Ocean Wind and Current Retrievals Based on Satellite SAR Measurements in Conjunction with Buoy and HF Radar Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 10. Thermohaline Circulation
Chapter 10. Thermohaline Circulation Main References: Schloesser, F., R. Furue, J. P. McCreary, and A. Timmermann, 2012: Dynamics of the Atlantic meridional overturning circulation. Part 1: Buoyancy-forced response. Progress in Oceanography, 101, 33-62. F. Schloesser, R. Furue, J. P. McCreary, A. Timmermann, 2014: Dynamics of the Atlantic meridional overturning circulation. Part 2: forcing by winds and buoyancy. Progress in Oceanography, 120, 154-176. Other references: Bryan, F., 1987. On the parameter sensitivity of primitive equation ocean general circulation models. Journal of Physical Oceanography 17, 970–985. Kawase, M., 1987. Establishment of deep ocean circulation driven by deep water production. Journal of Physical Oceanography 17, 2294–2317. Stommel, H., Arons, A.B., 1960. On the abyssal circulation of the world ocean—I Stationary planetary flow pattern on a sphere. Deep-Sea Research 6, 140–154. Toggweiler, J.R., Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research 42, 477–500. Vallis, G.K., 2000. Large-scale circulation and production of stratification: effects of wind, geometry and diffusion. Journal of Physical Oceanography 30, 933–954. 10.1 The Thermohaline Circulation (THC): Concept, Structure and Climatic Effect 10.1.1 Concept and structure The Thermohaline Circulation (THC) is a global-scale ocean circulation driven by the equator-to-pole surface density differences of seawater. The equator-to-pole density contrast, in turn, is controlled by temperature (thermal) and salinity (haline) variations. In the Atlantic Ocean where North Atlantic Deep Water (NADW) forms, the THC is often referred to as the Atlantic Meridional Overturning Circulation (AMOC). -
Lesson 8: Currents
Standards Addressed National Science Lesson 8: Currents Education Standards, Grades 9-12 Unifying concepts and Overview processes Physical science Lesson 8 presents the mechanisms that drive surface and deep ocean currents. The process of global ocean Ocean Literacy circulation is presented, emphasizing the importance of Principles this process for climate regulation. In the activity, students The Earth has one big play a game focused on the primary surface current names ocean with many and locations. features Lesson Objectives DCPS, High School Earth Science Students will: ES.4.8. Explain special 1. Define currents and thermohaline circulation properties of water (e.g., high specific and latent heats) and the influence of large bodies 2. Explain what factors drive deep ocean and surface of water and the water cycle currents on heat transport and therefore weather and 3. Identify the primary ocean currents climate ES.1.4. Recognize the use and limitations of models and Lesson Contents theories as scientific representations of reality ES.6.8 Explain the dynamics 1. Teaching Lesson 8 of oceanic currents, including a. Introduction upwelling, density, and deep b. Lecture Notes water currents, the local c. Additional Resources Labrador Current and the Gulf Stream, and their relationship to global 2. Extra Activity Questions circulation within the marine environment and climate 3. Student Handout 4. Mock Bowl Quiz 1 | P a g e Teaching Lesson 8 Lesson 8 Lesson Outline1 I. Introduction Ask students to describe how they think ocean currents work. They might define ocean currents or discuss the drivers of currents (wind and density gradients). Then, ask them to list all the reasons they can think of that currents might be important to humans and organisms that live in the ocean. -
Earth Science Ocean Currents May 12, 2020
High School Science Virtual Learning Earth Science Ocean Currents May 12, 2020 High School Earth Science Lesson: May 12, 2020 Objective/Learning Target: Students will understand major ocean currents and how they impact Earth. Let’s Get Started: 1. What is the difference between weather and climate? 2. What is an ocean? Let’s Get Started: Answer Key 1. Weather is local & short term, climate is regional and long term 2. The ocean is a huge body of saltwater that covers about 71 percent of the Earth's surface Lesson Activity: Directions: 1. Read through the Following slides. 2. Answer the questions on your own paper. MAJOR OCEAN CURRENTS Terms 1. Coriolis Effect movement of wind and water to the right or left that is caused by Earth’s rotation 2. upwelling vertical movement of water toward the ocean’s surface 3. surface current is an ocean current that moves water horizontally and does not reach a depth of more than 400m. 4. gyre is when major surface currents form a circular system. MAJOR OCEAN CURRENTS A current is a large volume of water flowing in a certain direction. CAUSES OF OCEAN CURRENTS 1. One cause of an ocean current is friction between wind and the ocean surface. ○ Earth’s prevailing winds influence the formation and direction of surface currents. ○ Ex: tides, waves 2. In addition to the wind, the direction surface currents flow depends on the Coriolis effect. ○ The Coriolis effect results from Earth’s rotation. It influences the direction of flow of Earth’s water and air. 3. -
Ocean Vocabulary
Mrs. Hansgen's 7th Grade Science Name Date Ocean Vocabulary wave period breaker El Nino neap tides Coriolis effect swelling whitecap tidal range trough high tide tsunami deep current crest spring tides low tide surf surface current storm surge wavelength upwelling Matching Match each definition with a word. 1. Lowest point of a wave 2. a white, foaming wave with a very steep crest that breaks in the open ocean before the wave gets close to the shore 3. A curving of a moving object from a straight path due to the Earth's rotation. 4. An ocean current formed when steady winds blow over the surface of the ocean. 5. rolling waves that move in a steady procession across the ocean 6. when the ocean tide reaches the highest point on the shoreline 7. An abnormal climate event that occurs every 2 to 7 years in the Pacific Ocean, causing changes in winds, currents, and weather patterns, that can lead to dramatic changes. 8. a wave that forms when a large volume of ocean water is suddenly moved up or down 9. The distance between two adjacent wave crests or wave troughs 10. tides with minimum daily tidal range that occur during the first and third quarters of the moon 11. Highest point of a wave 12. a process in which cold, nutrient-rich water from the deep ocean rises to the surface and replaces warm surface water 13. ocean tide at its lowest point on the shore 14. the area between the breaker zone and the shore 15. -
OCEANS ´09 IEEE Bremen
11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education. -
Observational Studies of Scatterometer Ocean Vector Winds in the Presence of Dynamic Air-Sea Interactions
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2012 Observational studies of scatterometer ocean vector winds in the presence of dynamic air-sea interactions Amanda Michael Plagge University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Plagge, Amanda Michael, "Observational studies of scatterometer ocean vector winds in the presence of dynamic air-sea interactions" (2012). Doctoral Dissertations. 656. https://scholars.unh.edu/dissertation/656 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. OBSERVATIONAL STUDIES OF SCATTEROMETER OCEAN VECTOR WINDS IN THE PRESENCE OF DYNAMIC AIR-SEA INTERACTIONS BY AMANDA MICHAEL PLAGGE Bachelor of Arts, Dartmouth College, 2003 Bachelor of Engineering, Thayer School of Engineering, 2004 Master of Science, Dartmouth College, 2006 DISSERTATION Submitted to the University of New Hampshire in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Earth and Environmental Science: Oceanography May 2012 UMI Number: 3525064 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3525064 Published by ProQuest LLC 2012. -
Ocean Surface Currents Introduction to Ocean Gyres
Ocean Surface Currents Introduction to Ocean Gyres One of the primary goals of physical oceanography is to know the average movement of ocean water, everywhere around the globe. Besides knowing the average flow, it is also very useful to know how much this flow can change over a course of a day, over a year, over ten years, and longer. Ocean currents are organized flows that persist over some geographical region and over some time period such that water is transported from one part of the ocean to another part of the ocean. Currents also transport plankton, fish, heat, momentum, and chemicals such as salts, oxygen, and carbon dioxide. Currents are a significant component of the global biogeochemical and hydrological cycles. Knowledge of ocean currents is also extremely important for marine operations involving navigation, search and rescue at sea, and the dispersal of pollutants. It is quite evident from observations of ocean flow that the wind moves water, and that the wind is one of the primary forces that drive ocean currents. In the early part of the 20th century, a Norwegian scientist, Fridtjof Nanson, noted that icebergs in the North Atlantic moved to the right of the wind. His student, V. Walfrid Ekman, demonstrated that the earth's rotation caused this effect and in particular, that the Coriolis force was responsible and in the Southern Hemisphere, it causes water to move to the left of the wind. One of the primary results of Ekman dynamics is that the net movement of water, forced by large-scale winds, are to the right (left) of the wind in the Northern (Southern) Hemisphere. -
Ocean Circulation and Climate: an Overview
ocean-climate.org Bertrand Delorme Ocean Circulation and Yassir Eddebbar and Climate: an Overview Ocean circulation plays a central role in regulating climate and supporting marine life by transporting heat, carbon, oxygen, and nutrients throughout the world’s ocean. As human-emitted greenhouse gases continue to accumulate in the atmosphere, the Meridional Overturning Circulation (MOC) plays an increasingly important role in sequestering anthropogenic heat and carbon into the deep ocean, thus modulating the course of climate change. Anthropogenic warming, in turn, can influence global ocean circulation through enhancing ocean stratification by warming and freshening the high latitude upper oceans, rendering it an integral part in understanding and predicting climate over the 21st century. The interactions between the MOC and climate are poorly understood and underscore the need for enhanced observations, improved process understanding, and proper model representation of ocean circulation on several spatial and temporal scales. The ocean is in perpetual motion. Through its DRIVING MECHANISMS transport of heat, carbon, plankton, nutrients, and oxygen around the world, ocean circulation regulates Global ocean circulation can be divided into global climate and maintains primary productivity and two major components: i) the fast, wind-driven, marine ecosystems, with widespread implications upper ocean circulation, and ii) the slow, deep for global fisheries, tourism, and the shipping ocean circulation. These two components act industry. Surface and subsurface currents, upwelling, simultaneously to drive the MOC, the movement of downwelling, surface and internal waves, mixing, seawater across basins and depths. eddies, convection, and several other forms of motion act jointly to shape the observed circulation As the name suggests, the wind-driven circulation is of the world’s ocean. -
Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling. -
Life on the Coral Reef
Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean. -
In Wind and Ocean Currents
PAPERS IN PHYSICAL OCEANOGRAPHY AND METEOROLOGY PUBLISHED BY MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND WOODS HOLE OCEANOGRAPHIC INSTITUTION (In continuation of Massachusetts Institute of Technology Meteorological Papers) VOL. III, NO.3 THE LAYER OF FRICTIONAL INFLUENCE IN WIND AND OCEAN CURRENTS BY c.-G. ROSSBY AND R. B. MONTGOMERY Contribution No. 71 from the Woods Hole Oceanographic Institution .~ J~\ CAMBRIDGE, MASSACHUSETTS Ap~il, 1935 CONTENTS i. INTRODUCTION 3 II. ADIABATIC ATMOSPHERE. 4 1. Completion of Solution for Adiabatic Atmosphere 4 2. Light Winds and Residual Turbulence 22 3. A Study of the Homogeneous Layer at Boston 25 4. Second Approximation 4° III. INFLUENCE OF STABILITY 44 I. Review 44 2. Stability in the Boundary Layer 47 3. Stability within Entire Frictional Layer 56 IV. ApPLICATION TO DRIFT CURRENTS. 64 I. General Commen ts . 64 2. The Homogeneous Layer 66 3. Analysis of Material 67 4. Results of Analysis . 69 5. Scattering of the Observations and Advection 72 6. Oceanograph Observations 73 7. Wind Drift of the Ice 75 V. LENGTHRELATION BETWEEN THE VELOCITY PROFILE AND THE VALUE OF THE85 MIXING ApPENDIX2.1. StirringTheoretical in Shallow Comments . Water 92. 8885 REFERENCESSUMMARYModified Computation of the Boundary Layer in Drift Currents 9899 92 1. INTRODUCTION The purpose of the present paper is to analyze, in a reasonably comprehensive fash- ion, the principal factors controlling the mean state of turbulence and hence the mean velocity distribution in wind and ocean currents near the surface. The plan of the in- vestigation is theoretical but efforts have been made to check each major step or result through an analysis of available measurements. -
Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems
sustainability Article Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems Zhujun Zhang 1, Wei Fan 1, Weicheng Bao 1, Chen-Tung A Chen 2, Shuo Liu 1,3 and Yong Cai 3,* 1 Ocean College, Zhejiang University, Zhoushan 316000, China; [email protected] (Z.Z.); [email protected] (W.F.); [email protected] (W.B.); [email protected] (S.L.) 2 Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; [email protected] 3 Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China * Correspondence: [email protected] Received: 21 August 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: A hydrothermal vent system is one of the most unique marine environments on Earth. The cycling hydrothermal fluid hosts favorable conditions for unique life forms and novel mineralization mechanisms, which have attracted the interests of researchers in fields of biological, chemical and geological studies. Shallow-water hydrothermal vents located in coastal areas are suitable for hydrothermal studies due to their close relationship with human activities. This paper presents a summary of the developments in exploration and detection methods for shallow-water hydrothermal systems. Mapping and measuring approaches of vents, together with newly developed equipment, including sensors, measuring systems and water samplers, are included. These techniques provide scientists with improved accuracy, efficiency or even extended data types while studying shallow-water hydrothermal systems. Further development of these techniques may provide new potential for hydrothermal studies and relevant studies in fields of geology, origins of life and astrobiology.