2007 MTS Overview of Manned Underwater Vehicle Activity

Total Page:16

File Type:pdf, Size:1020Kb

2007 MTS Overview of Manned Underwater Vehicle Activity P A P E R 2007 MTS Overview of Manned Underwater Vehicle Activity AUTHOR ABSTRACT William Kohnen There are approximately 100 active manned submersibles in operation around the world; Chair, MTS Manned Underwater in this overview we refer to all non-military manned underwater vehicles that are used for Vehicles Committee scientific, research, tourism, and commercial diving applications, as well as personal leisure SEAmagine Hydrospace Corporation craft. The Marine Technology Society committee on Manned Underwater Vehicles (MUV) maintains the only comprehensive database of active submersibles operating around the world and endeavors to continually bring together the international community of manned Introduction submersible operators, manufacturers and industry professionals. The database is maintained he year 2007 did not herald a great through contact with manufacturers, operators and owners through the Manned Submersible number of new manned submersible de- program held yearly at the Underwater Intervention conference. Tployments, although the industry has expe- The most comprehensive and detailed overview of this industry is given during the UI rienced significant momentum. Submersi- conference, and this article cannot cover all developments within the allocated space; there- bles continue to find new applications in fore our focus is on a compendium of activity provided from the most dynamic submersible tourism, science and research, commercial builders, operators and research organizations that contribute to the industry and who share and recreational work; the biggest progress their latest information through the MTS committee. This article presents a short overview coming from the least likely source, namely of submersible activity in 2007, including new submersible construction, operation and the leisure markets. The year’s most sensa- regulatory activity of research, tourism, commercial diving and recreational applications. tional news was unquestionably achieved The scope of this article is limited to active atmospheric submersibles, and does not include by two Russian submersibles, MIR 1 and historical, ambient pressure, or laid-up submersibles, which would be an entire article on its MIR 2, with their voyage to the bottom own. For a complete overview that includes submersibles not covered in this article, readers of the North Pole. Scientists from the PP are invited to peruse the MTS Manned Underwater Vehicle online database at the committee’s Shirshov Institute of Oceanology duly re- website (www.mtsmuv.org). corded the event and planted a Russian flag there, sparking an international debate over deep submergence vehicle (DSV) project- A lesser number of people tour the oceans the ownership of the North Pole. Other ing their sea trials for 2008; neighboring in smaller submersibles. The tremendous news stories reported submersibles used for Japan claims the deepest operating DSV, tourism growth experienced in the 1990s drug trafficking in South America, creat- the Shinkai 6500; and the latest entrance has leveled out, leading to a stable fleet of ing stereotypes that feed the population’s to the deep submergence club, India, has submersibles. The excellent safety record is imagination with yarns of old submarines issued a public RFP for a 4000 m manned a testament to the high quality guidelines used in dangerous applications. submersible. Led by the National Institute of and regulations that have been generated In reality however, ocean sciences have Ocean Technology, the Indian government over the past 25 years by classing agencies been heavily curtailed due to reductions in has already commissioned a 104 m Ocean such as the American Bureau of Shipping the U.S. federal budgets. The Alvin replace- Research Vessel, the Sagar Nidhii, which was (ABS), Det Norske Veritas (DNV), Cay- ment HOV project, funded through the delivered in January 2008. man Island Shipping Registry (CISR) and National Science Foundation (NSF) and led No segment of the industry introduces Lloyds Register (LR), as well as flag state by the Woods Hole Oceanographic Institu- more people to the underwater world than government agencies. tion (WHOI), is in its fourth year with a the numerous tourism operators around Most of the new submersible builds scheduled delivery in 2010 (Dietrich, 2008). the globe. There are approximately 35-40 belong in the market segment for private The effort to deliver a new 6500 m vehicle tourism submersibles operating worldwide. leisure use. While regulatory adherence is on schedule and on budget is an ongoing The vast majority of passengers are toured fully established in classic commercial appli- challenge amidst tight budgetary guidelines. by a few operators of large 44-64 passenger cations such as tourism and research, there Overseas, however, budgets are burgeon- submersibles that typically dive to depths are few formal requirements for private ve- ing. China is making steady progress in the ranging between 100-150 feet, and per- hicles. This has the advantage of facilitating completion and testing of a 7000 m-rated form from 2000 to 5000 dives each year. modifications of existing design guidelines 26 Marine Technology Society Journal as well as the establishing new ones, but 1. Alvin and fabrication of the manned pressure lay owners are at a strict disadvantage to Alvin started the 2007 season in vessel, to be delivered to Lockheed Martin objectively evaluate concepts and operating February by completing 9 cruises for a for integration into the vehicle. procedures of these complex systems. total of 77 dives, ranging from EPR 9N, The luxury yachting market is grow- SoCal, JdF, OR Margin, Guaymas. The ing at a swift pace. In 1993, there were submersible was on layup from February 2. Antipodes fewer than 700 yachts worldwide larger to June for overhaul work and to install Hoffmann Submarines completed the than 80 feet; today there are more than new pieces of equipment to be tested. final stages of the overhaul and ABS clas- 700 new orders on the books for yachts These included new LED lights, a preci- sification of the submersible Antipodes. 80 feet or more. When all delivered, there sion clock for navigation and Frangibolt Antipodes’ present configuration was cre- will be more than 6000 yachts in opera- emergency releases. ated from the pilot compartment and con- tion, many of them between 150 ft and Alvin dove to an average of 2100 m with ning tower from a modular sub originally 250 ft long, large enough to carry private submerged times averaging 7.6 hours and known as the Perry PC-1501 and built for submersibles. The trend has not escaped 5 hours of bottom time (www.whoi.edu). service in the oil fields of the North Sea the notice of large yacht management firms The majority of the dives were for Biology (Hoffmann, 2008). around the world (Boggs, 2008). To foster science (29 dives) followed by Biochemistry Antipodes is a five-person submersible an exchange of techical information, a (22), Geo Chemistry (19) and Geology with unusually large diameter 58” hemi- preliminary dialogue between the yachting (12). Alvin did perform two engineering spherical viewports both bow and stern. and submersible industry was initiated at dives in June to verify the function of the Each viewport has a 46”-wide seat for two the 5th Annual MTS Manned Submersible new equipment, and also to support the and uses a unique feature where the pilot program at the Underwater Intervention Lockheed Martin engineering team that was can move about with the handheld remote conference in January 2008. The response awarded the contract in Summer 2007 for control. The submersible is equipped with was very positive and the effort is likely the design and fabrication of the RHOV. vectored thrusters for precise control. It to make a significant impact in the main- Four team members experienced diving a is classed to a maximum depth of 1000 stream deployment of private submersibles deep submergence submersible. Alvin is feet by the American Bureau of Shipping for the public yachting market. operated by Woods Hole Oceanographic (ABS) for both private use and passengers The biggest technology advancements Institution, designated as the National for hire. Hoffmann Yacht sales has been in the field of subsea tools and instruments Facility Operator. Alvin is presently rated involved with this sub since 1988, and come from Remotely Operated Vehicles to 4500 meters by the U.S. Navy (Brown, has performed all major modifications (ROVs), spurred in large part by the oil 2006). The RHOV scheduled to replace and upgrades in 1997 to integrate it into a industry, and in battery technologies from Alvin will be rated to a maximum depth of 150’ yacht, and later to operate as a tour- the Autonomous Underwater Vehicle 6500 m and will be classed by the American ism submersible in the deep Fiords of New (AUV) industry. Unique to all submersibles Bureau of Shipping. Southwest Research Zealand’s South Island. is the need for autonomous power and high Institute is under contract for the design Antipodes capacity batteries. The major push today is Alvin in the development of lithium-ion-based batteries that provide a significant increase in energy density. More testing and regula- tory approval is in the works to make this commonly available. The biggest changes, however, are seen in the wide variety of high resolution underwater imaging sys- tems that are offered by a growing number of manufacturers, and the emergence of high power LED light technology. The latest developments are one of the areas addressed through the MTS MUV yearly 3. Atlantis Submarines program during the Underwater Interven- Atlantis Adventures operates a family tion conference. of 11 submersibles in nine locations world- The following is a brief summary of wide. The main achievement in 2007 has activity, presented in simple alphabetical been to keep all locations operating safely order of the submersibles. and steadily, a true exception in an industry Spring 2008 Volume 42, Number 1 27 that is marked by irregular business cycles.
Recommended publications
  • EMB PP25 Research Vessels
    EUROPEAN Next generation Position Paper 25 MARINE BOARD European Research Vessels Next generation European Research Vessels Current status and Foreseeable Evolution Cover Photo: View from the L'Atalante afterdeck while the ship is maneuvering. The L'Atalante is a research vessel of the French oceanographic fleet operated by Ifremer. This operation named Cassiopée, took place in the Pacific Ocean in 2015. Credit: © Ifremer/Ird - N. Lamande European Marine Board IVZW Belgian Enterprise Number: 0650.608.890 Wandelaarkaai 7 I 8400 Ostend I Belgium Tel.: +32(0)59 34 01 63 I Fax: +32(0)59 34 01 65 E-mail: [email protected] www.marineboard.eu EMB_PP25_Research_Vessels_cover_11mm.indd 1-3 17/10/19 21:51 NEXT GENERATION EUROPEAN RESEARCH VESSELS European Marine Board The European Marine Board provides a pan-European platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The European Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organizations towards the development of a common vision on the strategic research priorities for marine science in Europe. Members are either major national marine or oceanographic institutes, research funding agencies, or national consortia of universities with a strong marine research focus. In 2019, the European Marine Board represents 33 Member Organizations from 18 countries. The Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the European Marine Board serves its member organizations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European Research Area.
    [Show full text]
  • “Body Temperature & Pressure, Saturated” & Ambient Pressure Correction in Air Medical Transport
    “Body Temperature & Pressure, Saturated” & Ambient Pressure Correction in air medical transport Mechanical ventilation can be especially challenging during air medical transport, particularly due to the impact of varying atmospheric pressure with changing altitudes. The Oxylog® 3000 plus and Oxylog® 2000 plus help to effectively deal with these challenges. D-33481-2011 Artificial ventilation uses compressed the ventilation volumes delivered by the gas to deliver the required volume to the ventilator. Mechanical ventilation in fixed patient. This breathing gas has normally wing aircraft without a pressurized cabin an ambient temperature level and is very is subject to the same dynamics. In case dry. Inside the human lungs the gas of a pressurized cabin it is still relevant expands due to a higher temperature and to correct the inspiratory volumes, as humidity level. These physical conditions the cabin is usually maintained at MT-5809-2008 are described as “Body Temperature & a pressure of approximately 800 mbar Figure 1: Oxylog® 3000 plus Pressure, Saturated” (BTPS), which (600 mmHg), comparable to an altitude The Oxylog® 3000 plus automatically com- presumes the combined environmental of 8,200 ft/2,500 m. pensates volume delivery and measurement circumstances of – Without BTPS correction, the deli- – a body temperature of 37 °C / 99 °F vered inspiratory volume can deviate up – ambient barometrical pressure to 14 % conditions and (at 14,800 ft/4,500 m altitude) from – breathing gas saturated with water the targeted set volume (i.e. 570 ml vapour (= 100 % relative humidity). instead of 500 ml). – Without ambient pressure correction, Aside from the challenge of changing the inspiratory volume can deviate up temperatures and humidity inside the to 44 % (at 14,800 ft/4,500 m altitude) patient lungs, the ambient pressure is from the targeted set volume also important to consider.
    [Show full text]
  • Research Vessel Thomas G. Thompson Ship Specifications
    VESSELS SUPPORTING OCEAN EXPLORATION AND RESEARCH Research Vessel Thomas G. Thompson The R/V Thomas G. Thompson is owned by the U.S. Navy Office of Naval Research and is operated by the Ship Specifications School of Oceanography at the University of Washington. The Thompson measures 274 feet in Length: 273 ft (Global Class) length and draws 19 feet with a full load. Normal Draft: 17 ft cruising speed for the ship is 11 knots. Speed: 11 knots Range: 11,300 nm Endurance: 60 days Core Capabilities Berthing: 22 crew, 38 mission personnel The Thompson is equipped for multidisciplinary Commissioned: 1991 research projects involving large science parties. The Sonar Systems: 30 kHz Kongsberg EM 302 vessel can berth up to 36 scientific personnel, 21 multibeam sonar, 3.5 kHz Knudsen 3260 sub‐ officers and crew, and two marine technicians. bottom profiler, ADCP Laboratory space includes a large dry lab, wet lab, two Other Capabilities: Designed for interoperability bioanalytical labs, and a “hydro” lab. The hydro lab of projects, including full ocean depth CTDs, AUVs, is where scientists typically direct any ROV and AUV and deep ocean ROVs operations. The Thompson has three winches, three cranes, and an A‐Frame for launching scientific equipment. It is also equipped with an EM 302 multibeam sonar system, sub‐bottom profiler, ADCP system, and CTD/rosette. A number of ROV and AUV systems have been deployed from Thompson. OER Use Thompson is one of the primary vessels that OER has used to support major expeditions in remote regions of the Pacific Ocean. The vast majority of these expeditions were identified through the competitive peer review proposal process.
    [Show full text]
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • Arctic Marine Transport Workshop 28-30 September 2004
    Arctic Marine Transport Workshop 28-30 September 2004 Institute of the North • U.S. Arctic Research Commission • International Arctic Science Committee Arctic Ocean Marine Routes This map is a general portrayal of the major Arctic marine routes shown from the perspective of Bering Strait looking northward. The official Northern Sea Route encompasses all routes across the Russian Arctic coastal seas from Kara Gate (at the southern tip of Novaya Zemlya) to Bering Strait. The Northwest Passage is the name given to the marine routes between the Atlantic and Pacific oceans along the northern coast of North America that span the straits and sounds of the Canadian Arctic Archipelago. Three historic polar voyages in the Central Arctic Ocean are indicated: the first surface shop voyage to the North Pole by the Soviet nuclear icebreaker Arktika in August 1977; the tourist voyage of the Soviet nuclear icebreaker Sovetsky Soyuz across the Arctic Ocean in August 1991; and, the historic scientific (Arctic) transect by the polar icebreakers Polar Sea (U.S.) and Louis S. St-Laurent (Canada) during July and August 1994. Shown is the ice edge for 16 September 2004 (near the minimum extent of Arctic sea ice for 2004) as determined by satellite passive microwave sensors. Noted are ice-free coastal seas along the entire Russian Arctic and a large, ice-free area that extends 300 nautical miles north of the Alaskan coast. The ice edge is also shown to have retreated to a position north of Svalbard. The front cover shows the summer minimum extent of Arctic sea ice on 16 September 2002.
    [Show full text]
  • Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur
    EXTREMOPHILES – Vol. III - Piezophily: Prokaryotes Exposed to Elevated Hydrostatic Pressure - Daniel Prieur PIEZOPHILY: PROKARYOTES EXPOSED TO ELEVATED HYDROSTATIC PRESSURE Daniel Prieur Université de Bretagne occidentale, Plouzané, France. Keywords: archea, bacteria, deep biosphere, deep sea, Europa, exobiology, hydrothermal vents, hydrostatic pressure, hyperthermophile, Mars, oil reservoirs, prokaryote. Contents 1. Introduction 2. Deep-Sea Microbiology 2.1. A Brief History 2.2. Deep-Sea Psychrophiles 2.2.1. General Features 2.2.2. Adaptations to Elevated Hydrostatic Pressure 2.3. Deep-Sea Hydrothermal Vents 2.3.1. Deep-Sea Hyperthermophiles 2.3.2. Responses to Hydrostatic Pressure 3. Other Natural Environments Exposed to Hydrostatic Pressure 3.1. Deep Marine Sediments 3.2. Deep Oil Reservoirs 3.3. Deep Rocks and Aquifers 3.4. Sub-Antarctic Lakes 4. Other Worlds 4.1. Mars 4.2. Europa 5. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch SummaryUNESCO – EOLSS All living organisms, and particularly prokaryotes, which colonize the most extreme environments, SAMPLEhave their physiology cont rolledCHAPTERS by a variety of physicochemical parameters whose different values contribute to the definition of biotopes. Hydrostatic pressure is one of the major parameters influencing life, but its importance is limited to only some environments, especially the deep sea. If the deep sea is defined as water layers below one kilometer depth, this amount of water, which is exposed to pressures up to 100 MPa, represents 62% of the volume of the total Earth biosphere. A rather small numbers of investigators have studied the prokaryotes that, alongside invertebrates and vertebrates, inhabit this extreme environment. Deep-sea prokaryotes show different levels of adaptation to elevated hydrostatic pressure, from the barosensitive organisms to the obligate piezophiles.
    [Show full text]
  • Optimal Breathing Gas Mixture in Professional Diving with Multiple Supply
    Proceedings of the World Congress on Engineering 2021 WCE 2021, July 7-9, 2021, London, U.K. Optimal Breathing Gas Mixture in Professional Diving with Multiple Supply Orhan I. Basaran, Mert Unal compressors and cylinders, it was limited to surface air Abstract— Professional diving existed since antiquities when supply lines. In 1978, Fleuss introduced the first closed divers collected resources from the bottom of the seas and circuit oxygen breathing apparatus which removed carbon lakes. With technological advancements in the recent century, dioxide from the exhaled gas and did not form bubbles professional diving activities also increased significantly. underwater. In 1943, Cousteau and Gangan designed the Diving has many adverse effects on human physiology which first proper demand-regulated air supply from compressed are widely investigated in order to make dives safer. In this air cylinders worn on the back. The scuba equipment with study, we focus on optimizing the breathing gas mixture minimizing the dive costs while ensuring the safety of the the high-pressure regulator on the cylinder and a single hose divers. The methods proposed in this paper are purely to a demand valve was invented in Australia and marketed theoretical and divers should always have appropriate training by Ted Eldred in the early 1950s [1]. and certificates. Also, divers should never perform dives With the use of Siebe dress, the first cases of decompression without consulting professionals and medical doctors with expertise in related fields. sickness began to be documented. Haldane conducted several experiments on animal and human subjects in Index Terms—-professional diving; breathing gas compression chambers to investigate the causes of this optimization; dive profile optimization sickness and how it can be prevented.
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • The Next Generation of Ocean Exploration. Kelly Walsh Repeats Father’S Historic Dive, 60 Years Later, on Father’S Day Weekend
    From father to son; the next generation of ocean exploration. Kelly Walsh repeats father’s historic dive, 60 years later, on Father’s Day weekend DSSV Pressure Drop. Challenger Deep, Mariana Trench 200miles SW of Guam. June 20th, 2020 – Kelly Walsh, 52, today completed a historic dive to approximately 10,925m in the Challenger Deep. The dive location was the Western Pool, the same area that was visited by Kelly’s father, Captain Don Walsh, USN (Ret), PhD, who was the pilot of the bathyscaph ‘Trieste’ during the first dive to the Challenger Deep in 1960. Mr. Walsh’s 12- hour dive, coordinated by EYOS Expeditions, was undertaken aboard the deep-sea vehicle Triton 36000/2 ‘Limiting Factor” piloted by the owner of the vehicle Victor Vescovo, a Dallas, Texas based businessman and explorer. The expedition to the Challenger Deep is a joint venture by Caladan Oceanic, Triton Submarines and EYOS Expeditions. Mr. Vescovo and his team made headlines last year by completing a circumnavigation of the globe that enabled Mr. Vescovo to become the first person to dive to the deepest point of each of the worlds five oceans. The dives by father and son connect a circle of exploration history that spans 60 years. “It was a hugely emotional journey for me,” said Kelly Walsh aboard DSSV Pressure Drop, the expedition’s mothership. “I have been immersed in the story of Dad’s dive since I was born-- people find it fascinating. It has taken 60 years but thanks to EYOS Expeditions and Victor Vescovo we have now taken this quantum leap forward in our ability to explore the deep ocean.
    [Show full text]
  • 2018 Internships
    our world-underwater scholarship society ® our world-underwater www.owuscholarship.org scholarship society ® P.O. BOX 6157 Woodridge, Illinois 60517 44th Annual Awards Program 630-969-6690 voice April 21, 2018 – New York Yacht Club – New York e-mail [email protected] [email protected] Roberta A. Flanders Executive Administrator Graphic design by Rolex SA – Cover photo: Mae Dorricott – Thank you to all the iconographics contributors. © Rolex SA, Geneva, 2018 – All rights reserved. 1 3 Welcome It is my honor to welcome you to New York City and to the 44th anniversary celebration of the Our World-Underwater Scholarship Society®. It is a great pleasure for me as president of the Society to bring the “family” together each year to renew friendships, celebrate all of our interns and Rolex Scholars, and acknowledge the efforts of our volunteers. Once again, we celebrate a long history of extraordinary scholarship, volunteer service, organizational partnership, and corporate sponsorship, especially an amazing, uninterrupted partnership with Rolex, our founding corporate sponsor. This year is special. We bring three new Rolex Scholars and five new interns into our family resulting in an accumulative total of 100 Rolex Scholars and 102 interns since the inception of the Society, and all of this has been accomplished by our all-volunteer organization. Forty-four years of volunteers have been selfless in their efforts serving as directors, officers, committee members, coordinators, and technical advisors all motivated to support the Society’s mission “to promote educational activities associated with the underwater world.” “ A WHALE LIFTED HER HUGE, BEAUTIFUL HEAD None of this would have been possible without the incredible support by INTO MY WAITING ARMS AS the Society’s many organizational partners and corporate sponsors throughout I LEANT OVER THE SIDE the years.
    [Show full text]
  • The Oriental Institute News & Notes No
    oi.uchicago.edu THE ORIENTAL INSTITUTE NEWS & NOTES NO. 165 SPRING 2000 © THE ORIENTAL INSTITUTE OF THE UNIVERSITY OF CHICAGO AS THE SCROLLS ARRIVE IN CHICAGO... NormaN Golb, ludwig rosenberger Professor in Jewish History and Civilization During the past several years, some strange events have befallen the logic as well as rhetoric by which basic scholarly positions the storied Dead Sea Scrolls — events that could hardly have on the question of the scrolls’ nature and origin had been and been foreseen by the public even a decade ago (and how much were continuing to be constructed. During the 1970s and 1980s, the more so by historians, who, of all people, should never at- I had made many fruitless efforts in encouragement of a dialogue tempt to predict the future). Against all odds, the monopoly of this kind, but only in the 1990s, perhaps for reasons we will on the scrolls’ publication, held for over forty years by a small never fully understand, was such discourse finally initiated. And coterie of scholars, was broken in 1991. Beginning with such it had important consequences, leading to significant turning pioneering text publications as those of Ben-Zion Wacholder in points in the search for the truth about the scrolls’ origins. Cincinnati and Michael Wise in Chicago, and continuing with One of the most enlightening of these came in 1996, when the resumption of the Discoveries in the Judaean Desert series England’s Manchester University hosted an international confer- of Oxford University Press, researchers everywhere discovered ence on a single manuscript discovered in Cave III — a role of how rich these remnants of ancient Hebraic literature of intert- simple bookkeeping entries known as the Copper Scroll.
    [Show full text]
  • Underpinning of Soviet Industrial Paradigms
    Science and Social Policy: Underpinning of Soviet Industrial Paradigms by Chokan Laumulin Supervised by Professor Peter Nolan Centre of Development Studies Department of Politics and International Studies Darwin College This dissertation is submitted for the degree of Doctor of Philosophy May 2019 Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. 2 Chokan Laumulin, Darwin College, Centre of Development Studies A PhD thesis Science and Social Policy: Underpinning of Soviet Industrial Development Paradigms Supervised by Professor Peter Nolan. Abstract. Soviet policy-makers, in order to aid and abet industrialisation, seem to have chosen science as an agent for development. Soviet science, mainly through the Academy of Sciences of the USSR, was driving the Soviet industrial development and a key element of the preparation of human capital through social programmes and politechnisation of the society.
    [Show full text]