Gibson Assembly Cloning Guide, Second Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulation of ATP Levels in Escherichia Coli Using CRISPR
Tao et al. Microb Cell Fact (2018) 17:147 https://doi.org/10.1186/s12934-018-0995-7 Microbial Cell Factories RESEARCH Open Access Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production Sha Tao, Ying Qian, Xin Wang, Weijia Cao, Weichao Ma, Kequan Chen* and Pingkai Ouyang Abstract Background: Microbial biosynthesis of natural products holds promise for preclinical studies and treating diseases. For instance, pinocembrin is a natural favonoid with important pharmacologic characteristics and is widely used in preclinical studies. However, high yield of natural products production is often limited by the intracellular cofactor level, including adenosine triphosphate (ATP). To address this challenge, tailored modifcation of ATP concentration in Escherichia coli was applied in efcient pinocembrin production. Results: In the present study, a clustered regularly interspaced short palindromic repeats (CRISPR) interference sys- tem was performed for screening several ATP-related candidate genes, where metK and proB showed its potential to improve ATP level and increased pinocembrin production. Subsequently, the repression efciency of metK and proB were optimized to achieve the appropriate levels of ATP and enhancing the pinocembrin production, which allowed the pinocembrin titer increased to 102.02 mg/L. Coupled with the malonyl-CoA engineering and optimization of culture and induction condition, a fnal pinocembrin titer of 165.31 mg/L was achieved, which is 10.2-fold higher than control strains. Conclusions: Our results introduce a strategy to approach the efcient biosynthesis of pinocembrin via ATP level strengthen using CRISPR interference. Furthermore coupled with the malonyl-CoA engineering and induction condi- tion have been optimized for pinocembrin production. -
Recombinant DNA and Elements Utilizing Recombinant DNA Such As Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology
Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written by Amy B. Vento and David R. Gillum Office of Environmental Health and Safety University of New Hampshire June 3, 2002 Introduction Recombinant DNA (rDNA) has various definitions, ranging from very simple to strangely complex. The following are three examples of how recombinant DNA is defined: 1. A DNA molecule containing DNA originating from two or more sources. 2. DNA that has been artificially created. It is DNA from two or more sources that is incorporated into a single recombinant molecule. 3. According to the NIH guidelines, recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. Description of rDNA Recombinant DNA, also known as in vitro recombination, is a technique involved in creating and purifying desired genes. Molecular cloning (i.e. gene cloning) involves creating recombinant DNA and introducing it into a host cell to be replicated. One of the basic strategies of molecular cloning is to move desired genes from a large, complex genome to a small, simple one. The process of in vitro recombination makes it possible to cut different strands of DNA, in vitro (outside the cell), with a restriction enzyme and join the DNA molecules together via complementary base pairing. Techniques Some of the molecular biology techniques utilized during recombinant DNA include: 1. -
Subcloning, Expression, and Enzymatic Study of PRMT5
Georgia State University ScholarWorks @ Georgia State University Biology Theses Department of Biology Summer 7-12-2010 Subcloning, Expression, and Enzymatic Study of PRMT5 Ran Guo Georgia State University Follow this and additional works at: https://scholarworks.gsu.edu/biology_theses Part of the Biology Commons Recommended Citation Guo, Ran, "Subcloning, Expression, and Enzymatic Study of PRMT5." Thesis, Georgia State University, 2010. https://scholarworks.gsu.edu/biology_theses/26 This Thesis is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SUBCLONING, EXPRESSION, AND ENZYMATIC STUDY OF PRMT5 by RAN GUO Under the Direction of Yujun George Zheng ABSTRACT Protein arginine methyltransferases (PRMTs) mediate the transfer of methyl groups to arginine residues in histone and non-histone proteins. PRMT5 is an important member of PRMTs which symmetrically dimethylates arginine 8 in histone H3 (H3R8) and arginine 3 in histone H4 (H4R3). PRMT5 was reported to inhibit some tumor suppressors in leukemia and lymphoma cells and regulate p53 gene, through affecting the promoter of p53. Through methylation of H4R3, PRMT5 can recruit DNA-methyltransferase 3A (DNMT3A) which regulates gene transcription. All the above suggest that PRMT5 has an important function of suppressing cell apoptosis and is a potential anticancer target. Currently, the enzymatic activities of PRMT5 are not clearly understood. In our study, we improved the protein expression methodology and greatly enhanced the yield and quality of the recombinant PRMT5. -
Restriction Endonucleases
Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days. -
Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis
Experiment 2 Plasmid DNA Isolation, Restriction Digestion and Gel Electrophoresis Plasmid DNA isolation introduction: diatomaceous earth. After RNaseA treatment, The application of molecular biology techniques the DNA containing supernatant is bound to the to the analysis of complex genomes depends on diatomaceous earth in a chaotropic buffer, the ability to prepare pure plasmid DNA. Most often guanadine chloride or urea. The plasmid DNA isolation techniques come in two chaotropic buffer will force the silica flavors, simple - low quality DNA preparations (diatomaceous earth) to interact and more complex, time-consuming high quality DNA preparations. For many DNA manipulations such as restriction enzyme analysis, subcloning and agarose gel electrophoresis, the simple methods are sufficient. The high quality preparations are required for most DNA sequencing, PCR manipulations, transformation hydrophobically with the DNA. Purification using and other techniques. silica-technology is based on a simple bind- wash-elute procedure. Nucleic acids are The alkaline lysis preparation is the most adsorbed to the silica-gel membrane in the commonly used method for isolating small presence of high concentrations of amounts of plasmid DNA, often called minipreps. chaotropic salts, which remove water from This method uses SDS as a weak detergent to hydrated molecules in solution. Polysaccharides denature the cells in the presence of NaOH, and proteins do not adsorb and are removed. which acts to hydrolyze the cell wall and other After a wash step, pure nucleic acids are eluted cellular molecules. The high pH is neutralized by under low-salt conditions in small volumes, ready the addition of potassium acetate. The for immediate use without further concentration. -
Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4) -
The Transgenic Core Facility
Genetic modification of the mouse Ben Davies Wellcome Trust Centre for Human Genetics Genetically modified mouse models • The genome projects have provided us only with a catalogue of genes - little is know regarding gene function • Associations between disease and genes and their variants are being found yet the biological significance of the association is frequently unclear • Genetically modified mouse models provides a powerful method of assaying gene function in the whole organism Sequence Information Human Mutation Gene of Interest Mouse Model Reverse Genetics Phenotype Gene Function How to study gene function Human patients: • Patients with gene mutations can help us understand gene function • Human’s don’t make particularly willing experimental organisms • An observational science and not an experimental one • Genetic make-up of humans is highly variable • Difficult to pin-point the gene responsible for the disease in the first place Mouse patients: • Full ability to manipulate the genome experimentally • Easy to maintain in the laboratory – breeding cycle is approximately 2 months • Mouse and human genomes are similar in size, structure and gene complement • Most human genes have murine counterparts • Mutations that cause disease in human gene, generally produce comparable phentoypes when mutated in mouse • Mice have genes that are not represented in other model organisms e.g. C. elegans, Drosophila – genes of the immune system What can I do with my gene of interest • Gain of function – Overexpression of a gene of interest “Transgenic -
Digestion of DNA with Restriction Endonucleases 3.1.2
RESTRICTION ENDONUCLEASES SECTION I Digestion of DNA with Restriction UNIT 3.1 Endonucleases Restriction endonucleases recognize short DNA sequences and cleave double-stranded DNA at specific sites within or adjacent to the recognition sequences. Restriction endonuclease cleavage of DNA into discrete fragments is one of the most basic procedures in molecular biology. The first method presented in this unit is the cleavage of a single DNA sample with a single restriction endonuclease (see Basic Protocol). A number of common applications of this technique are also described. These include digesting a given DNA sample with more than one endonuclease (see Alternate Protocol 1), digesting multiple DNA samples with the same endonuclease (see Alternate Protocol 2), and partially digesting DNA such that cleavage only occurs at a subset of the restriction sites (see Alternate Protocol 3). A protocol for methylating specific DNA sequences and protecting them from restriction endonuclease cleavage is also presented (see Support Protocol). A collection of tables describing restriction endonucleases and their properties (including information about recognition sequences, types of termini produced, buffer conditions, and conditions for thermal inactivation) is given at the end of this unit (see Table 3.1.1, Table 3.1.2, Table 3.1.3, and Table 3.1.4). DIGESTING A SINGLE DNA SAMPLE WITH A SINGLE RESTRICTION BASIC ENDONUCLEASE PROTOCOL Restriction endonuclease cleavage is accomplished simply by incubating the enzyme(s) with the DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and ionic concentrations, and the temperature and duration of the reaction will vary depending upon the specific application. -
Review on Applications of Genetic Engineering and Cloning in Farm Animals
Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 4 Issue 1 - October 2017 Copyright © All rights are reserved by Ayalew Negash DOI: 10.19080/JDVS.2017.04.555629 Review on Applications of Genetic Engineering And Cloning in Farm animals Eyachew Ayana1, Gizachew Fentahun2, Ayalew Negash3*, Fentahun Mitku1, Mebrie Zemene3 and Fikre Zeru4 1Candidate of Veterinary medicine, University of Gondar, Ethiopia 2Candidate of Veterinary medicine, Samara University, Ethiopia 3Lecturer at University of Gondar, University of Gondar, Ethiopia 4Samara University, Ethiopia Submission: July 10, 2017; Published: October 02, 2017 *Corresponding author: Ayalew Negash, Lecturer at University of Gondar, College of Veterinary Medicine and science, University of Gondar, P.O. 196, Gondar, Ethiopia, Email: Abstract Genetic engineering involves producing transgenic animal’s models by using different techniques such as exogenous pronuclear DNA highly applicable and crucial technology which involves increasing animal production and productivity, increases animal disease resistance andmicroinjection biomedical in application. zygotes, injection Cloning ofinvolves genetically the production modified embryonicof animals thatstem are cells genetically into blastocysts identical and to theretrovirus donor nucleus.mediated The gene most transfer. commonly It is applied and recent technique is somatic cell nuclear transfer in which the nucleus from body cell is transferred to an egg cell to create an embryo that is virtually identical to the donor nucleus. There are different applications of cloning which includes: rapid multiplication of desired livestock, and post-natal viabilities. Beside to this Food safety, animal welfare, public and social acceptance and religious institutions are the most common animal conservation and research model. -
Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007
Schematic and Time Line for the Generation of Knockout Mice Aurora Burds Connor, Feb 2007 Making the DNA construct Time Line (in your lab) The Transgenic Facility also has a “Beginner’s Guide to Gene Targeting” on the website in Methods. We are also happy to assist with advice and reagents to help you make an effective targeting construct. It is recommended that you contact Aurora ([email protected]) early in the process. Acquire the genomic DNA for your gene or locus of interest You can either screen a 129/Sv genomic library 1-3 months or use genomic databases, public BACs and PCR for a C57BL/6 background Make a DNA construct. DNA from the genomic locus (orange) flanks the DNA to be inserted (blue) and it is placed in a bacterial plasmid. This construct is designed to add new pieces of DNA into the mouse genome at a 3-6 months desired locus. In a knockout experiment, the new DNA will replace the normal gene. Linearize the construct and give it to the Rippel ES Cell Facility at MIT Generating Targeted ES Cells Time Line (done by the Facility) Day 0 Insert the DNA into embryonic stem cells (ES cells) via electroporation. In the cells, the homologous pieces of DNA recombine. This inserts new DNA from the construct into the desired locus, usually replacing a portion of the original genome. Place the ES cells in selective media, allowing for the growth of cells containing the DNA construct. - The DNA construct has a drug-resistance marker Day 1-10 - Very few of the cells take up the construct – cells that do not will die because they are not resistant to the drug added to the media. -
Restriction Digest
PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION THE GENOME TEACHING GENERATION PROTOCOL 3: RESTRICTION DIGEST PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION PRE-REQUISITES & GOALS STUDENT PRE-REQUISITES Prior to implementing this lab, students should understand: • The central dogma of how DNA bases code for mRNA and then for proteins • How DNA samples were collected and prepared for PCR • The steps that occur during the process of polymerase change reaction (PCR) • What restriction enzymes are and how they work • How the sequence variants in OXTR and CYP2C19 are affected by restriction enzyme digestion • The purpose of PROTOCOL 3 is to determine genotype STUDENT LEARNING GOALS 1. Perform restriction digestion of PCR products of CYP2C19 and/or OXTR. 2. Describe the possible genotypes for individuals with the CYP2C19 and/or OXTR genes. 3. Predict what each genotype will look like after gel electrophoresis and why. 2 TEACHING THE GENOME GENERATION | THE JACKSON LABORATORY PROTOCOL 3: RESTRICTION DIGEST TEACHER VERSION CURRICULUM INTEGRATION Use the planning notes space provided to reflect on how this protocol will be integrated into your classroom. You’ll find every course is different, and you may need to make changes in your preparation or set-up depending on which course you are teaching. Course name: 1. What prior knowledge do the students need? 2. How much time will this lesson take? 3. What materials do I need to prepare in advance? 4. Will the students work independently, in pairs, or in small groups? 5. What might be challenge points -
Psp73 Vector Technical Bulletin #TB041
tb041.0906.qxp 9/25/2006 10:44 AM Page a Technical Bulletin pSP73 Vector INSTRUCTIONS FOR USE OF PRODUCT P2221. PRINTED IN USA. Revised 9/06 Part# TB041 AF9TB041 0906TB041 tb041.0906.qxp 9/25/2006 10:46 AM Page 1 pSP73 Vector All technical literature is available on the Internet at: www.promega.com/tbs/ Please visit the web site to verify that you are using the most current version of this Technical Bulletin. Please contact Promega Technical Services if you have questions on use of this system. E-mail: [email protected] I. Description..........................................................................................................1 II. Product Components and Storage Conditions ............................................1 III. pSP73 Vector Multiple Cloning Region and Circle Map..........................2 IV. pSP73 Vector Restriction Sites........................................................................4 V. Related Products ................................................................................................6 VI. Reference .............................................................................................................7 I. Description The pSP73 Vector (1) offers a wide range of restriction sites, providing greater versatility in cloning and transcription of RNA in vitro. The pSP73 Vector contains the SP6 and T7 RNA polymerase promoters and a unique multiple cloning region, which includes restriction sites for BglII, EcoRV, ClaI, EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, AccI, SalI, PstI, SphI, HindIII, PvuII and XhoI. The sequences of Promega vectors are available online at www.promega.com/vectors/ and are also available from the GenBank® database. II. Product Components and Storage Conditions Product Size Cat.# pSP73 Vector 20µg P2221 Storage Conditions: Store the pSP73 Vector at –20°C. Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com Printed in USA.