Under High Pressure: Spherical Glass Flotation and Instrument Housings in Deep Ocean Research

Total Page:16

File Type:pdf, Size:1020Kb

Under High Pressure: Spherical Glass Flotation and Instrument Housings in Deep Ocean Research PAPER Under High Pressure: Spherical Glass Flotation and Instrument Housings in Deep Ocean Research AUTHORS ABSTRACT Steffen Pausch All stationary and autonomous instrumentation for observational activities in Nautilus Marine Service GmbH ocean research have two things in common, they need pressure-resistant housings Detlef Below and buoyancy to bring instruments safely back to the surface. The use of glass DURAN Group GmbH spheres is attractive in many ways. Glass qualities such as the immense strength– weight ratio, corrosion resistance, and low cost make glass spheres ideal for both Kevin Hardy flotation and instrument housings. On the other hand, glass is brittle and hence DeepSea Power & Light subject to damage from impact. The production of glass spheres therefore requires high-quality raw material, advanced manufacturing technology and expertise in Introduction processing. VITROVEX® spheres made of DURAN® borosilicate glass 3.3 are the hen Jacques Piccard and Don only commercially available 17-inch glass spheres with operational ratings to full Walsh reached the Marianas Trench ocean trench depth. They provide a low-cost option for specialized flotation and W instrument housings. in1960andreportedshrimpand flounder-like fish, it was proven that Keywords: Buoyancy, Flotation, Instrument housings, Pressure, Spheres, Trench, there is life even in the very deepest VITROVEX® parts of the ocean. What started as a simple search for life has become over (1) they need to have pressure- the years a search for answers to basic Advantages and resistant housings to accommodate questions such as the number of spe- Disadvantages sensitive electronics, and (2) they need cies, their distribution ranges, and the of Glass Spheres either positive buoyancy to bring the composition of the fauna. The discov- Because of the compressive force of instrument or sampler back to the sur- ery of swarming snailfish at 7,700 m by water pressure, the pressure case design face for recovery or to establish neutral University of Aberdeen’s (UK) Ocean- and the material selection for buoyancy buoyancy for manned or remotely op- lab so far presents the culmination of elements or pressure housings are vital. erated vehicles to dock and lift the these researches. Although the oceans Like the crew compartment of the package (Figure 1). have been investigated for a long Trieste 50 years ago, the ideal shape is time, the deeper depths present a chal- FIGURE 1 a sphere. Because of its geometry with lenge to exploration due to the ex- no corners, a sphere distributes the ex- ® fl treme environmental conditions that Benthic lander with VITROVEX otation ternal forces of the water evenly over its spheres. exist there. It is totally dark, constantly structure, making it the strongest possi- cold, and the pressure is immense. At ble shape. The material chosen may be a depth of 1,000 m, the weight on steel or other metals, molded plastic, every square centimeter is 100 kg but ceramics, or glass. increases to 1,100 kg at 11,000 m. The use of glass is attractive in many Still, researchers today have a suite of ways. Glass has an immense strength-to- stationary and autonomous instrumen- weight ratio and it is inherently cheap. It tation available for hadal observation. is corrosion resistant and nonpolluting. All these instruments have two funda- Additionally, glass spheres are trans- mental requirements in common: parent, nonmagnetic, and electrically Winter 2009 Volume 43, Number 5 105 nonconductive. Command and con- Handling spheres at sea can be borosilicate glass 3.3 with standardized trol of instruments, including upload- nerve wracking when opening and clos- physical, chemical, electrical, and op- ing mission profilesordownloading ing the fragile glass in bumpy seas. The tical properties, also well known as data, may be done through the glass hemispheres take some practice to feel DURAN®.Thiskindofglasswasfirst with hall effect or reed switches, infra- comfortable moving and lifting them. developed by the German glassmaker red, or blue tooth. Radio and flash- A rubber bumper over the exposed Otto Schott in the late 19th century. ing light recovery beacons have been glass faces brings some measure of pro- Borosilicate glass is created by adding shown to work effectively housed in- tection, but a system design that pre- boron to the traditional glassmaker’s ternally.GPS,ARGOS,orIridium cludes the need to open the sphere at frit of silicate sand, soda, and ground transceivers as well as VHF radio links sea, as described above, is preferred. lime. Borosilicate glass has a very high penetrate the glass without problem. The glass sphere housing requires physical strength and very low thermal Status lights and LCD displays are vis- some skill to seal. The sealing surfaces expansion coefficient, about one third ible to deck crews before deployment. must be very well cleaned and free of that of ordinary glass. This reduces ma- The high-quality glass may even have any grease, oil, lint, or other foreign terial stresses caused by pressure and been polished to create a viewport sec- material. The low-pressure seal around temperature gradients, thus making it tion for high-resolution digital cameras the equator is made with butyl rubber more resistant to breaking. Borosilicate or sensors utilizing light. The use of ex- and wide black tape. A vacuum port glass is commonly used in ovenware, ternal pressure-compensated lithium is quite useful. A pocket altimeter whereitisknownbyitscommercial polymer batteries, as described else- mounted to the interior is easily viewed name of “Pyrex®” (Figure 2). where in this issue, means the spheres providing confidence the sphere is need never be opened at sea, and the sealed and not slowly leaking. The FIGURE 2 use of small vessels of opportunity sphere is protected in a thick wall becomes more attractive. Indeed, a re- LDPE hardhat, which also simplifies Production of VITROVEX® hemispheres re- search team from Scripps Institution mounting. quires high-quality raw material, precision of Oceanography/UCSD deployed molds, advanced manufacturing technology, two free vehicles, described below, and processing expertise to meet the challenge of ocean trenches. using 17-inch VITROVEX® spheres to History of VITROVEX® 8,400 m (27,500 feet) from a 53-feet Glass Flotation and boat in November 2006. Instrument Housings As appealing as it is, glass has, how- All pressure housings depend on ever, some drawbacks in that it is diffi- geometry, outside diameter, wall thick- cult to machine accurately, it is brittle, ness, and material to reach their de- and hence is subject to damage from sired design depth. VITROVEX® glass impact and spalling. The glass may spheres of 10- or 13-inch diameter spall when cycled. The bearing stresses can withstand pressure at 9,000 or under standard connectors can cause 7,000 m, respectively. Larger 17-inch spalling at the corner of the spotface spheres are made to reach 6,700 m, and the diamond drilled hole. A large and now to 9,000 m and 11,000 m. As a result, VITROVEX® flota- 4-mm-thick “flat washer” with a larger The flotation spheres and instrument tion spheres and instrument housings diameter o-ring can be used to spread housings are composed of two mated show very little deviation in shape even out the load over a larger area. The glass hemispheres that are evacuated under the high pressure found in ocean connector o-ring rests on the top of and locked into position by a sealant trenches. Since two hemispheres have the “flat washer,” which has a smooth and protective tape. Once the spheres to be put together to form one sphere, finished o-ring surface. Some under- are sealed, the two hemispheres are matching the geometries is critical. In water connector manufacturers, includ- kept together by the atmospheric addition to precision molding of the ing SubConn and Teledyne Impulse, pressure on land and the pressure right type of glass, skilled craftsmanship have created connector bodies that of the water column when deployed. directs the pressing of each hemisphere are specially adapted to glass housings. VITROVEX® spheres are made of to exactly the same dimensions, outer 106 Marine Technology Society Journal diameter, inner diameter and wall FIGURE 3 thickness, as all the others of that size. Examples of VITROVEX® glass products. The mating surfaces require a triple grinding process: milling with diamond tools, manual smoothing, and manual polishing to ensure the parting plane sealing faces are honed to a precise flat- ness and finish. The congruous surfaces are so closely matched that when two hemispheres are set together, with no butyl and tape at the parting line, and 7,000 and 6,700 m pressure rating in Trench, and even modified to func- a hard vacuum is pulled, it takes a day the early 1990s. So it was in the nature tion as a towed camera in the Sea of for the vacuum to bleed down molecule of things to face the challenge of going Cortez to confirm the presence of by molecule. Place the butyl rubber and deeper. bacterial mats (Figures 4 and 5) tape on the seam, and it might take This development was driven by (Hardy et al., 2002). forever. As a result of precision form- various scientific institutions such as ing, VITROVEX hemispheres of the Scripps Institution of Oceanography/ ® FIGURE 4 same outside diameter and wall thick- UCSD (Kevin Hardy, 2000, in col- ness are completely interchangeable laboration with Emory Kristof, Na- Deep Ocean vehicle DOV Mary Carol, built from and can be replaced individually. Dur- tional Geographic Society), and later, a single VITROVEX® 17-inch sphere, is recov- ing assembly, they are aligned along the Oceanlab from the University of ered on the stern of Scripps Institution of ’ the outer circumference only; there is Aberdeen. Oceanography/UCSD s R/V Sproul by Scripps engineer Kevin Hardy in August 2003.
Recommended publications
  • Download Transcript
    SCIENTIFIC AMERICAN FRONTIERS PROGRAM #1503 "Going Deep" AIRDATE: February 2, 2005 ALAN ALDA Hello and welcome to Scientific American Frontiers. I'm Alan Alda. It's said that the oceans, which cover more than two thirds of the earth's surface, are less familiar to us than the surface of the moon. If you consider the volume of the oceans, it's actually more than ninety percent of the habitable part of the earth that we don't know too much about. The main reason for our relative ignorance is simply that the deep ocean is an absolutely forbidding environment. It's pitch dark, extremely cold and with pressures that are like having a 3,000-foot column of lead pressing down on every square inch -- which does sound pretty uncomfortable. In this program we're going to see how people finally made it to the ocean floor, and we'll find out about the scientific revolutions they brought back with them. We're going to go diving in the Alvin, the little submarine that did so much of the work. And we're going to glimpse the future, as Alvin's successor takes shape in a small seaside town on Cape Cod. That's coming up in tonight's episode, Going Deep. INTO THE DEEP ALAN ALDA (NARRATION) Woods Hole, Massachusetts. It's one of the picturesque seaside towns that draw the tourists to Cape Cod each year. But few seaside towns have what Woods Hole has. For 70 years it's been home to the Woods Hole Oceanographic Institution — an organization that does nothing but study the world's oceans.
    [Show full text]
  • “Body Temperature & Pressure, Saturated” & Ambient Pressure Correction in Air Medical Transport
    “Body Temperature & Pressure, Saturated” & Ambient Pressure Correction in air medical transport Mechanical ventilation can be especially challenging during air medical transport, particularly due to the impact of varying atmospheric pressure with changing altitudes. The Oxylog® 3000 plus and Oxylog® 2000 plus help to effectively deal with these challenges. D-33481-2011 Artificial ventilation uses compressed the ventilation volumes delivered by the gas to deliver the required volume to the ventilator. Mechanical ventilation in fixed patient. This breathing gas has normally wing aircraft without a pressurized cabin an ambient temperature level and is very is subject to the same dynamics. In case dry. Inside the human lungs the gas of a pressurized cabin it is still relevant expands due to a higher temperature and to correct the inspiratory volumes, as humidity level. These physical conditions the cabin is usually maintained at MT-5809-2008 are described as “Body Temperature & a pressure of approximately 800 mbar Figure 1: Oxylog® 3000 plus Pressure, Saturated” (BTPS), which (600 mmHg), comparable to an altitude The Oxylog® 3000 plus automatically com- presumes the combined environmental of 8,200 ft/2,500 m. pensates volume delivery and measurement circumstances of – Without BTPS correction, the deli- – a body temperature of 37 °C / 99 °F vered inspiratory volume can deviate up – ambient barometrical pressure to 14 % conditions and (at 14,800 ft/4,500 m altitude) from – breathing gas saturated with water the targeted set volume (i.e. 570 ml vapour (= 100 % relative humidity). instead of 500 ml). – Without ambient pressure correction, Aside from the challenge of changing the inspiratory volume can deviate up temperatures and humidity inside the to 44 % (at 14,800 ft/4,500 m altitude) patient lungs, the ambient pressure is from the targeted set volume also important to consider.
    [Show full text]
  • The Mississippi River Find
    The Journal of Diving History, Volume 23, Issue 1 (Number 82), 2015 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 04/10/2021 06:15:15 Link to Item http://hdl.handle.net/1834/32902 First Quarter 2015 • Volume 23 • Number 82 • 23 Quarter 2015 • Volume First Diving History The Journal of The Mississippi River Find Find River Mississippi The The Journal of Diving History First Quarter 2015, Volume 23, Number 82 THE MISSISSIPPI RIVER FIND This issue is dedicated to the memory of HDS Advisory Board member Lotte Hass 1928 - 2015 HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION PO BOX 2837, SANTA MARIA, CA 93457 USA TEL. 805-934-1660 FAX 805-934-3855 e-mail: [email protected] or on the web at www.hds.org PATRONS OF THE SOCIETY HDS USA BOARD OF DIRECTORS Ernie Brooks II Carl Roessler Dan Orr, Chairman James Forte, Director Leslie Leaney Lee Selisky Sid Macken, President Janice Raber, Director Bev Morgan Greg Platt, Treasurer Ryan Spence, Director Steve Struble, Secretary Ed Uditis, Director ADVISORY BOARD Dan Vasey, Director Bob Barth Jack Lavanchy Dr. George Bass Clement Lee Tim Beaver Dick Long WE ACKNOWLEDGE THE CONTINUED Dr. Peter B. Bennett Krov Menuhin SUPPORT OF THE FOLLOWING: Dick Bonin Daniel Mercier FOUNDING CORPORATIONS Ernest H. Brooks II Joseph MacInnis, M.D. Texas, Inc. Jim Caldwell J. Thomas Millington, M.D. Best Publishing Mid Atlantic Dive & Swim Svcs James Cameron Bev Morgan DESCO Midwest Scuba Jean-Michel Cousteau Phil Newsum Kirby Morgan Diving Systems NJScuba.net David Doubilet Phil Nuytten Dr.
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • Intracratonic Asthenosphere Upwelling and Lithosphere Rejuvenation
    Earth and Planetary Science Letters 260 (2007) 482–494 www.elsevier.com/locate/epsl Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): Evidence from HIMU metasomatised lherzolite mantle xenoliths ⁎ L. Beccaluva a, , A. Azzouni-Sekkal b, A. Benhallou c, G. Bianchini a, R.M. Ellam d, M. Marzola a, F. Siena a, F.M. Stuart d a Dipartimento di Scienze della Terra, Università di Ferrara, Italy b Faculté des Sciences de la Terre, Géographie et Aménagement du Territoire, Université des Sciences et Technologie Houari Boumédienne, Alger, Algeria c CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophysique), Alger, Algeria d Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, East Kilbride, UK Received 7 March 2007; received in revised form 23 May 2007; accepted 24 May 2007 Available online 2 June 2007 Editor: R.W. Carlson Abstract The mantle xenoliths included in Quaternary alkaline volcanics from the Manzaz-district (Central Hoggar) are proto-granular, anhydrous spinel lherzolites. Major and trace element analyses on bulk rocks and constituent mineral phases show that the primary compositions are widely overprinted by metasomatic processes. Trace element modelling of the metasomatised clinopyroxenes allows the inference that the metasomatic agents that enriched the lithospheric mantle were highly alkaline carbonate-rich melts such as nephelinites/melilitites (or as extreme silico-carbonatites). These metasomatic agents were characterized by a clear HIMU Sr–Nd–Pb isotopic signature, whereas there is no evidence of EM1 components recorded by the Hoggar Oligocene tholeiitic basalts. This can be interpreted as being due to replacement of the older cratonic lithospheric mantle, from which tholeiites generated, by asthenospheric upwelling dominated by the presence of an HIMU signature.
    [Show full text]
  • Processing of Syntactic Foams: a Review
    IARJSET ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology CETCME-2017 “Cutting Edge Technological Challenges in Mechanical Engineering” Noida Institute of Engineering & Technology (NIET), Greater Noida Vol. 4, Special Issue 3, February 2017 Processing of Syntactic Foams: A Review Ankur Bisht1, Brijesh Gangil2 Faculty, Mechanical Engineering Dept, S.O.E.T., HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India 1 Assistant Professor, Mechanical Engg, S.O.E.T., HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India 2 Abstract: For structural application different types of lighter material with higher specific strength are being developed now days like honeycomb, metal foam, sandwich panels, syntactic foam etc. In this review paper the syntactic foam is discussed among all these lighter material. Syntactic foams are the materials in which micro spheres are incorporated in a matrix. In syntactic foams, the matrix is reinforced with hollow spherical particles which have a controlled systematic arrangement in the matrix. Hollow microspheres give the syntactic foam its low density, high specific strength, and low moisture absorption. Microspheres may comprise glass, polymer, carbon and ceramic or even metal. The strength of syntactic foams can be nearly equal to that of the matrix. The plateau and yield stress can be tailored over a wide range by selecting appropriate volume fraction and particle type. Metal matrix syntactic foams are expected to have better properties compared to open or closed-cell metallic foams since the former have controlled size and geometry of porosity and the ceramic shells contribute to stiffness and strength. Several preparation methods are used for preparing syntactic foam and various applications are discussed, depending on the types of matrix and reinforcement used.
    [Show full text]
  • Global Ship Accidents and Ocean Swell-Related Sea States
    Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-142, 2017 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 26 April 2017 c Author(s) 2017. CC-BY 3.0 License. Global ship accidents and ocean swell-related sea states Zhiwei Zhang1, 2, Xiao-Ming Li2, 3 1 College of Geography and Environment, Shandong Normal University, Jinan, China 2 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 5 Beijing, China 3 Hainan Key Laboratory of Earth Observation, Sanya, China Correspondence to: X.-M. Li (E-mail: [email protected]) Abstract. With the increased frequency of shipping activities, navigation safety has become a major concern, especially when economic losses, human casualties and environmental issues are considered. As a contributing factor, sea state conditions play 10 a significant role in shipping safety. However, the types of dangerous sea states that trigger serious shipping accidents are not well understood. To address this issue, we analyzed the sea state characteristics during ship accidents that occurred in poor weather or heavy seas based on a ten-year ship accident dataset. The sea state parameters, including the significant wave height, the mean wave period and the mean wave direction, obtained from numerical wave model data were analyzed for selected ship accidents. The results indicated that complex sea states with the co-occurrence of wind sea and swell conditions represent 15 threats to sailing vessels, especially when these conditions include close wave periods and oblique wave directions. 1 Introduction The shipping industry delivers 90% of all world trade (IMO, 2011).
    [Show full text]
  • Lesson 8: Currents
    Standards Addressed National Science Lesson 8: Currents Education Standards, Grades 9-12 Unifying concepts and Overview processes Physical science Lesson 8 presents the mechanisms that drive surface and deep ocean currents. The process of global ocean Ocean Literacy circulation is presented, emphasizing the importance of Principles this process for climate regulation. In the activity, students The Earth has one big play a game focused on the primary surface current names ocean with many and locations. features Lesson Objectives DCPS, High School Earth Science Students will: ES.4.8. Explain special 1. Define currents and thermohaline circulation properties of water (e.g., high specific and latent heats) and the influence of large bodies 2. Explain what factors drive deep ocean and surface of water and the water cycle currents on heat transport and therefore weather and 3. Identify the primary ocean currents climate ES.1.4. Recognize the use and limitations of models and Lesson Contents theories as scientific representations of reality ES.6.8 Explain the dynamics 1. Teaching Lesson 8 of oceanic currents, including a. Introduction upwelling, density, and deep b. Lecture Notes water currents, the local c. Additional Resources Labrador Current and the Gulf Stream, and their relationship to global 2. Extra Activity Questions circulation within the marine environment and climate 3. Student Handout 4. Mock Bowl Quiz 1 | P a g e Teaching Lesson 8 Lesson 8 Lesson Outline1 I. Introduction Ask students to describe how they think ocean currents work. They might define ocean currents or discuss the drivers of currents (wind and density gradients). Then, ask them to list all the reasons they can think of that currents might be important to humans and organisms that live in the ocean.
    [Show full text]
  • Earth Science Ocean Currents May 12, 2020
    High School Science Virtual Learning Earth Science Ocean Currents May 12, 2020 High School Earth Science Lesson: May 12, 2020 Objective/Learning Target: Students will understand major ocean currents and how they impact Earth. Let’s Get Started: 1. What is the difference between weather and climate? 2. What is an ocean? Let’s Get Started: Answer Key 1. Weather is local & short term, climate is regional and long term 2. The ocean is a huge body of saltwater that covers about 71 percent of the Earth's surface Lesson Activity: Directions: 1. Read through the Following slides. 2. Answer the questions on your own paper. MAJOR OCEAN CURRENTS Terms 1. Coriolis Effect movement of wind and water to the right or left that is caused by Earth’s rotation 2. upwelling vertical movement of water toward the ocean’s surface 3. surface current is an ocean current that moves water horizontally and does not reach a depth of more than 400m. 4. gyre is when major surface currents form a circular system. MAJOR OCEAN CURRENTS A current is a large volume of water flowing in a certain direction. CAUSES OF OCEAN CURRENTS 1. One cause of an ocean current is friction between wind and the ocean surface. ○ Earth’s prevailing winds influence the formation and direction of surface currents. ○ Ex: tides, waves 2. In addition to the wind, the direction surface currents flow depends on the Coriolis effect. ○ The Coriolis effect results from Earth’s rotation. It influences the direction of flow of Earth’s water and air. 3.
    [Show full text]
  • Ocean Vocabulary
    Mrs. Hansgen's 7th Grade Science Name Date Ocean Vocabulary wave period breaker El Nino neap tides Coriolis effect swelling whitecap tidal range trough high tide tsunami deep current crest spring tides low tide surf surface current storm surge wavelength upwelling Matching Match each definition with a word. 1. Lowest point of a wave 2. a white, foaming wave with a very steep crest that breaks in the open ocean before the wave gets close to the shore 3. A curving of a moving object from a straight path due to the Earth's rotation. 4. An ocean current formed when steady winds blow over the surface of the ocean. 5. rolling waves that move in a steady procession across the ocean 6. when the ocean tide reaches the highest point on the shoreline 7. An abnormal climate event that occurs every 2 to 7 years in the Pacific Ocean, causing changes in winds, currents, and weather patterns, that can lead to dramatic changes. 8. a wave that forms when a large volume of ocean water is suddenly moved up or down 9. The distance between two adjacent wave crests or wave troughs 10. tides with minimum daily tidal range that occur during the first and third quarters of the moon 11. Highest point of a wave 12. a process in which cold, nutrient-rich water from the deep ocean rises to the surface and replaces warm surface water 13. ocean tide at its lowest point on the shore 14. the area between the breaker zone and the shore 15.
    [Show full text]
  • The C-Floor and Zones
    The C-Floor and zones Table of Contents ` ❖ The ocean zones ❖ Sunlight zone and twilight zone ❖ Midnight and Abyssal zone ❖ The hadal zone ❖ The c-floor ❖ The c-floor definitions ❖ The c-floor definitions pt.2 ❖ Cites ❖ The end The ocean zones 200 meters deep 1,000 Meters deep 4,000 Meters deep 6,000 Meters deep 10,944 meters deep Sunlight zone Twilight zone ❖ The sunlight zone is 200 meters from the ocean's ❖ The twilight zone is about 1,000 meters surface deep from the ❖ Animals that live here ocean's surface sharks, sea turtles, ❖ Animals that live jellyfish and seals here are gray ❖ Photosynthesis normally whales, greenland occurs in this part of the Shark and clams ocean ❖ The twilight get only a faint amount of sunlight DID YOU KNOW Did you know That no plants live That the sunlight zone in the twilight zone could be called as the because of the euphotic and means well lit amount of sunlight in greek Midnight zone Abyssal zone ❖ The midnight zone is ❖ The abyssal zone is 4,000 meters from 6,000 meters from the the ocean's surface ocean’s surface ❖ Animals that live in ❖ Animals that live in the the midnight zone Abyssal zone are fangtooth fish, pacific are, vampire squid, viperfish and giant snipe eel and spider crabs anglerfish ❖ Supports only ❖ Animals eat only the DID YOU KNOW invertebrates and DID YOU KNOW leftovers that come That only 1 percent of light fishes That most all the way from the travels through animals are sunlight zone to the the midnight zone either small or midnight zone bioluminescent The Hadal Zone (Trench ● The Hadal Zone is 10,944 meters under the ocean ● Snails, worms, and sea cucumbers live in the hadal zone ● It is pitch black in the Hadal Zone The C-Floor The C-Floor Definitions ❖ The Continental Shelf - The flat part where people can walk.
    [Show full text]
  • Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur
    EXTREMOPHILES – Vol. III - Piezophily: Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur PIEZOPHILY: PROKARYOTES EXPOSED TO ELEVATED HYDROSTATIC PRESSURE Daniel Prieur Université de Bretagne occidentale, Plouzané, France. Keywords: archea, bacteria, deep biosphere, deep sea, Europa, exobiology, hydrothermal vents, hydrostatic pressure, hyperthermophile, Mars, oil reservoirs, prokaryote. Contents 1. Introduction 2. Deep-Sea Microbiology 2.1. A Brief History 2.2. Deep-Sea Psychrophiles 2.2.1. General Features 2.2.2. Adaptations to Elevated Hydrostatic Pressure 2.3. Deep-Sea Hydrothermal Vents 2.3.1. Deep-Sea Hyperthermophiles 2.3.2. Responses to Hydrostatic Pressure 3. Other Natural Environments Exposed to Hydrostatic Pressure 3.1. Deep Marine Sediments 3.2. Deep Oil Reservoirs 3.3. Deep Rocks and Aquifers 3.4. Sub-Antarctic Lakes 4. Other Worlds 4.1. Mars 4.2. Europa 5. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch SummaryUNESCO – EOLSS All living organisms, and particularly prokaryotes, which colonize the most extreme environments, SAMPLEhave their physiology cont rolledCHAPTERS by a variety of physicochemical parameters whose different values contribute to the definition of biotopes. Hydrostatic pressure is one of the major parameters influencing life, but its importance is limited to only some environments, especially the deep sea. If the deep sea is defined as water layers below one kilometer depth, this amount of water, which is exposed to pressures up to 100 MPa, represents 62% of the volume of the total Earth biosphere. A rather small numbers of investigators have studied the prokaryotes that, alongside invertebrates and vertebrates, inhabit this extreme environment. Deep-sea prokaryotes show different levels of adaptation to elevated hydrostatic pressure, from the barosensitive organisms to the obligate piezophiles.
    [Show full text]