Research on Launch Vehicle Interface for Interplanetary Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
国内外における今後の火星探査の動向調査 Research on Trend About
Eco-Engineering, 22(4), 185-191, 2010 内外の研究動向 国内外における今後の火星探査の動向調査 Research on Trend about Domestic and International Mars Exploration in the future 新井真由美* Mayumi Arai* 日本科学未来館 〒135-0064 東京都江東区青海2-3-6 National Museum of Emerging Science and Innovation 2-3-6, Aomi, Koto-ku, Tokyo 135-0064, Japan 月ごとにフォボスに接近し、高解像度ステレオカメラ 1 .国外における今後の火星探査 (HRSC)で、1 ピクセル 4.4 m という、これまでにない 2011 年以降打ち上げを予定している火星探査計画は、 ほどの高解像度でフォボス表面を撮影している。フォボ アメリカ航空宇宙局(NASA)が主体となる計画のほか、 スは、地球に対する月のように常に火星に同じ面を向け 欧州宇宙機関(ESA)、ロシア、中国の計画がある。こ て公転しているが、フライバイを行うことによってフォ れらの主な目的と特徴を述べる。 ボスの異なる面の観測が可能となる。これらのデータ 1.1 Phobos-Grunt は、Phobos-Grunt の着陸地点選出に用いられる予定であ Phobos-Grunt は、火星の衛星フォボスの表面サンプル る。現在、フォボスへのオペレーションと着陸が安全な を地球に持ち帰るロシアの計画である。Phobos-Grunt と 場所として、5 °S-5 °N, 230-235 °E が選ばれている(Zak, は、“フォボスの土壌”という意味である。2009 年に打 2010; Mars Express’s web site, 2010)。 ち上げが予定されていたが、2011 年に延期された。現 1.2 蛍火 1 号(Yinghuo-1) 時点での打ち上げウィンドウは、2011 年 12 月 25 日。 蛍火 1 号(インホワ・ワン)は、中国の航空宇宙産 2012 年 8 月から 9 月に火星軌道に入り、2013 年から 業が開発した中国初の小型の火星周回衛星で、Phobos- 火星軌道を周り、2013 年にフォボスに着地。そして、 Grunt に相乗りして 2011 年の打ち上げを予定している。 2014 年に地球に帰還予定である。フォボスは、直径が約 Yinghuo という名前は「蛍」を意味する。蛍火 1 号の 27 × 22 × 19 km の不整形な形をした炭素質の C 型小惑 大きさは、長さ 75 cm、幅 75 cm、高さ 60 cm で、質量 星で、密度が平均 1.85 g/cm3 と小さく、氷と岩石の混合 110 kg、太陽電池パネルを広げると 7.85 m。2012 年に 物から構成されていると考えられている。フォボスは、 Phobos-Grunt から分離され、火星の赤道軌道に投入され、 火星の重力に捕獲された小惑星であるという説のほか、 約 2 年間、火星上空のプラズマ環境と磁場の詳細な観測 火星に隕石が衝突した際に飛び散った岩石が集まって誕 などを行う予定である(Zak, 2010)。蛍火 1 号は、中国 生したという説、太陽系の惑星形成時の残余物が集まっ 初の惑星探査機で、有人探査の「神舟」シリーズ、月探 たという説が考えられているが、実際どのようなメカニ 査の「嫦娥」シリーズに継ぐ、第 3 の宇宙探査に位置づ ズムで火星の赤道面に捕獲され、進化してきたか未だ議 けられる。 -
View Conducted by Its Standing Review Board (SRB)
Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of -
MELOS Rover (Smaller Than MER) Engineering Primary Objectives Rough-Terrain Traversability • Design & Development of the Mobility System: I.E
MEPAG meeting 2015 Current plan of the MELOS, a proposed Japanese Mars mission Hirdy Miyamoto (University of Tokyo) on behalf of MELOS working group NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. Background of the Japanese Mars program JAXA’s missions to solar system bodies NOZOMI Mars Mission (1998) (did not arrive at Mars) Hayabusa asteroid mission (2003) Kaguya lunar mission (2007) Akatsuki Venus mission (2011) Venus orbit insertion delayed until 2015 Hayabusa 2 asteroid mission (2014) Successfully launched • MELOS working group@JAXA from 2008 MELOS used to stand for “Mars Explorations with Landers and Orbiters” Lander(s) and orbiters (meteorology and atmospheric escape) • MELOS is now down-scaled to be an EDL (+Rover) mission for an engineering demonstration • MELOS (Mars Exploration of Life-Organism Search) is one of 4 proposals for Announcement of Opportunity for medium- class missions, Feb. 2015, JAXA Proposed mission outline of MELOS Launch Aug. 2020 (Sep. 2022) Mars Arrival Feb. 2021 (Apr. 2023) Primary objective: Science objectives Engineering demonstration Current status/activity on Mars (Pin-point landing, long-range - Meteorology roving) - Geology - Biology Proposed landing scenario of MELOS Cruise module separation & entry Entry-Descent-Landing (EDL) module Guided flight 909kg (wet), 803kg (dry) Parachute deployment Interplanetary Cruise Module Atmospheric Entry Module Aeroshell Module Skycrane Powered Landing Module descent Rover Landing accuracy 20 x 14 km Rover touchdown MELOS Rover (smaller than MER) Engineering primary objectives Rough-terrain traversability • Design & development of the mobility system: i.e. -
Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. -
Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology
Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology Yuichi Tsuda Project Manager, Hayabusa2 Japan Aerospace ExplorationAgency 58th COPUOS, April 23, 2021 Lunar and Planetary Science Missions of Japan 1980 1990 2000 2010 2020 Future Plan Moon 2007 Kaguya 1990 Hiten SLIM Lunar-A × Venus 2010 Akatsuki 2018 Mio 1998 Nozomi × Planets Mercury (Mars) 2010 IKAROS Venus MMX Phobos/Mars 1985 Suisei 2014 Hayabusa2 Small Bodies Asteroid Ryugu 2003 Hayabusa 1985 Sakigake Asteroid Itokawa Destiny+ Comet Halley Comet Pheton 2 Hayabusa2 Mission ✓ Sample return mission to a C-type asteroid “Ryugu” ✓ 5.2 billion km interplanetary journey. Launch Earth Gravity Assist Ryugu Arrival MINERVA-II-1 Deployment Dec.3, 2014 Sep.21, 2018 Dec.3, 2015 Jun.27, 2018 MASCOT Deployment Oct.3, 2018 Ryugu Departure Nov.13.2019 Kinetic Impact Earth Return Second Dec.6, 2020 Apr.5, 2019 Target Markers Orbiting Touchdown Sep.16, 2019 Jul,11, 2019 First Touchdown Feb.22, 2019 MINERVA-II-2 Orbiting MD [D VIp srvlxp #534<# Oct.2, 2019 Hayabusa2 Spacecraft Overview Deployable Xband Xband Camera (DCAM3) HGA LGA Xband Solar Array MGA Kaba nd Ion Engine HGA Panel RCS thrusters ×12 ONC‐T, ONC‐W1 Star Trackers Near Infrared DLR MASCOT Spectrometer (NIRS3) Lander Thermal Infrared +Z Imager (TIR) Reentry Capsule +X MINERVA‐II Small Carry‐on +Z LIDAR ONC‐W2 +Y Rovers Impactor (SCI) +X Sampler Horn Target +Y Markers ×5 Launch Mass: 609kg Ion Engine: Total ΔV=3.2km/s, Thrust=5-28mN (variable), Specific Impulse=2800- 3000sec. (4 thrusters, mounted on two-axis gimbal) Chemical RCS: Bi-prop. -
Preliminary Mission Analysis and Orbit Design for Next Mars Exploration
Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_7-Tk_12, 2010 Topics Preliminary Mission Analysis and Orbit Design for Next Mars Exploration By Naoko OGAWA 1), Mutsuko Y. MORIMOTO1), Yuichi TSUDA1,2), Tetsuya YAMADA1,2), Kazuhisa FUJITA1,3), Tomohiro YAMAGUCHI4), Yasuhiro KAWAKATSU1,2), Takashi KUBOTA1,2) and Jun’ichiro KAWAGUCHI1,2) 1)JAXA Space Exploration Center, Japan Aerospace Exploration Agency, Sagamihara, Japan 2)Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan 3)Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tokyo, Japan 4)The Graduate University for Advanced Studies, Sagamihara, Japan (Received July 21st, 2009) Japan has launched many interplanetary spacecraft for exploration of solar system bodies including Mars. Now we are planning the next Mars mission in the late 2010’s. This paper describes the preliminary mission analysis and orbit design for this plan. The combined exploration by several spacecraft requires complicated and careful consideration, different from those for single-probe missions. Mission plans to realize required configuration by a single launch and simple simulation results are reported. Key Words: Mars, Mission Analysis, Orbit Design, MELOS 1. Introduction 2.1.1. Meteorological orbiter for martian climate One orbiter of the two, called hereafter as the meteorological In 2008, Japan Aerospace Exploration Agency (JAXA) orbiter, aims understanding of the interaction between the has established a novel working group toward a novel Mars atmosphere and subsurface ice, and atmospheric dynamics. exploration program named MELOS, an acronym for “Mars Global, high-resolution and continuous mapping of water vapor, Exploration with Lander-Orbiter Synergy”1). As its name clouds, dusts and atmospheric temperature will be performed indicates, this is an ambitious mission composed of several with imaging cameras from the apoapsis of its highly elliptic landers and orbiters, schematically illustrated in Fig. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering
Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering Thruster Plume Osamu Mori, Yoji Shirasawa, Hirotaka Sawada, Ryu Funase, Yuichi Tsuda, Takanao Saiki and Takayuki Yamamoto (JAXA), Morizumi Motooka and Ryo Jifuku (Univ. of Tokyo) Abstract In this paper, the attitude dynamics of IKAROS, which is spinning solar sail, is presented. First Mode Model of out-of-plane deformation (FMM) and Multi Particle Model (MPM) are introduced to analyze the out-of-plane oscillation mode of spinning solar sail. The out-of-plane oscillation of IKAROS is governed by three modes derived from FMM. FMM is very simple and valid for the design of attitude controller. Considering the thruster configuration of IKAROS, the force on main body and sail by thruster plume as well as reaction force by thruster are integrated into MPM. The attitude motion after sail deployment or reorientation using thrusters can be analyzed by MPM numerical simulations precisely. スラスタプルームを考慮したスピン型ソーラーセイル「IKAROS」の姿勢制御運動 森 治,白澤 洋次,澤田 弘崇,船瀬 龍,津田 雄一,佐伯 孝尚,山本 高行(JAXA), 元岡 範純,地福 亮(東大) 摘要 本論文ではスピン型ソーラーセイル IKAROS の姿勢運動について示す.スピン型ソーラーセイル を解析するために一次面外変形モデルおよび多粒子モデルを導入する.まず,一次面外変形モデ ルから導出される 3 つのモードが IKAROS の面外運動を支配していることを示す.このモデルは 非常に簡易であり,姿勢制御設計に有効であると言える.一方,多粒子モデルに対しては, IKAROS のスラスタ配置を考慮して,スラスタの反力だけでなくスラスタプルームが本体や膜面 に及ぼす力を組み込み,セイル展開後およびスラスタによるマヌーバ後の姿勢運動を数値シミュ レーションにより詳細に解析する. 1. Introduction for the numerical model. Considering the thruster configuration of IKAROS, the force on main body and A solar sail 1) is a space yacht that gathers energy for sail by thruster plume as well as reaction force by propulsion from sunlight pressure by means of a thruster are integrated into MPM. The Fast Fourier membrane. The Japan Aerospace Exploration Agency Transform (FFT) results from IKAROS flight data are (JAXA) successfully achieved the world’s first solar sail compared with those from simulation data. -
Sample of Paper for 30Th ISTS & 6Th NAST
Orbit Determination for Long-term Prediction of Solar Power Sail Demonstrator IKAROS By ShoTaniguchi1), Takafumi Ohnishi1), Osamu Mori 2), Hideki Kato2), Hiroshi Takeuchi2), Atsushi Tomiki2), Yuya Mimasu2), Naoko Ogawa2), Jun Matsumoto2), Taichi ITO2), Tsutomu Ichikawa2), MakotoYoshikawa2), Shota Kikuchi3) , and Yosuke Kawabata3) 1) Technical computing solutions unit, science solutions div, Fujitsu Limited, Tokyo, Japan 2) Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3) Department of Aeronautics and Astronautics, The University of Tokyo, Tokyo, Japan (Received April 24st, 2017) The world’s first solar sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) was launched along with the Venus Climate Orbiter Akatsuki in May 2010. IKAROS was full successful of missions that have been planned for first half year. After the Venus flyby in Dec 2010, it was carried out an extended mission. IKAROS has succeeded many additional engineering and scientific missions. We are obtained many orbit determination skill1) in nominal and extended phase. However, the IKAROS was almost run out the fuel in Dec 2011, so attitude and spin rate was out of control .As a result, lost communication with the ground station due to the power shortage on December 24, 2011. After this operation IKAROS began to repeat the hibernation of the 10-month period by substantially fixed attitude in inertial coordinate while maintaining the spin rate between 5rpm and 6rpm without fuel. End of a hibernation, it is necessary to difficult orbit determination and 10 months or more of the long-term trajectory prediction for antenna tracking at USUDA deep space tracking station. In order to perform the orbit determination of long-term arc, an optical model2) of the solar sail back surface was constructed. -
Sg423finalreport.Pdf
Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites -
Science Exploration and Instrumentation of the OKEANOS Mission to a Jupiter Trojan Asteroid Using the Solar Power Sail
Planetary and Space Science xxx (2018) 1–8 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail Tatsuaki Okada a,b,*, Yoko Kebukawa c,d, Jun Aoki d, Jun Matsumoto a, Hajime Yano a, Takahiro Iwata a, Osamu Mori a, Jean-Pierre Bibring e, Stephan Ulamec f, Ralf Jaumann g, Solar Power Sail Science Teama a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan b The University of Tokyo, Hongo, Bunkyo, Tokyo, Japan c Faculty of Engineering, Yokohama National University, Japan d Graduate School of Science, Osaka University, Toyonaka, Japan e Institut dʼAstrophysique Spatiale, Orsay, France f German Aerospace Center, Cologne, Germany g German Aerospace Center, Berlin, Germany ARTICLE INFO ABSTRACT Keywords: An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under Solar system formation study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the Jupiter trojans asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling Solar power sail instruments of the mission are introduced, as the results of the joint study between the scientists and engineers Lander from Japan and Europe. Mass spectrometry OKEANOS 1. Introduction ocean water and life. Lucy (Levison et al., 2017), a Jupiter Trojan multi-flyby mission, has Jupiter Trojan asteroids are located in the long-term stable orbits been selected as a NASA Discovery class mission, which aims for un- around the Sun-Jupiter Lagrange points (L4 or L5) Most of them are derstanding the variation and diversity of Jupiter Trojans.