Custom-made meganuclease and use thereof Maßgeschneiderte Meganuklease und Verwendung davon Méganucléase sur mesure et son utilisation (84) Designated Contracting States: • Paques, Frédéric AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 92340 Bourg-La-Reine (FR) HU IE IT LI LU MC NL PT RO SE SI SK TR •Perez-Michaut, Christophe 75016 Paris (FR) (30) Priority: 28.01.2003 US 442911 P • Smith, Julianne 01.08.2003 US 491535 P 92350 Le Plessis Robinson (FR) • Sourdive, David (43) Date of publication of application: 92300 Levallois Perret (FR) 14.11.2012 Bulletin 2012/46 (74) Representative: Leblois-Préhaud, Hélène Marthe (62) Document number(s) of the earlier application(s) in Georgette et al accordance with Art. 76 EPC: Cabinet Orès 04705873.0 / 1 590 453 36, rue de St Pétersbourg 75008 Paris (FR) (73) Proprietor: Cellectis 75013 Paris (FR) (56) References cited: • LUCAS PATRICK ET AL: "Rapid evolution of the (72) Inventors: DNA-binding site in LAGLIDADG homing • Arnould, Sylvain endonucleases", NUCLEIC ACIDS RESEARCH, 93200 Saint-Denis (FR) OXFORD UNIVERSITY PRESS, SURREY, GB, vol. • Bruneau, Sylvia 29, no. -
S1 Nuclease Degrades Single-Stranded Nucleic Acids, Releasing 5'-Phosphoryl Mono- Or Oligonucleotides
Description S1 Nuclease degrades single-stranded nucleic acids, releasing 5'-phosphoryl mono- or oligonucleotides. It is five times more active on DNA than on RNA (1). S1 Nuclease also cleaves dsDNA at the single-stranded region caused by a nick, gap, mismatch or loop. PRODUCT INFORMATION S1 Nuclease exhibits 3’-phosphomonoesterase activity. S1 Nuclease The enzyme is a glycoprotein with a carbohydrate content of 18%. Pub. No. MAN0013722 Applications Rev. Date 29 November 2016 (Rev. A.00) Removal of single-stranded overhangs of DNA #_ fragments (2). S1 transcript mapping (3, 4). Lot: _ Expiry Date: _ Cleavage of hairpin loops. Creation of unidirectional deletions in DNA fragments in Store at -20 °C conjunction with Exo III (5). Source Aspergillus oryzae cells. Components #EN0321 100 U/µL S1 Nuclease 10000 U 5X Reaction Buffer 2 1 mL www.thermofisher.com For Research Use Only. Not for use in diagnostic procedures. Definition of Activity Unit CERTIFICATE OF ANALYSIS One unit of the enzyme produces 1 µg of acid soluble S1 Nuclease was tested for the absence of deoxyribonucleotides in 1 min at 37 °C. contaminating double-stranded DNA specific nuclease Enzyme activity is assayed in the following mixture: activity. 30 mM sodium-acetate (pH 4.5), 50 mM NaCl, 0.1 mM ZnCl2, 5% (v/v) glycerol, 800 µg/mL heat Quality authorized by: Jurgita Zilinskiene denatured calf thymus DNA. Storage Buffer The enzyme is supplied in: 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.1 mM ZnCl2 and 50% (v/v) glycerol. 5X Reaction Buffer 200 mM sodium acetate (pH 4.5 at 25 °C), 1.5 M NaCl and 10 mM ZnSO4. -
Gibson Assembly Cloning Guide, Second Edition
Gibson Assembly® CLONING GUIDE 2ND EDITION RESTRICTION DIGESTFREE, SEAMLESS CLONING Applications, tools, and protocols for the Gibson Assembly® method: • Single Insert • Multiple Inserts • Site-Directed Mutagenesis #DNAMYWAY sgidna.com/gibson-assembly Foreword Contents Foreword The Gibson Assembly method has been an integral part of our work at Synthetic Genomics, Inc. and the J. Craig Venter Institute (JCVI) for nearly a decade, enabling us to synthesize a complete bacterial genome in 2008, create the first synthetic cell in 2010, and generate a minimal bacterial genome in 2016. These studies form the framework for basic research in understanding the fundamental principles of cellular function and the precise function of essential genes. Additionally, synthetic cells can potentially be harnessed for commercial applications which could offer great benefits to society through the renewable and sustainable production of therapeutics, biofuels, and biobased textiles. In 2004, JCVI had embarked on a quest to synthesize genome-sized DNA and needed to develop the tools to make this possible. When I first learned that JCVI was attempting to create a synthetic cell, I truly understood the significance and reached out to Hamilton (Ham) Smith, who leads the Synthetic Biology Group at JCVI. I joined Ham’s team as a postdoctoral fellow and the development of Gibson Assembly began as I started investigating methods that would allow overlapping DNA fragments to be assembled toward the goal of generating genome- sized DNA. Over time, we had multiple methods in place for assembling DNA molecules by in vitro recombination, including the method that would later come to be known as Gibson Assembly. -
Type of the Paper (Article
Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000 -
Structure and Function of Nucleases in DNA Repair: Shape, Grip and Blade of the DNA Scissors
Oncogene (2002) 21, 9022 – 9032 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors Tatsuya Nishino1 and Kosuke Morikawa*,1 1Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan DNA nucleases catalyze the cleavage of phosphodiester mismatched nucleotides. They also recognize the bonds. These enzymes play crucial roles in various DNA replication or recombination intermediates to facilitate repair processes, which involve DNA replication, base the following reaction steps through the cleavage of excision repair, nucleotide excision repair, mismatch DNA strands (Table 1). repair, and double strand break repair. In recent years, Nucleases can be regarded as molecular scissors, new nucleases involved in various DNA repair processes which cleave phosphodiester bonds between the sugars have been reported, including the Mus81 : Mms4 (Eme1) and the phosphate moieties of DNA. They contain complex, which functions during the meiotic phase and conserved minimal motifs, which usually consist of the Artemis : DNA-PK complex, which processes a V(D)J acidic and basic residues forming the active site. recombination intermediate. Defects of these nucleases These active site residues coordinate catalytically cause genetic instability or severe immunodeficiency. essential divalent cations, such as magnesium, Thus, structural biology on various nuclease actions is calcium, manganese or zinc, as a cofactor. However, essential for the elucidation of the molecular mechanism the requirements for actual cleavage, such as the types of complex DNA repair machinery. Three-dimensional and the numbers of metals, are very complicated, but structural information of nucleases is also rapidly are not common among the nucleases. -
SUPPLEMENTARY INFORMATION in Silico Signature Prediction
SUPPLEMENTARY INFORMATION In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia coli Strains Maryam Javadi, Mana Oloomi*, Saeid Bouzari Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran http://www.genominfo.org/src/sm/gni-15-69-s001.pdf Supplementary Table 6. Aalphabetic abbreviation and description of putative conserved domains Alphabetic Abbreviation Description 17 Large terminase protein 2_A_01_02 Multidrug resistance protein 2A0115 Benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols] 52 DNA topisomerase II medium subunit; Provisional AAA_13 AAA domain; This family of domains contain a P-loop motif AAA_15 AAA ATPase domain; This family of domains contain a P-loop motif AAA_21 AAA domain AAA_23 AAA domain ABC_RecF ATP-binding cassette domain of RecF; RecF is a recombinational DNA repair ATPase ABC_SMC_barmotin ATP-binding cassette domain of barmotin, a member of the SMC protein family AcCoA-C-Actrans Acetyl-CoA acetyltransferases AHBA_syn 3-Amino-5-hydroxybenzoic acid synthase family (AHBA_syn) AidA Type V secretory pathway, adhesin AidA [Cell envelope biogenesis] Ail_Lom Enterobacterial Ail/Lom protein; This family consists of several bacterial and phage Ail_Lom proteins AIP3 Actin interacting protein 3; Aip3p/Bud6p is a regulator of cell and cytoskeletal polarity Aldose_epim_Ec_YphB Aldose 1-epimerase, similar to Escherichia coli YphB AlpA Predicted transcriptional regulator [Transcription] AntA AntA/AntB antirepressor AraC AraC-type